As probability and combinatorics have penetrated the fabric of mathematical activity, sieve methods have become more versatile and sophisticated and in recent years have played a part in some of the most spectacular mathematical discoveries. Nearly a hundred years have passed since Viggo Brun invented his famous sieve, and the use of sieve methods is constantly evolving. Many arithmetical investigations encounter a combinatorial problem that requires a sieving argument, and this tract offers a modern and reliable guide in such situations. The theory of higher dimensional sieves is thoroughly explored, and examples are provided throughout. A Mathematica® software package for sieve-theoretical calculations is provided on the authors' website. To further benefit readers, the Appendix describes methods for computing sieve functions.

### Contents

List of tables; List of illustrations; Preface; Notation; Part I. Sieves: 1. Introduction; 2. Selberg's sieve method; 3. Combinatorial foundations; 4. The fundamental Lemma; 5. Selberg's sieve method (continued); 6. Combinatorial foundations (continued); 7. The case κ = 1: the linear sieve; 8. An application of the linear sieve; 9. A sieve method for κ > 1; 10. Some applications of Theorem 9.1; 11. A weighted sieve method; Part II. Proof of the Main Analytic Theorem: 12. Dramatis personae and preliminaries; 13. Strategy and a necessary condition; 14. Estimates of σκ (u) = jκ (u/2); 15. The pκ and qκ functions; 16. The zeros of Π−2 and Ξ; 17. The parameters σκ and βκ; 18. Properties of Fκ and fκ; Appendix 1. Methods for computing sieve functions; Bibliography; Index.

### Reviews

"This is a well crafted book, with clear writing."
*Allen Stenger, MAA Reviews*

"It is to be recommended on the one hand for the serious student of the subject, and on the other for those who want a reference to the strongest available results for applications."
*D.R. Heath-Brown, Mathematical Reviews*