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Mason’s Gain Formula
To reduce a block diagram, one may use the Mason’s gain formula (also called Mason’s rule).
Mason first derived the idea using what he called a signal-flow graph, which is a different
graphical representation of a block diagram. A signal-flow graph is drawn with paths (lines) and
nodes. The transfer functions in a block diagram become the paths and the variables in between
the blocks become the nodes. The input and output variables of a block diagram are designated the
source and sink nodes. In this brief introduction, we shall skip drawing the signal-flow graphs
because we can explain and apply Mason’s formula to a block diagram just as well.

This is the simple idea behind the formula. We know that a block diagram is a graphical
representation of algebraic relations. If we write out the equations, we should be able to solve
them with, for example, the Cramer’s rule. If we analyze and compare carefully the determinant
terms resulting from the use of Cramer’s rule with a block diagram, we may make some
meaningful associations between the algebra and the diagram, and this is what Mason did. So we
now state the Mason’s gain formula without proof.1 The rule states that the transfer function
between the input and output variables of a block diagram is

  G(s) = 1
∆

Fi∆ iΣ
i = 1

f
 , (1)

where ∆ is the determinant of the system, Fi is the gain of the i-th forward path, and ∆i is the
determinant of the i-th forward path. The summation is over all f forward paths; we are
superimposing all the terms in a linear system. Moreover, the determinant ∆ is the characteristic
polynomial of the system.

We now need to define some more terms and show how each of these quantities can be
calculated:

System
determinant

∆ = 1 – (sum of all individual loop gains)
+ (sum of the products of the gains of all possible two loops

 that do not touch each other)
– (sum of the products of the gains of all possible three loops

 that do not touch each other)
+ … and so forth with sums of higher number of non-touching

loop gains

Forward path gain Fi = product of all the transfer functions along the i-th forward path

Forward path
determinant

∆i  = value of ∆ for the part of the block diagram that does not touch
the i-th forward path
(∆i = 1 if there are no non-touching loops to the i-th path.)

Forward path A path that goes from the input to the output, and in a way that no
variables (nodes) are encountered more than once.

Loop path A path that leads from one variable and back to the same variable.

Path gain The forward path gain is the product of all the transfer functions along
the path. Similarly, the loop path gain is the product of all the transfer
functions that form the loop.

Non-touching loop Two loops are not touching if they do not share a common variable.

                                                            
1 Hardly any introductory text provides the proof, but the text by Phillips and Harbor (1996) has a nice
example to illustrate the association of the determinants with Cramer’s rule.
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To see how to apply the rule, we need to revisit our examples in the text. Before we do that, be
forewarned that it is extremely easy to make an error applying the Mason’s formula; we can easily
overlook and omit one of the terms. We need to apply the rule with extreme care.

To apply Mason’s formula, we first identify the variables in the block diagram. They are
denoted with encircled numbers in the block diagrams of the following examples. Generally, we
have a new variable when information is changed, either after a transfer function or after a
summing point. We also label the input and output variables. It is not a strict rule, but we usually
assign the numbers along the most obvious forward path first.

Example 1. Find the closed loop transfer function
of a simple feedback loop (Fig. E.1).

This problem is essentially the block diagram
in Fig. 2.11 in the text with the servo transfer
function derived in Section 5.2.1. It is a good
habit to make a table of the paths and loops in
order to avoid errors. For this problem, there are
no non-touching loops. We have only one forward
path, and one loop that begins and ends after the summing point at variable number 2. The loop
gain is negative because the minus sign is essentially a gain of –1.

Forward path Path gain Determinant

12345 F1 = GcGaGp ∆1 = 1

Loop Loop gain

234562 GcGaGpGm x –1

So we have

∆ = 1 – (–GcGaGpGm) ,

and since there is only one forward path, we arrive at

 G(s) =
Gc GaGp

1 + Gc Ga GpGm  .
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Example 2. Repeat Example 2.14 in the text.

Figure E2.14 is duplicated in Fig. E.2 with the locations of the variables added. There are two
forward paths and one loop path, all touching each other. There are no non-touching parts. So we
have:

Forward path Path gain Determinant

123 F1 = Gp ∆1 = 1

145623 F2 = KHGp ∆2 = 1

Loop Loop gain

23562 Gp x –1 x H

The system determinant is

∆ = 1 – (–GpH) ,

and for the two forward paths,

  Fi ∆ iΣ
i = 1

2
= Gp + KHGp .

Finally, with Eq. (1),

 G(s) =
Gp (1 + KH)

1 + Gp H  .

Example 3. Repeat Example 2.15 in the text.

Figure E2.15a is duplicated in Fig. E.3 with the locations of the variables added. (Strictly, we
should assign a variable label immediately after the block G1, but we cheat and skip that because
omitting that label will not affect our results here.) There is one forward path and three loop paths.
Two of the loop paths do not touch each other, but all three loop paths touch the forward path.

Forward path Path gain Determinant

1234567 F1 = G1G2G3G4 ∆1 = 1

Loop Loop gain

345693 G2G3H1 x –1

56785* G3G4H2 x –1

2342* G1G2 x –1

* These two loops do not touch each other

Because two of the loop paths do not touch each other, the system determinant has an extra
product term of these two non-touching loops:

∆ = 1 + (G2G3H1 + G3G4H2 + G1G2) + (G3G4H2 x G1G2) .
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The forward path touches all three loops, and ∆1 = 1. Hence, the transfer function of this system is

 G(s) =
G1 G2 G3 G4

1 + G2 G3 H1 + G3 G4 H2 + G1 G2 + G1 G2 G3 G4 H2   .

If we factor out (1 + G1G2) in the denominator, we can arrive at exactly the same form as
presented in Example 2.15.
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Example 4. Repeat Example 2.16 in the text.

Figure E2.15(a) is duplicated in Fig. E.4 with the locations of the variables added. There is one
forward path and two loop paths, all touching each other. There are no non-touching parts. So we
have:

Forward path Path gain Determinant

1234 F1 = K/s2 ∆1 = 1

Loop Loop gain

2352 2ζω/s  x – 1

23462 ω2/s2  x – 1

The system determinant is

∆ = 1 + 2ζω/s + ω2/s2

With the forward path, the transfer function via Eq. (1) is

  G(s) = K/s 2

1 + 2ζω/s + ω 2/s2 = K
s2 + 2ζωs + ω 2

Suggested exercises:

•  Try derive the load transfer functions in examples 1 and 2 here.

•  Try applying the formula to the block diagram homework problems.


