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What we learn in this Supplement

We derive the Planck blackbody function. We first present briefly the
concepts of the distribution function (the density of representative
points (RP) in a six-dimensional (6-D) x, p space), energy shells in
momentum space, thermodynamic equilibrium and indistinguishable
particles. The Bose-Einstein counting of arrangements of cells in 6-D
space is worked out through the definitions of microstates, macrostates,
and global macrostates. The maximizing of the arrangements for
massless bosons (photons) yields the global macrostate at equilibrium,
where constraints on the total (summed) energy and on the cell numbers
are applied with Lagrange multipliers. This global macrostate provides
the number of photons in each energy state at equilibrium, which is the
desired spectrum. A thermodynamic argument relates a Lagrange
constant to the temperature T. The final result is the distribution function
f (m–3 (N s)–3) for Bose-Einstein statistics of massless bosons. From this
follows directly the specific intensity (W m–2 Hz–1 sr–1), otherwise known
as the Planck function of the blackbody spectrum.

The spectrum for massless fermions (e.g., neutrinos, neglecting their
small mass) follows from a similar development. This is relevant to a
predicted cosmological background of neutrinos. Similar calculations
also produce the distribution functions for bosons and fermions with
mass. Some of these cases are worked out in the problems.

Solutions to the problems are available to instructors on the password-
protected portion of the CUP web site for this text (see URL above).
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1 Introduction

We derive here the distribution function f(x, y, z, px, py, pz) for a gas of photons in
thermodynamic equilibrium. This quantity is the number density of points representing
particles (or representative points, RP) in a 6-dimensional (6-D) phase space. The density
has units m–3 (N s)–3. The specific intensity I�, or Planck function (equation (6.6) in AP),
follows directly from it.

The derivation here follows directly from the statistical ideas of Bose (Zietsch. f. Phys.
26, 178 (1924)) and Einstein (Berl. Ber. p. 261 (1924) and p. 18 (1925)). (Planck’s
blackbody law was published in 1901.) It follows the development and notation of Georg
Joos (tr. by Freeman) in his classic book, Theoretical Physics (Hafner Publishing Co.
New York, 2nd Edit. (1950), p. 617 ff. There are other approaches to these statistics; see
textbooks on statistical mechanics.

Quantum statistics treats photons as discrete and indistinguishable quanta of energy
h�, and it divides phase space into cells, each of volume of h3. The quantization of
photon energy was not known to Planck when he derived his law from a quantization of
waves. The existence of the constant h followed from his work, and its numerical value
followed from fits to measured energy spectra of thermal radiation.

The statistical approach differs from that of Boltzmann (outlined in Section 3.2 of
Astrophysics Processes (AP)), which implicitly assumes the individual particles are
distinguishable. Bose-Einstein (B-E) statistics are applicable to bosons, particles of
integer spin (e.g., photons, pions), and there is no intrinsic limit to the number of bosons
that may be placed in a given cell of x, p phase space. In contrast, Fermi-Dirac (F-D)
statistics apply to fermions which have half-integer spin (e.g., neutrinos, electrons), and
each phase-space cell can contain only zero or one particle of a given type where spin
state counts as a “type”.

It turns out that the B-E or F-D statistics reduce to the exponential form of the
Boltzmann distribution for sufficiently high temperatures, or equivalently, high particle
energies (E � kT). For many practical situations, the quantization of energy states has
negligible effect on the distributions, and one can use the Maxwell-Boltzmann
distribution. It is only for very high densities and/or very low temperatures that the
quantization becomes important.

Here we derive the B-E distribution for photons, which are massless bosons, when
they are in thermal equilibrium. A simple modification to the derivation yields the F-D
distribution for massless fermions in thermal equilibrium, which is applicable to a gas of
neutrinos (if they may be considered massless). This is of great interest because a thermal
distribution of neutrinos created in the early hot universe is believed to pervade the
universe today according to the standard “big-bang” model. Originally of temperature
~1010 K, the neutrinos, if massless, would have cooled to ~2 K at the current epoch. It
has not yet been possible to search for such very low-energy neutrinos.

This derivation may be further extended for particles of finite mass by adding one
additional constraint for the conservation of particle number. Here we describe this and
present the resulting distribution functions.
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2 Basic concepts

Thermodynamic equilibrium

Consider the box of fixed volume V in Fig. 1. It is at rest in an inertial frame of
reference and is filled with radiation. Treat the radiation as an ensemble of photons. The
box may be a hollow cavity or it may contain a gas of ordinary particles. The photons
collide with the walls and with the particles, exchanging energies and randomizing
directions. As the energies and directions approach stable values, the distributions are
said to become stationary. They become time independent and isotropic. In such a
situation, the photons are said to be in thermodynamic equilibrium.

Distribution function

We operate every day in the usual physical x ,y, z space and are accustomed to the
number density in such a space. In a Cartesian space with three directions, px, py, pz, (Fig.
3.1c of AP), a point at the position indicated by a particle’s momentum vector can
represent the particle. One can therefore think of points representing particles distributed
in momentum space. This may be generalized to a 6-D phase space with dimensions x, y,
z, px, py, pz wherein each particle is represented by a point. We call such points
representative points (RP).

The density of RP for a gas in this 6-D space is called the distribution function f(x, y, z,
px, py, pz, t); units m–3 (N s)–3. The product f(x, y, z, px, py, pz, t) �x �p is the number of
particles at time t with positions and momenta in the ranges x  x+�x, y  y+�y,
z  z+�z, px  px+�px, py  py+�py, pz  pz+�pz where �x �p 
�x,�y,�z,�px�py�pz is the differential volume element in 6-D phase space occupied by
these RP. Divide the number of RP by this volume to obtain the density in phase space,
namely f(x, y, z, px, py, pz, t).

The distribution function f is a fundamental quantity from which all other
characteristics of the particle flow can be derived, such as the specific intensity, spectral
flux density, etc. See Section 3.3 of AP.

In general, the distribution function f depends on the variable, time t, because the
distribution can change with time. However, since we consider here a photon gas in
thermal equilibrium, the distribution function is independent of time. In this case, one can
drop the t dependence; thus f(x, y, z, px, py, pz).

Photon gas

Here we present some background material regarding photon gases prior to
deriving the Planck function.
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Figure 1. Energy shells (states) at two positions in physical (ordinary) space. The
shells are in the momentum part of phase space where p = h�/c is the momentum
of a photon. All photons with representative points (RP) in the many shells of the
same radius have the same energy.

Energy shells

Consider a physical (ordinary) volume V (Fig. 1), which may be subdivided into
volume elements

dV = dx dy dz. (1)

One can similarly define a volume element dVp in momentum space, in cartesian and also
in spherical coordinates,

dVp  = d3p = dpx dpy dpz = d�p p2 dp
(Volume element in

momentum space)
(2)

Integration over all angles in momentum space yields a spherical shell of volume,

dVu = dVp
spherical
surface

 

  = 4� p2 dp (“Energy shell” in
momentum space)

(3)

This shell is illustrated in Fig. 2. All particles with momentum vectors terminating in this
shell have the same magnitude p within dp. Since the photon energy is directly related to
momentum, us = psc (J), the energies of all such photons will also be the same, within the
corresponding interval dus. We thus call the spherical shell an energy shell and so label
the volume element dVu (“u” for energy), but keep in mind that it is a volume in
momentum space. The subscript “s” in us indicates the energy shell (state) number.
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Figure 2. Combined shell in momentum space for all shells of same radius. Each
such shell consists of many cells, each of which has volume h3 in x, p phase
space.

If the particle has a rest mass m, the momentum–energy relation is pc = (u2 – (mc2)2)1/2

(AP, (7.20)). Again, there is a one to one correlation between the particle’s momentum
and energy. The intervals are related as c2 p dp = u du.

The radius of the spherical shell represents the momentum p of an individual photon.
Other photons with the same energy will have momentum vectors that terminate in the
same shell, regardless of their location in physical x, y, z space. Thus, the energy content
of particles in a shell, Nsh�s, will usually not equal the shell energy us = psc = h�s, the
exception being when there is just one photon in the shell.

Two such energy shells, of the same radius but at two different physical locations, are
shown in Fig. 1. This figure illustrates that, at each point in physical space, one can have
a complete set of energy shells each containing some number of particles, to be
determined. In momentum space (Fig. 2), all such shells for a chosen volume are
superimposed.

The distribution of photon number Ns (or energy Nsh�s) with shell energy h�s  (or
frequency �s) is the spectrum we seek. It is the assumed isotropy in thermal equilibrium
that permits us to describe the distribution solely in terms of energy, or equivalently
momentum magnitude.

Indistinguishable particles

There are two kinds of photons, those with left-handed polarization and those
with right-handed polarization (z spin states ±1). They are identical in all other respects.
All photons with a given polarization state are indistinguishable except for their energy
value us = h�.

The classical view is that particles in a box can be distinguished from one another, as
in everyday life, because they are sufficiently separated to be tracked individually. This
view is not generally correct in quantum mechanics. One might imagine a box of gas
particles that are all totally at rest, with zero momentum. This is a plausible idea
classically, although it would require a very low temperature. But, in quantum mechanics,
the uncertainty principle tells us that a particle with zero momentum (with no
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uncertainty) has a huge uncertainty in position. Thus each of the particles in the box can
occupy the entire box, like a wave. It is thus impossible to track individual particles
where quantum mechanics is important. They are indistinguishable.

The statistics of Boltzmann yield the Maxwell-Boltzmann equation through a
maximization of the number of ways the (distinguishable) particles can be arranged in
cells in phase space. In quantum mechanics, the box of photons can be viewed as filled
with waves (or indistinguishable particles). There are no distinguishable particles to
arrange. A different kind of statistics is required to determine the energy distribution of a
gas of photons.

Bose’s idea was that, if one adopts cells of a fixed cell size in phase space (from
Planck’s quantization) and associates measurable quantities with the cells such as the
number of photons of energy h� in the cell, one can play statistics with the cells rather
than the physical particles.

3 Bose-Einstein statistics

Bose-Einstein statistics apply to particles of integer spin whether they are
massless or not. Here we focus on massless bosons, namely photons.

Microstates and macrostates

We now play Bose statistics with a box of one kind of partricles (say, photons of
right hand polarization). Thermodynamic equilibrium is assumed.

Cells in phase space

To play Bose statistics, we introduce a cell in 6-D phase space (x, p), The cell is
defined by the magnitude of its “volume” which we call � – the shape is immaterial –

� = �x �px �y �py �z �pz (4)

One would like to cut up the entire phase space of the box into as many cells as possible
without violating the spirit of Heisenberg’s uncertainty principle. The permissible choice
is

�x �px = h

�y �py = h

�z �pz = h

(5)

where h is Planck’s constant. The cell volume in phase space is thus,

�cell = h3 (Cell vol. in phase space) (6)
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As noted above, in Bose statistics, there is no constraint on how many particles can be
placed into one such cell. In Fermi statistics, only zero or one particle of a given type
(including spin state) may be placed into one cell.

There are several ways to visualize the momentum portion of the individual cells of
volume h3. In momentum space, they may be (i) quasi-cubic microscopic cells distributed
over the shell (see Fig. 2 for an example), (ii) individual spherical shells associated with
different positions in space as in Fig. 1, or (iii) spherical subshells of the energy shell of
Fig. 2, like the layers of an onion. In all three cases, the individual cells each have
volume h3/d3x in momentum space. In the first case, the individual cells contain photons
with momenta directed in a single direction. In the latter two cases, the spherical cells
contain photons moving in all directions, and the cells would have decreasing radial
thicknesses as radius increases in order to keep the 3-D cell volumes constant at h3/d3x.
In all cases, keep in mind that the cells also have another 3 dimensions in x, y, z space. If
unit x, y, z volume is assumed, the 6-D cell volume h3 equals the volume in momentum
space.

The choice among these visualizations is not important; what matters is that there are a
number of cells at a given photon energy, and these constitute the subgroup of interest.
Hereafter, we will usually refer to an energy state rather than to a “shell’, but the reader is
welcome to visualize a shell consisting of many cells of volume h3.

Let the number of cells in a specific energy state s be called Zs; for the German word
zelle (cell). Then the total number of cells in the 6-D phase space summed over all energy
states s is,

Z = Zs
s

 

 

 

(Total no. of cells) (7)

The summation is over energy states from us = 0 to us = �, where us = h�s, the energy of
a photon in state s. The number Zs of cells for a given energy state, depends only upon
the volume h3 of a single cell and the phase space volume available. Hence the Zs are
held fixed as we vary the photon numbers in the cells,

Zs = constant;  �Zs = 0. (8)

Cell arrangements

Our primary goal is to find the most probable distribution of bosons (photons)
over the s energy states, i.e., the energy spectrum. In equilibrium, the bosons are expected
to have this most probable distribution. The distribution with the highest probability is the
one for which there is the maximum number of photon arrangements among the
individual cells that will give rise to that particular distribution.

The proper counting of the number of arrangements, known as combinatorics, requires
that we define as a macrostate. It involves a recipe for forming subgroups of cells (not
bosons) within a given energy state. As we shall see, each macrostate has a well-defined
distribution of bosons among its cells. We will also define a global macroscopic state
which encompasses all the energy states. It is the most probable global macrostate that
we seek by maximizing the number of arrangements that give rise to it. The energy
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distribution, the Planck function, follows directly from the most probable global
macrostate.

The Bose method of combinatorics begins with the consideration of a single energy
state s. All bosons in energy state s have energy us = h�s. Call the number of cells within
the energy state that are unoccupied (empty) zs0, the number occupied by one boson zs1,
etc. The symbol zsm thus represents the number of cells containing m bosons. It follows
from this definition that the number of cells in energy state s is,

Zs = zsm
m = 0

�
(Number of cells in state

s)
(9)

and that

Ns = m zsm
m = 0

�

 (Number of bosons in
state s)

(10)

is the number of bosons in the energy state, s. The upper limit is m = � because there can
be an arbitrarily large number of bosons (e.g., photons) in any cell. The numbers are
restricted only by the overall energy content of the entire system.

As an example, consider Zs = 4 cells and Ns = 3 bosons, as illustrated in Table 1, and
examine the number of ways the particle labels may be arranged. There are a total of 20
possible ways as shown. Take the top group in the table where three cells each contain
one boson (zs1 = 3), and one cell contains none (zs0 = 1); also zs2 = zs3 = 0. By inspection,
there are four arrangements with these values of zsm, if we treat the bosons as
indistinguishable. They are 1  1  1  0 , 0  1  1  1 , 1  0  1  1 , and 1  1  0  1  .

These arrangements are obtained by interchanging the cell labels (along with the
particle content) among the four cells. Alternatively, one may consider that the cells
themselves (with their particle content and labels) are rearranged among the four
positions. The essence of the problem does not change; the combinatorics are identical.

 According to Bose, interchanging two cells labeled ‘1’ does not yield a distinct
arrangement because they are identical. If the cells labeled ‘1’ were distinguishable, say,
by color, there would be a different set of distinct arrangements. (See discussion of
“Permutations” in the Appendix and in the Boltzmann statistics in the next subsection.)

According to (A9) in the Appendix, the number of distinct permutations of four cell
labels, three of which are identical and one of which stands alone, is W = Zs!/(zs0! zs1!
zs2! zs3!) = 4!/(1! 3! 0! 0!) = 4. This agrees with  the result in Table 1.

Each of the four substates in the first group of Table 1 may be called a microstate.
That is, there are four microstates which contain no more than one boson in a cell. The
four microstates are four ways to construct the Macrostate I (see column 1 of Table 1). A
macrostate is defined as having a fixed set of zsm (column 2 of Table 1). The Bose
probability for Macrostate I is Ws(1,3,0,0) = 4 (column 4 of Table 1).
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Table 1. Bose statistics for 4 cells and 3 identical objects in energy state, s
(Zs  = 4; Ns = 3)a

Bosons per cell,

each of energy us = h�s

Cell: #1 #2 #3 #4

     Bose
probability

Ws

Bose

Macrostateb

I

All microstates

with:

zs0 = 1, zs1 = 3

zs2 = 0, zs3 = 0

1 1 1 0

0 1 1 1

1 0 1 1

1 1 0 1

4

Bose

Macrostate

II

All microstates

with:

zs0 = 2, zs1 = 1

zs2 = 1, zs3 = 0

2 1 0 0

0 2 1 0

0 0 2 1

1 0 0 2

1 2 0 0

0 1 2 0

0 0 1 2

2 0 0 1

0 1 0 2

2 0 1 0

0 2 0 1

1 0 2 0

12

Bose

Macrostate

III

All microstates

with:

zs0 = 3, zs1 = 0

zs2 = 0, zs3 = 1

3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

4

a An “energy state” is defined by the energy of a photon occupying it; us = h�s. The state may
contain any number of photons; i.e., it can have any energy content, subject to an overall energy
constraint.
bFor systems with more than one energy state, a Bose macrostate is defined by a single complete
set of values zsm,: z1,0 , z1,1, z1,2, . . . .z2,0 z2,1, z2,2, . . .z3,0 . . . . . . This is called a global
macrostate. The number of ways W of obtaining this is maximized to find the most probable
(equilibrium) set of zsm.

It is also possible to have 2 bosons in a cell, e.g., 2  1  0  0 , where we still take Zs = 4
and Ns = 3 (Table 1). The first and second cells are each different from all the others, and
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the third and fourth are identical, so the number of arrangements is Zs!/(zs0! zs1! zs2!) =
4!/(2! 1! 1!) = 12. There are 12 possible microstates with 2 bosons in one cell. These are
shown in the Table and are the 12 ways to form Macrostate II; Ws(2,1,1,0) = 12.

Finally, the 4 cells and 3 bosons can be arranged with 3 in a given cell, e.g., 3  0  0  0 .
There are 4!/(3! 0! 0! 1!) = 4 such arrangements; there are four ways to construct
Macrostate III; Ws(3,0,0,1) = 4. In general, the number of ways Ws to obtain a given
macroscopic state in energy state s is, from (A9),

Ws  =  Zs!
zs0! zs1! zs2! . . . .

(Number of ways to get
macrostate)

(11)

with the stipulation that the number of states Zs is the sum of all the zsm (9) in the
denominator. This is the number of distinct permutations of the cell labels, i.e. of the
particle numbers.

It is important to realize that a given macrostate corresponds to a given set of zsm. Each
of the macrostates I, II, and III in Table 1 are distinguished by the different sets of zsm
given in Column 2. A different set of zsm corresponds to a different macrostate.

In thermal equilibrium, one might find that one or the other of the three macrostates in
Table 1 characterizes the energy state us. Alternately, one might also find another
macrostate with a different number of bosons, e.g., Ns = 6, in the four cells (Zs = 4), say,
with zs0 = zs1 = zs2 = zs3 = 1, of which 3  2  1  0  is one of 24 permutations. There are
additional macrostates with Ns = 6, but they will have different zsm. In fact there is an
infinite number of possible macrostates at energy us because one can put any huge
number of bosons in a given state, if there is sufficient energy in the system to allow it.

Boltzmann statistics

In Boltzmann statistics, each line of Table 1 is a macrostate which has an
associated probability of occurrence. Consider the top line 1  1  1  0 , and distinguish the 3
particles by color, namely red, green, and blue (R, G, B). There are 6 possible
arrangements (microstates) that give rise to this macrostate. R  G  B  0 , R  B  G  0 , etc.
Thus the Boltzmann probability is 6 for each of the four Boltzmann macrostates in the
top group. Similarly, the top line of the second group 2  1  0  0  can be obtained in 3
ways, namely RG  B  0  0  RB  G  0  0 , and GB R  0  0 .The interchange of particles within
one cell does not constitute a separate arrangement. Each line in the middle group thus
has a Boltzmann probability of 3.

The number of ways each macrostate can be arranged is given by W = N!/(N1! N2! . . .)
where N is the total number of particles, N1 the number in cell 1, N2 the number in cell 2,
etc. For our first example (top line of group 1), this yields 6 arrangements (3!/1! 1! 1! 0!
= 6). The second example (top line of group 2) yields three arrangements (3!/(2! 1! 0! 0!)
= 3) as we claimed. Finally each line of the 3rd group, has only one possible
arrangement, 3!/(3! 0! 0! 0!) = 1. The one arrangement of the top line is RGB  0  0  0  .

In contrast, Bose statistics count the top row in each group as only one microstate
because the particles are indistinguishable; they are all blue, for example.
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Global macrostate

One can define a global macrostate wherein each energy state us has a particular
macrostate with its particular set of zsm. The entire collection of zsm, ranging over all
energy states, characterizes the global macrostate. There are many possible different
global macrostates because each of the several energy states could have any one of many
different macrostates with their associated values of zsm.

Consider two energy states, s = 1 and s = 2, each with a macrostate characterized by its
set of zsm, specified as z1m and z2m. For each arrangement of cells in the macrostate of
energy state 1, one can have all possible arrangements of the macrostate in state 2. Thus,
the total number of cell arrangements is the product W = W1 W2. In general, for a given
global set of zsm, the number of possible cell arrangements in the entire system is the
product,

W Z, zsm  = Ws zsm
s

 

 (Thermodynamic
probability )

(12)

Each global set of zsm describes a global macrostate which can be obtained in W = W(Z,
zsm) ways. The overall probability of obtaining this global macrostate is proportional to
the number of ways W of obtaining it. Thus, W is known as the thermodynamic
probability.

As an example, consider again our two-state case. In state 1, if the arrangement is
2  1  0  0  or any of its distinct permutations, we have a specific set of z1m, namely z1,0 =
2, z1,1 = 1, z1,2 = 1. As we learned in Table 1, W1 = 12 is the number of ways to arrange
these. Now state 2 may have a different number of cells Z2 = 5 and a different number of
bosons N2 = 7, and, of necessity, a different set of z2m, say, the set representing
2  3  0  0  2  and its 30 permutations (work it out). The product W thus represents the 360
ways these particular sets of cells can be jointly rearranged, but with each set remaining
within its own energy state.

Note that the arrangements 2  1  0  0  and 3  0  0  0  in state 1 do not have the same zsm
even though their total particle count is the same. Similarly, in state 2, the set 2  3  0  0  2
and 7  0  0  0  0  do not have the same zsm. Thus, the number of ways W discussed in the
example just above does not include the arrangements 3  0  0  0  and 7  0  0  0  0  . They
would constitute a different global state which would have its own set of zsm and value of
W(Z; zsm).

4 Massless bosons

Most probable macrostate

Our next task is to find the most probable global macrostate, that with the highest
thermodynamic probability. We accomplish this by varying the zsm to find the maximum
W. The values of zsm associated with the maximum W will be those expected for an
equilibrium gas of bosons. The result for a given energy state s (photon energy us) will
give us the number of bosons Ns = m zsm�

m
  in that state.
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The variation of zsm allows the possibility that m, the number of particles in a given
cell can be arbitrarily large (unless we otherwise place independent restrictions on the
number). Thus the number of sets of zsm and hence of trial values of W can reach infinity
in our quest for the maximum W. In fact, for our problem of a photon gas, we will not
restrict the number of photons, but we will put a restriction of fixed energy on the entire
system.

The next step of our derivation is primarily mathematics: a maximization problem with
constraints.

Maximize probability

To maximize W, introduce the function,

S  ln W  = ln Ws
s

 

 (13)

The “squiggle” distinguishes this function from the closely related entropy, S = k ln W,
we encounter below. Apply the expression (11) for Ws(Zz,zsm), use Stirling’s formula
(A1), and invoke the relation (9) between Zs and the zsm to obtain (Prob. 43)

S   Zs ln Zs – zsm ln zsm
m = 0

�

s

 

  (14)

Write the variation of S  in terms of the variation of the many zsm, recalling that the
number of bins Zs in an energy state is constant, �Zs = 0. Proceed as if taking the total

differential, and set the result to zero to locate the maximum of S ,

S    – 1 + ln zsm zsm
m 

 

  =  0
s

 

 

 

(15)

The quantities �zsm in the sum (15) are all independent quantities and thus may be
arbitrarily assigned values that need not be equal; for example, the quantity S in (15)
will take on the proper value for any assigned (differentially small) values of �zsm. Thus
the equation (15) can be satisfied only if each of the parenthetical terms equals zero,

1 + ln zsm = 0 (16)

This is a series of equations, one for each zsm, or one for each unknown.

Energy and cell number conservation

Before proceeding to solve for the zsm, we must apply the constraints of fixed
total (summed) energy and fixed cell numbers. The energy constraint for all bosons
(photons) in the ensemble is
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U  =  usmzsm
m

 

s

 

 = usNs
s

 

 = const. (17)

where us = h�s is the energy of a photon in energy state s. The variation of this expression
is, for fixed energy states us,

�U  =  usm �zsm
m 

 

s

 

 =  0  

 

(Total energy constant) (18)

This is the first constraint on (15). The constancy of cell number Zs in each energy
state provides additional constraints, one for each energy state s. From (9), we have, for
each energy state s,

�Zs =  �zsm
m = 0

�

  =  0 (Cell numbers constant
in each energy state)

(19)

Lagrange multipliers

The equations ofor U (17) and Zs (9) cause the problem to be over determined;
there are more equations than unknowns. We have added one energy equation and also
one cell number equation for each energy state s. The method of Lagrange multipliers
addresses this by introducing new unknown constants while imposing the constraints we
specified.

Multiply the energy constraint (18) by some constant �, and the cell-number constraint
(19) by the constant 	s. Add these two expressions to (15),

�zsm
m = 0

�

 ln zsm +1 + 	s + �usm
s

 

 =  0 (20)

Since each contributing expression is equal to zero, this new expression also equals zero.
Again, because the �zsm are independent and arbitrarily assigned, this equation can be
satisfied only if

ln zsm +1 + 	 s + � usm =  0 (21)

This new set of equations (one for each zsm) contains the additional constants. To solve
for these and for the zsm, these equations must be supplemented by the expressions for the
total energy U (17) and the Zs (9), which are given and conserved quantities.

Most probable zsm

Adopt the abbreviation


s  exp –(1+ 	 s) (22)
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which can be used to eliminate 1+	s in (21) to yield an expression for zsm in terms of the
constants 
s and �,

zsm = 
s e–m�us (23)

This is the number of cells zsm containing m bosons of energy h�s (in energy state us)

when S  is maximum.

Now, use the known Zs to obtain the Lagrange multipliers 	s, or equivalently the 
s.
Sum (23) over all m and use the relation (9) for Zs as the sum of zsm to write

Zs = 
s �s (24)

where, for convenience, we define �s to be the summation over the exponentials

�s    e–m�us

m = 0

�

 (25)

Thus,


s = Zs
�s

(26)

These are the desired Lagrange-multiplier parameters 
s. The zsm (23) thus become

zsm = Zs
�s

 e–m�us (Cell distribution when

 S  is maximum)
(27)

when S  is maximum, Zs is the number of cells in the energy state s and �s is the
summation of exponentials (25).

Photon number Ns

The photon number Ns in energy state s is obtained by direct substitution of (27)
into the expression for Ns = �mzsm (10),

Ns = Zs 
�s
�s

(28)

where, again for convenience, we define �s as the summation

�s    m e–m�us

m = 0

�

(29)
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The ratio �s/�s in (28) involves two geometric series that can be shown to give, from
(A17),

Ns
Zs

  =  1
e�us – 1

 (Av. number of photons per
cell when S  is maximum)

(30)

The ratio Ns/Zs in (30) is, by definition, the average number of bosons (photons in our
case) per cell. If there are equal amounts of left and right handed photons, we have

Ns
Zs

    2
e�us – 1

 (Most probable number of
photons per cell; two spin states)

(31)

where Ns and Zs are the number of photons and number of cells in energy state s
respectively, where us = h�s is the energy of a photon in state s, and where � is the
constant introduced in the course of restricting the total energy to a fixed value. We will
show below that � = (kT)–1. The quantity Zs is a known quantity; it follows directly from
the partition of phase space into cells; see (5) and next section. This validates our
statement after (6.29) of AP that the expression (31) represents the average number of
photons per cell at frequency �.

Phase-space density

The phase-space volume of the energy state s is �s, after (4), and the volume of a
single cell is �cell = h3 (6). Recall that we can represent the energy state in momentum
space as a spherical shell; Fig. 2 and equation (3). We thus write

�s = 4
 ps
2 dps dV  = h3Zs 

(Phase-space volume of
energy state s)

(32)

where dV = dx dy dz is the volume element in x, y, z space, Zs is the number of cells in the
energy state, and ps = us/c for photons.

Distribution function

The density of photons in the phase space  (the distribution function) was
designated f in the introductory sentences of this Supplement. In the energy state s, the
function f is simply the number of photons Ns (31) divided by the volume �s of phase
space in the state s (32),

 f   =  Ns

�s
  =  2

h3 e�us – 1
  

(Distribution function or
phase-space density;

photons m–3 (N s)–3)

(33)

where us = h�s and, as we find below, � = 1/kT.
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Planck function

The Planck function I� (W m–2 Hz–1 sr–1) follows directly from the distribution
function f (m–3 (N s)–3) by means of an argument similar to that used in AP to derive I�
from I� ;  see (6.13) of AP. In this case, express in terms of I� the energy at frequency �
in d�  that passes through a surface dA in time dt in some direction �, � into the solid
angle element d�. Then express in terms of f the same energy at the corresponding
momentum p = h�/c and momentum interval dp. Then equate the two expressions for this
energy to obtain (Prob. 41),

I�  =  h
4�3

c2
   f (Conversion; f to I�) (34)

This is derived in AP in a less direct way (3.26).

Substitute (33) into (34) to obtain the specific intensity,

I�  =  2 h� 3

c2
  1
e �us  – 1

 (Planck function;

W m–2 Hz–1 sr–1)
(35)

which is the Planck function given in the text (6.6) if we use us = h� and set � = (kT)–1.
Now our only remaining task in the derivation is to demonstrate the latter equivalence.

Determination of �

The final unknown, the constant �, is determined in terms of the total given
energy U and volume V of the box of photons in thermal equilibrium. The quantity U
follows from an integral over the derived phase-space density (33). First, as an example
of such an integral, we calculate the total number of particles N in the box. Finally, we
relate � to the thermodynamic temperature.

Number of particles N in volume V

The phase-space density f is the number of particles in unit phase space volume.
To obtain the number N in volume V of ordinary space, we must multiply f by the phase-
space volume �s of an energy state (32), and then integrate over all states (shells) in
momentum space and also over the appropriate physical volume. We allow energy states
out to infinite energy. Thus,

N  =  
0

�

 2
 h3 e�us – 1

  4
 ps
2 dps dV

V

 

 (Number of particles
in vol. V)

(36)

Invoke us = psc for photons, and then change variables, x  �us,

N  =  
8
 V

h3c3 0

�

 us
2 dus

 e�us – 1
  =  

8
 V

h3c3� 3
 x2 dx

ex – 1
0

�

(37)
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The integral is the Riemann zeta function �(3) = 1.202 (A11), multiplied by the gamma
function �(3) = 2!, or 2.404. . . . The number density of photons in physical (ordinary)
space is thus

N
V

  =  2.404 
8
 

h3c3 �3
 

 

(Number density in x, y,
z space; m–3)

(38)

If we again adopt � = (kT)–1, this agrees with the density derived directly from the Planck
function; see (6.31) of AP.

Radiative energy content in volume V

To obtain the total radiative energy content in the box, we multiply the phase
space density by the energy us of each photon and then integrate over the appropriate
phase-space volume as above,

U  = us

0

�

 2
 h3 e�us – 1

  4  ps
2 dps dV

V

 

 = 
8
 V

h3c3�4
 x3 dx

ex – 1
0

�

(39)

where we again invoked us = psc and x = �us. The integral is seen (A12) to be equal to
�(4)�(4) = 
4/15. Thus,

U
V

  =  
8
5

15 h3c3�4
  (Radiative energy

content in box; J)
(40)

Again, if � = (kT)–1, this result yields energy density u = U/V = aT4 in agreement with
(6.25) and (6.26) of AP.

The result (40) demonstrates that � is a function only of the energy density in physical
space, U/V. For a given size box V and a given energy content U, the constant � can be
determined directly from (40). (Note that one could use this expression for � to eliminate
� in (38) to determine N as a function of U and V, two given constants of the system.) We
have thus determined the Lagrangian constant �, the final unknown in our problem.

This completes our Lagrangian problem. But in thermodynamics, the energy U is
related to temperature. We have yet to connect � to thermodynamic temperature. We do
so next after a momentary diversion.

Average energy of a photon

As an aside, the average energy of a photon follows directly from the above. The
quotient U/N, from (38) and (40), is

U
N

   =  

4

15  2.404
  1
�

   =   2.701 1
�

 (Mean energy of a
photon; J)

(41)

This is the result obtained in AP (6.32), again if � = (kT)–1.
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Thermodynamic temperature

We still do not know how � connects with the temperature T of the material
surrounding or intermingling with the photons, namely, the atoms in the walls of the box
or the particle gas sharing the same space with the photons. To find this connection, we
invoke two new concepts. First we multiply the function S = ln W (13) by the Boltzmann
constant k and define this to be the entropy S

S   k ln W (Entropy; statistical definition ) (42)

Here, the entropy is a function of the number of ways of arranging the cells, and it is
maximum for the most probable arrangement, the expected state in thermodynamic
equilibrium.

Secondly we introduce the thermodynamic relation for entropy,

T dS = dU + P dV (43)

where U, P, V, T, and S are all state variables: U is the internal energy of the gas, P the
pressure, V the volume, and T the temperature. The expression (43) follows from the first
law of thermodynamics �Q = dU + �W, (2.84) of AP, where the heat element is �Q  T
dS and the work element is �W = PdV. (The former serves as the thermodynamic
definition of S.) Hold V constant (dV = 0) in (43) to obtain the thermodynamic definition
of temperature,

1
T

      
�S
�U V

 (Thermodynamic definition of
temperature)

(44)

where S = k ln W is evaluated at its maximum.
At the maximum of S = ln W , and hence at the maximum of S = k ln W, the values of

the zsm were found to be, repeating (27),

zsm = Zs
�s

 e–m�us (45)

where Zs is the number of cells in the energy state s, and �s is the summation of
exponentials exp (–m�us) over all possible m for state s (25). See Prob. 42 for an
illustrative example of the cell labels zsm in equilibrium.

Substitute the equilibrium zsm (45) into the expression (14) for S , use the definitions of

S and S to write S = kS , and finally apply the expressions for �s (25) and the total energy
U (17). Simplify and rearrange terms, and find (Prob. 43) that, at equilibrium,

S = k� U + k Zs
s

 

 ln �s 
(Entropy at its

maximum)
(46)
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Here �s (25) may be written with the aid of the limit of a geometric progression (A15) as

�s    e–m�us

m = 0

�

  = 1
1 – e–�us

 (47)

Note that these expressions apply to a gas with one kind of photon, e.g., right handed; this
was the context within which the Lagrangian constant � was invoked.

Now, evaluate the partial derivative (�S/�U)V (44) by taking the partial derivative of
(46). Recall from (40) that � is a function of U and V, but that we hold V fixed. Also
recall that the number of cells Zs in a given energy state is fixed as is the energy of a
photon in energy state us = h�s,

�S

�U V
 = k�  + k 

��
�U V

 U + Zs 1�s
 d�s

d�s

 

(Determining T) (48)

Evaluate the last product in the summation. Use (47) for �s, take the derivative with
respect to �, and then apply (30) for Ns/Zs, for a gas with one kind of photon (e.g., right
handed),

d�s

�s d�
 =  –  us

e�us – 1
  =  – us  Ns

Zs
 (49)

Thus,

Zs
s

 
d�s

�s d�
  =  – us  Ns

s

 

  = – U (50)

Substitute back into (48), and surprisingly, the term in brackets vanishes,

�S
�U V

  =  k�  (51)

Finally compare this to the thermodynamic definition of temperature T–1 = (�S/�U)V
(44) to obtain

�  = 1
kT

(Lagrangian constant
determined)

(52)

This is the desired relation between the Lagrangian constant � and the thermodynamic
temperature.

Another gas of a different kind of photon (left handed) would give rise a similar
distribution function and the same value of �. The two gases can coexist and be in
thermal equilibrium with one another, and photons of both kinds can occupy the same
cells. Each distributes itself as if the other kind did not exist. (The total energy content
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must of course be conserved.) The combined gas is described by the phase-space density
f (33) for which we have now found �(T).

Finally, substitute � = 1/kT into the specific intensity (35) to obtain the Planck
function (specific intensity) given in the text AP (6.6), the function we set out to derive.

5 Massless fermions

The derivation given here can be extended simply to obtain the distribution
function for massless fermions in thermal equilibrium. Neutrinos are fermions with spin
1/2. They were long thought to have zero rest mass (like photons), but recent
observations suggest otherwise. This distribution function would apply only if they are in
thermal equilibrium with their environment and if their energies far exceed their rest
energies mc2.

Since only 0 or 1 particle of a given type (spin state) can reside in a given cell, the
summations in the derivation for are limited to m = 0, 1. If one works this out (Prob. 51),
one obtains an expression identical to that for massless bosons (33) except that it has a
plus sign in the denominator,

 ff   =  2
h3 e�us + 1

      

 

= 2
h3 eu/kT + 1

(Distribution function;
massless fermions; two

spin states)

(53)

where us =  u = pc for a continuum of states. One can show here also that � = (kT)–1

(Prob. 51).

One could go on to derive the specific intensity I(us,T) as a function of the neutrino
energy us = pc, and the other functions that follow in turn (Prob. 52).

This distribution has cosmological relevance. Standard cosmology indicates that the
early universe (t � 1 s after the big bang) contained high densities of neutrinos in thermal
equilibrium with particles (electrons, muons, neutrons, protons, etc.) at temperatures �
1010 K (kT � 1 MeV). Since the rest energies of neutrinos are generally considered to be
of order 1 eV or less, such neutrinos are highly relativistic; their rest energies are
negligible compared to 1 MeV. Hence, our distribution (53) would apply.

After about t = 1 s, the universe is transparent to all flavors of neutrinos, and they are
free to travel unimpeded through the universe. As massless particles, they would lose
energy as the universe expands while preserving their Fermi-Dirac spectrum. [The proof
of this statement for photons is in Section 6.3 of AP.] Today, we would find ourselves in
a bath of neutrinos with temperature ~2 K (kT � 2 � 10–4 eV). If the neutrinos have
masses of order 1 eV, they would be non-relativistic at this point. Unfortunately, the low
energies of these cosmological neutrinos have precluded successful detection to date.
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6 Particles with mass (Bose-Einstein and Fermi-Dirac statistics)

If the particles have a finite mass and there is no particle creation or destruction,
one holds constant the total number of particles, N = Ns  = constant. This adds another
constraint and hence another Lagrangian multiplier 	 which is distinct from the 	s used
above. The result for bosons (Prob. 61) is known as the Bose-Einstein distribution
function, for one spin state,

 fB-E   =   1
h3 e	 +�us – 1

 
(Bose-Einstein

distribution function;
bosons of finite mass)

(54)

Similarly, for fermions, the Fermi-Dirac distribution function is,

 fF-D   =   1
h3 e	 +�us + 1

    . (Fermi-Dirac
distribution function;

fermions of finite mass)
(55)

The parameter � again turns out to equal (kT)–1, the energy state us equals the particle
energy E, while 	 turns out to be a complicated function of particle density and
temperature 	(n,T). The mathematics required to obtain 	 (and also �) is quite complex.
The expression (55) is given and discussed in AP; see (3.51).

7 Appendix: required mathematics

Here we present some mathematical formulae that are used in this Supplement or
are required for the problems.

Stirling’s Approximation and Gamma function

The following relation, known as Stirling’s Approximation, is valid for a very
large integer N:

ln N!  N ln N – N (Large N;
Stirling’s formula)

(A1)

where ln is the natural logarithm and N! is the factorial of N,

N!  N (N–1) (N–2) . . . . . 1 where 0! = 1 (Factorial) (A2)
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Examples of factorials:

4! = 24
3! = 6
2! = 2
1! = 1
0! = 1

(A3)

The generalized factorial function is known as the Gamma function, �(N)

�(N)  (N – 1)! (Gamma function) (A4)

Permutations

A permutation is a way of arranging a number of objects into a given number of
positions. Often, in statistical mechanics, one needs the total number of possible
permutations of a set of objects. Here we consider the cases where (i) all available objects
are distinguishable from one another and (ii) where the objects in each of one or more
subgroups are identical to one another.

Distinguishable objects

The number of ways to order N distinguishable objects is obtained as follows.
Consider a line of N positions. In the leftmost position one may place any one of the N
objects. There are thus N ways to fill the leftmost position. For each of these, one can
choose one of the N–1 remaining objects to place in the next position (to the right of the
first). Thus there are N (N –1) ways to fill the first two positions. For each of these ways,
there are N–2 objects available for the next position; hence there are N(N–1)(N–2) ways
to fill the first three positions. The number of ways to arrange all N objects Wp(N) is thus
N! Each such arrangement is called a permutation,

Wp(N) = N! (A5)

As an example, consider four objects a,b,c,d and four positions. The number of
permutations is Wp = 4! = 24; they are shown in Table 2.

Table 2. Permutations with 4 distinguishable objects

abcd abdc acbd acdb adbc adcb

bacd badc bcad bcda bdac bdca

cabd cadb cbad cbda cdba cdab

dabc dacb dbac dbca dcab dcba
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Identical subgroups of objects

Now, consider N objects of which a subset N1 are identical, but let the latter
objects have temporary tags so they can be distinguished. Each one of the N!
permutations of the entire set of N objects contains the N1 objects in various locations and
ordering. For example, here is a the sequence of N = 13 objects where c1–3 are identical,

a b c1 d e f g c2 c3 h i j k , (A6)

Since there are three identical objects, there are N1! = 3! = 6 ways to rearrange them in
the same three positions within the sequence.

a b c1 d e f g c2 c3 h i j k

a b c1 d e f g c3 c2 h i j k

a b c2 d e f g c1 c3 h i j k

a b c2 d e f g c3 c1 h i j k

a b c3 d e f g c1 c2 h i j k

a b c3 d e f g c2 c1 h i j k

(A7)

If one removes the subscripts from the “c” objects, these 6 patterns become identical and
would not count as a distinct permutations.

Any other permutation of the 13 objects will contain the same three ‘identical’ objects
c1–3, but in different positions. Again there will be 6 indistinguishable arrangements. The
entire set of N! = 13! = 6.2  109 permutations can thus be grouped in sets of six, each of
which has 6 indistinguishable permutations. In other words, N! overcounts the distinct
permutations by a factor of six. The number of distinct permutations is thus N! divided by
N1!

W(N; N1) = N!/N1! (A8)

or 13!/3! = 1  109 in our example.

If another group of N2 objects are identical and distinct from the N1 identical objects,
they would occur in all possible arrangements in the N!/N1! arrangements just arrived at.
Since they are identical, again by the same logic, the number of distinct permutations
would again be over counted by the factor N2!, and the correct number is N!/(N1! N2!). In
general, the number of distinct permutations of N objects, of which N1, N2, N3 . . . .are
subgroups of identical objects, is,

W(N; N1, N2, N3 . . .)   =  N!
N1! N2! N3! . . .

  . (Number of distinct
permutations)

(A9)

This may be further illustrated with our example of 4 objects (Table 2 above). Let
object ‘c’ be identical to ‘d’. Thus the number of distinct permutations should be W(4; 2)
= 4!/2! = 12. To test this, replace each ‘d’ with a ‘c’ as in Table 3, look for identical pairs,
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and find that there are 12 of them, and mark one of each of the duplicates with an ‘X’ to
indicate it is redundant. There are 12 remaining distinct permutations as expected.

Table 3. Permutations with 4 objects of which two are
identical (X indicates duplicate permutation)

abcc abcc X acbc accb acbc X accb X

bacc bacc X bcac bcca bcac X bcca X

cabc cacb cbac cbca ccba ccab

cabc X cacb X cbac X cbca X ccab X ccba X

Riemann Zeta function

The Riemann zeta function �(z) is defined as

� (z)  1
nz

n = 1

�

 (Zeta function) (A10)

One can find �(z) tabulated in various books,

z �(z)

1 diverges

2 1.644 934....   
2/6 (A11)

3 1.202 057....

4 1.082 323..  
4/90

It can be shown that, for Re(z) > 1,

� (z)  =  1
� (z)

 xz–1 
ex – 1

 dx
0

�

(A12)

where �(z)  (z–1)! is the Gamma function defined above (A4). This enables us to
evaluate integrals of the type (A12).

Roots of a transcendental equation.

The following transcendental equation is useful for the determination of the
maximum of the blackbody distribution function.
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xn

1 – e–xn
  =  n (n = 2, 3, 4 . . .) (A13)

It can be shown to have roots, xn,

n xn

1 no solution

2 1.593 624 (A14)

3 2.821 439

4 3.920 690

5 4.965 114

Geometric series with exponential multiplier

A geometric series is a sum of terms, where each successive term is reduced by a
common factor r < 1, i.e.,  a + ar + ar2 + ar3 + . . . . . The sum � of such a series carried
out for an infinite number of terms converges if |r| < 1 to � = a/(1–r). For the case of a =
1 and r = exp(–x), the sum may be written,

�   e–n x

n = 0

�

  =  1
1–e–x

 (x > 0) (A15)

The partial derivative with respect to x yields the function we call � in (29),

�  = – 
��
�x

  = ne–n x

n = 0

�

  =   e–x

1–e–x 2
  . (A16)

The ratio of A15 and A16 is

�
�   =  – 

�

� x
ln �   =  1

ex – 1
 (A17)

which was used in (30) above.
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Integrals for fermions

Integrals of the type,

In = xn

ex + 1
 dx;   n = 1, 2, 3, . . .

0

�

 (A18)

can be expressed in terms of the Riemann zeta function defined above (A10). It can be
demonstrated that

In = n! 1 – 1
2n

 � (n + 1)   . (A19)

Tabulated values of � and I are,

n �(n+1) In

1 1.644 934 0.822 467

2 1.202 057 1.803 086 (A20)

3 1.082 323 2 5.682 197

4 1.036 927 8 23.330 87

5 1.017 343 1 118.366 14

Transcendental equation for fermions

Transcendental equations of the type,

xn

1 + e–xn
   =  n  , (n = 2, 3, 4 . . .) (A21)

have the following roots.

n xn

2 2.217 715

3 3.131 020 (A22)

4 4.068 418

5 5.032 609

6 6.014 656
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These are needed for finding the maximum of the distribution function of the massless
fermions.

END

Problems

4 Massless bosons

Problem 41. Find the relation (34) between the specific intensity I�(�) (W m–2

Hz–1 sr–1) and the distribution function f (x, p) (representative points per unit
volume of phase space with units m–3 (N s)–3). Follow the suggestions in the text.
Take the volume element in momentum space to be p2 d�p dp where d�p = d�.

Problem 42. The character of the most probable global macrostate is defined by
the values of zsm associated with it, i.e., the numbers of cells containing m = 0, 1,
2 . . .  photons in energy states s = 1, 2, . . .   Use (27) with �us = h�s/kT to
calculate the numerical values of the zsm for the situation of Fig. 6.6 of AP. For
each energy state, use the photon energy h�s and the number of cells Zs from the
figure as inputs. Verify that your answers for each energy state are roughly in
accord with the distribution within the energy state and with the total number Ns
of photons in the energy state. If you did Problem 6.25 of AP, describe how this
problem differs from it.

Problem 43. Show that the entropy S = k ln W for the most probable global
macrostate may be written as given in (46). Pattern your logic after that leading
up to (14), invoke the equilibrium values of zsm given in (45), and heed the
suggestions preceding (46).

5 Massless fermions

Problem 51. (a) Find the distribution function f f(us,�) (53) for a gas of massless
fermions with two spin states, e.g., neutrinos if they were massless, in
thermodynamic equilibrium. Follow the derivation of the distribution function for
massless bosons to arrive at an expression for Ns, comparable to (31), and then
find f f, comparable to (33). Note that the summations over m are all included in
�s and �s and that these summations should include only m = 0, and 1 for Fermi-
Dirac statistics. (b) Find the relation between the quantity � to the thermodynamic
temperature T. Follow the logic in the text to obtain f f(u,T) (53). Again it is
helpful that the summation over m is contained solely in the quantity �s.

Problem 52. According to standard cosmology, the universe is currently filled
with a bath of neutrinos with a thermal spectrum of temperature T�2 K. Assume
(prossibly incorrectly) that these neutrinos may be treated as massless fermions.
The energy of a neutrino in state s is thus us = pc. For a continuum of energy
states, let the neutrino energy us = u. From the distribution function f f(u,T) (53),
find the requested characteristics of this radiation. You may follow the
development in Section 6.2 of AP for massless bosons (photons). (a) Use f f (53)
to obtain the specific intensity Iu(u,T) in energy units (W m–2 J–1 sr–1 ), i.e. the



Suppl. to Ch. 6 of Astrophysics Processes Planck Blackbody Function
©Hale Bradt and Stanislaw Olbert 8/8/09

BB-28

energy flux of neutrinos per unit energy interval (not per frequency interval). (b)
How does Iu(u,T) depend on energy u at low energies u << kT and at high energies
u >> kT? Use these results to make qualitative sketches of log Iu(u,T) vs. log u for
three temperatures T1 < T2 < T3. Can one make a determination of the neutrino
temperature by means of a single measure of Iu at some energy u0 << kT as one
can for photons? (c) By what numerical factor does the neutrino energy at the
maximum of Iu(u,T) differ from the energy kT? Use (A21). (d) Integrate the
intensity function Iu(u,T) over energy u to obtain expressions for (i) the integrated
directional energy flux I(T) (W m–2 sr–1) and (ii) the integrated directional
particle flux N (T) (particles s–1 m–2 sr–1). (e) From your answers to (d), what is
the average neutrino energy uav? (f). For a cosmological neutrino bath at T = 2 K,
calculate uav in joules and eV, and also the integrated intensity I(T) from part (d)
in W m–2 sr–1.

[Ans. (a) 2
h3c2

  u3

e 
u/kT + 1

; ––; (c) 3.131; (d) ~10 
kT 4

c2h3
; ~4 

kT 3

c2h3
 ; (e) ~3 kT; (f) ~10–3

eV, ~10–7 W m–2 sr–1]

6 Particles with mass (Bose-Einstein and Fermi-Dirac statistics)

Problem 61. Derive the distribution function fB-E for bosons of finite mass (54) by
following the derivation in the text for photons while requiring that the total
number of particles be conserved, N = Ns = constant. This will introduce an
additional Lagrange multiplier; designate it 	 (distinct from 	s). Follow the logic
used for massless particles. Do not try to evaluate the Lagrange multipliers 	 and
�.


