Skip to content
Register Sign in Wishlist
Look Inside Œuvres de Charles Hermite

Œuvres de Charles Hermite

Volume 2

£35.99

Part of Cambridge Library Collection - Mathematics

  • Date Published: July 2009
  • availability: Available
  • format: Paperback
  • isbn: 9781108003308

£ 35.99
Paperback

Add to cart Add to wishlist

Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Charles Hermite (1822–1901) was a French mathematician who made significant contributions to pure mathematics, and especially to number theory and algebra. In 1858 he solved the equation of the fifth degree by elliptic functions, and in 1873 he proved that e (the base of natural logarithms) is transcendental. The legacy of his work can be shown in the large number of mathematical terms which bear the adjective 'Hermitian'. As a teacher at the École Polytechnique, the Faculté des Sciences de Paris and the École Normale Supérieure he was influential and inspiring to a new generation of scientists in many disciplines. The four volumes of his collected papers were published between 1905 and 1908.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: July 2009
    • format: Paperback
    • isbn: 9781108003308
    • length: 536 pages
    • dimensions: 234 x 156 x 27 mm
    • weight: 0.74kg
    • availability: Available
  • Table of Contents

    Avertissement
    1. Sur la théorie des formes
    2. Sur la résolution de l'équation
    3. Lettre de Charles Hermite à M. Jules Tannery
    4. Sur la résolution de l'équation
    5. Sur quelques théorèmes d'algébre
    6. Sur la théorie des équations modulaires
    7. Sur l'abaissement de l'équation modulaire
    8. Sur l'interpolation
    9. Sur la réduction des formes cubiques
    10. Extrait d'une lettre à M. Borchardt
    11. Extrait de deux lettres à M. Borchardt
    12. Lettre adressée à M. Liouville
    13. Note sur la théorie des formes quadratiques
    14. Extrait d'une lettre à l'éditeur
    15. Sur les théorèmes de M. Kronecker
    16. Sur la théorie des formes quadratiques
    17. Remarkques sur le développement
    18. Sur quelques formules relatives au module dans la théorie des fonctions elliptiques
    19. Sur les fonctions de sept lettres
    20. Extrait d'une lettre de M. Hermite à M. Brioschi
    21. Sur un nouveau développement en série des fonctions
    22. Extrait d'une lettre de M. Hermite à M. Borchardt
    23. Sur deux intégrales doubles
    24. Sur quelques développements
    25. Sur l'équation du cinquième degré
    26. Sur les invariants des formes du cinqui
    27. Sur l'invariant gauche
    28. Sur la théorie des polygones
    29. Sur le rayon de courbure
    30. Sur l'integrale
    31. Sur le développement en série
    32. Sur l'expression du module
    33. Sur l'intégrale
    34. Sur la transcendente
    35. Sur l'intégrale
    36. Sur la construction géometrique
    37. Sur l'élimination des fonctions arbitraires.

  • Author

    Charles Hermite

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×