Representations of Lie Algebras
An Introduction Through gln
£50.99
Part of Australian Mathematical Society Lecture Series
- Author: Anthony Henderson, University of Sydney
- Date Published: August 2012
- availability: Available
- format: Paperback
- isbn: 9781107653610
£
50.99
Paperback
Other available formats:
eBook
Looking for an inspection copy?
This title is not currently available on inspection
-
This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules of the general linear Lie algebra. The author's exposition is focused on this goal rather than aiming at the widest generality and emphasis is placed on explicit calculations with bases and matrices. The book begins with a motivating chapter explaining the context and relevance of Lie algebras and their representations and concludes with a guide to further reading. Numerous examples and exercises with full solutions are included. Based on the author's own introductory course on Lie algebras, this book has been thoroughly road-tested by advanced undergraduate and beginning graduate students and it is also suited to individual readers wanting an introduction to this important area of mathematics.
Read more- Full solutions to exercises are included in the Appendix
- First chapter explains the context and relevance of the topic
- Introduces the main ideas in their simplest context
Reviews & endorsements
'This short book develops the standard tools (special bases, duality, tensor decompositions, Killing forms, Casimir operators …) and aims for a single result: the classification of integral modules over gln. Requiring only basic linear algebra, this book can serve as an interesting alternative platform (to basic group theory) for introducing abstract algebra … Recommended.' D. V. Feldman, Choice
Customer reviews
27th Jul 2019 by Yongkun
It is recommended by my teacher. I think it is a good book.
Review was not posted due to profanity
×Product details
- Date Published: August 2012
- format: Paperback
- isbn: 9781107653610
- length: 168 pages
- dimensions: 227 x 151 x 9 mm
- weight: 0.25kg
- contains: 10 b/w illus. 50 exercises
- availability: Available
Table of Contents
1. Motivation: representations of Lie groups
2. Definition of a Lie algebra
3. Basic structure of a Lie algebra
4. Modules over a Lie algebra
5. The theory of sl2-modules
6. General theory of modules
7. Integral gln-modules
8. Guide to further reading
Appendix: solutions to the exercises
References
Index.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×