
Brighter Thinking

additional back cover copy text here Rum-
quo esequos doloreictus et mo volores am,
conse la suntum et voloribus.

Cerrore voloreriate pa prae es vendipitia
diatia necusam ditia aut perrovitam aut
eum et im ius dolut exceris et pro maxi-
mintum num quatur aut et landese qua-
tem. Sedit et am, eum quiassus ius con
none eris ne nobis expliquis dolori ne cus,
occaest, nam que exped quuntiatur atur
reprori odi volores tiunto doluptaquis

A
 Level C

O
M

P
U

TE
R

 SC
IE

N
C

E

COMPUTER SCIENCE
A/AS Level Component 2
Teacher’s Resource for OCR
Christine Swan and Ilia Avroutine

Main intro back cover copy text here Rum-
quo esequos doloreictus et mo volores
am, conse la suntum et voloribus.

Cerrore voloreriate pa prae es vendipitia
diatia necusam ditia aut perrovitam aut
eum et im ius dolut exceris et pro maxi-
mintum num quatur aut et landese qua-
tem. Sedit et am, eum quiassus ius con

Brighter Thinking

A Level Computing OCR 2.indd 1 18/09/2015 13:33

2 © Cambridge University Press 2015

How to use Cambridge Elevate resources

Cambridge Elevate includes a number of features that enables you to customise this resource:

• You can re-order the contents of this resource through Cambridge Elevate, to suit your teaching sequence.

• You can create your own notes (highlights, annotations, voice notes) to help build information within the resource.

• You can also add hyperlinks between sections within the resource, to sections within other resources within Cambridge
Elevate, or to web pages.

If your centre is using the accompanying Cambridge Elevate-enhanced Editions for OCR A/AS Level Computer Science
Component 1 and Component 2, you can use the following features to support your teaching:

• You can choose to share annotations, bookmarks, etc., with groups of students. So, for example, if you have different ability
levels within your class, you can use groups to share links to more stretching activities with the higher-ability students only.

• You can share links within and between Cambridge Elevate resources with groups of students. For example, if you wanted
students to link concepts or learning between Component 1 and Component 2. Please note, however, that the groups need
to have access to the relevant titles in order for this to work. For example, you couldn’t share a link between Component 1
and Teaching Programming as your students will not have access to Teaching Programming.

• Component 1 and Component 2 include ‘Assess to Progress’ features, which allow you to set students specific questions
from the end-of-chapter tests. Once the student has submitted their work, this feature will allow you to mark their work
against the assessment objectives and a set of levelling statements, and support you in monitoring and reporting your
students’ progress over the duration of the course.

You can find more information about the functionality available to you within Cambridge Elevate and how you can use it in your
teaching within the Cambridge Elevate Student and Teacher User Guide, which is available from your Home screen.

A Level Computing OCR 2.indd 2 18/09/2015 13:33

© Cambridge University Press 2015 3

Chapter 1 Thinking abstractly

Learning objectives

• To understand the nature of abstraction.

• To understand the need for abstraction.

• To know the differences between an abstraction and reality.

• To devise an abstract model for a variety of situations.

What your students need to know

• How to do procedural (with parameter passing) and object-oriented programming (with inheritance and
polymorphism) in at least one high-level language.

• How to draw class and activity diagrams with superclass and subclass clearly labelled indicating the direction of
inheritance and all attributes and methods.

• When to use selection, iteration and abstract data structures such as arrays and lists, especially lists of objects,
otherwise known as collections. They should also be aware that multiple dimensions of these structures need to
be internalised, and multiple indices need to access individual elements.

• When to use recursion where it results in shorter code, including implementing self-calling and terminating
conditions. Each recursive program has an iterative version and students should be able to convert between the
two forms of programming.

• How to use file input/output (I/O) in at least one high-level language to read/write serial and Comma-Separated
Values (CSV) files.

• The differences between operating systems including their utility programs, multi-tasking, and CPU slicing.

• The differences between types of computer languages.

Common misconceptions

Most people are familiar with the word abstract but as it can be used as a noun, verb or adjective . It is important
to clarify its meaning in the context of Computer Science where it refers to a technique of breaking down complex
problems by identifying common patterns.

There are usually many ways a problem can be split into abstract layers, or parts which might come as a surprise to
some students.

A Level Computing OCR 2.indd 3 18/09/2015 13:33

4 © Cambridge University Press 2015

Lesson activity suggestions

Topic Lesson suggestions Follow-up areas/
Homework

Understand
abstraction.

Starter:

Ask your students to categorise computer games into groups by identifying common
features.

1. Make a list of computer games that they are aware of (as a class) and try to work
out the categories of games. For example, platformer, first-person shooter, role-
playing. At least two to three features need to be identified for each game to prove
its inclusion into a group (e.g. jumping, obtaining ammunition or improving health,
navigating a maze, etc.). Do any games stand on their own?

2. Repeat the exercise with musical acts or bands, trying to categorise them into
musical styles. Some of the defining features could be the instruments, tempos,
political message (if any) etc. Be ready for some hot debate!

3. Present two programs side by side that accomplish the same outcome, one making
extensive use of abstraction and the other not.

Main activity:

Ask the students to write a program to calculate the minimum number of coins a
vending machine should return after an amount is put in the machine to pay for a
particular item whose price is known.

1. Start the students on this task in groups.

2. Watch the progress carefully and note when groups use a very long selection
statement (without abstraction), through iteration and substitutions and when
other groups employ recursion. Interrupt the activity at this point.

3. Explain to the students that recursion usually results in much more concise and
compact code. Signpost to your students, how this activity should make the merits
of abstraction apparent.

Plenary:

Students discuss any other examples where abstraction would be advantageous. Discuss
what ‘advantageous’ looks like in a big organisation in terms of their hardware costs,
CPU time, program completion time (e.g. on production lines).

Talk to your students about
device drivers. Give them the
name of a device, for example
a particular sound card model,
and challenge them to find out
how many different drivers can
be downloaded for this device
from the manufacturer’s site.
When they return with their
findings, the discussion should
centre on the fact that while
every driver is specific to an
operating system, they all
function in the same way as
far as the user is concerned.
This insulates the user
from the particulars of an
operating system via a layer of
abstraction.

A Level Computing OCR 2.indd 4 18/09/2015 13:33

© Cambridge University Press 2015 5

The need for
abstraction.

Starter:

Ask your students: ‘What is a force of habit?’ and ‘How are habits formed?’ In answering
these questions remind your students that when certain events repeat often enough to be
predictable, they can be broken down into standard elements and completed more efficiently.

When your students are writing computer programs, ask them what the most common lines
are that they use.

Do they wish that they didn’t need to type them as often? Discuss with them how they could
avoid these steps. As part of your discussion remind the students that most languages allow
one program file to use code from another file, known as a library, so most repetitive lines can
be packaged into a procedure and imported to all subsequent programs.

The concept of a push button is a good example of abstraction. What examples of different
buttons have students seen in their lives, both in hardware and software? What does the
abstract concept of a button represent? Why does it share its name with a very different object
used to hold together parts of clothing; surely we don’t actually ‘push’ our clothing buttons?

Main activity:

Explain that abstraction is about seeing common patterns between situations and problems.
Abstraction helps to solve a new problem by applying previous knowledge.

Abstraction can be split into two main parts: control abstraction and data abstraction. Control
abstraction makes high-level languages possible by recognising that selection and iteration
are common, and can be implemented in consistent ways between the problems.

Data abstraction is about data structures; sets of related data stored in a particular way, like
arrays and queues.

Abstraction has many layers, a bit like an onion! Computational thinking is the process of
progressively identifying abstract elements in a problem and applying known techniques to
deal with them. For a given problem, the first layer of abstraction might be to break it down
into subroutines, then for each subroutine loops can be applied, which in turn will iterate
through arrays.

1. On the whiteboard, show your students sections of the code from some operating
systems. Show them where tasks have been categorised and broken down into common
elements.

2. Show them the code from sections of a form where buttons have been used.

3. Show them where elements of software and hardware communicate with each other
through a set of standard calls and explain that these are combined into an interface,
referred to as an Advanced Programming Interface or API for short.

4. Make students aware that the core of an Operating System’s (OS) functionality is known
as the kernel and all parts of a software system need to talk through the kernel which will
authorise and handle requests for resources.

5. Ensure students know that the Java programming language was designed to run on
any computer regardless of the OS or CPU, so it is even more abstract than most. An OS-
specific Java compiler residing on a computer is responsible for translating generic Java
commands into specific hardware calls, such as that for handling 3D graphics, via sets of
API calls called software libraries.

Plenary:

Explain the different levels at which software engineers work. The lowest level of abstraction is
at the hardware level. Lowest, as used here, means that very few programs or engineers need
to know how hardware works; for example, an engineer doesn’t need to know which motor
will spin a particular hard disk’s platter to reach a particular address and retrieve a file, they
just need to know a standard, generic API to find that file.

To illustrate the use of the
API, your students could be
challenged to implement
at least 10 API calls of their
choice (this can be done in
teams) in their programs. A
common API could be to read
/ write / append a file, open
another program and send
data to it (e.g. SendKeys) or
a program to return a list of
files to a folder, with their
attributes (e.g. size and time of
creation).

A Level Computing OCR 2.indd 5 18/09/2015 13:33

6 © Cambridge University Press 2015

1 Abstraction is the process of separating ideas from reality. Only certain details are shown,
hiding irrelevant detail.

2 The app could be made more generic and be used for any subject. By considering what the
questions in different subjects have in common and removing subject-specific styles, it
would be possible to create an app which could be used for any subject.

3 Sarah could refactor her code to accept alpha-numeric and numeric data. By using
abstraction she can make her code accept any data type which is comparable, and then use
this comparison to perform bubble sort. The type of data has no relevance to sorting.

4 APIs are used in many different scenarios and applications. The designers of the API will
have no knowledge as to how their code will be used and they therefore need to make it as
abstract as possible. If the code was too specific then this would prevent others from using
the API effectively.

End of chapter answers

The differences
between
abstraction and
reality.

Starter:

Have a discussion with your students. Abstraction is not just a computing concept. It is
also used in science, culture and art. It is particularly useful for creating approximations
or models of real-world situations. The model will be generic but can be applied to a
range of situations so that when known data (for given parameters) are applied it is then
specific to a real situation. A lot of games use object-oriented programming to group
common attributes (object variables) and common methods (object functions and
subroutines) to reuse code and speed up development of similar features.

Main activity:

Ask your students to consider a racing game involving cars. Regardless of the car the
player chooses, it will have a steering wheel, an accelerator pedal and gauges. The
code required to implement these and other attributes can be reused with small
modifications (parameters). Recognising what can be recycled is the process of
abstraction.

1. Arrange for the students to play a simulation of a car racing game, on-screen. Whilst
they are playing the game, they should think about the sequence of steps that they
are going through as players.

2. They need to map out their actions in a flow-chart.

3. Students should use the flowcharts to produce a list of the subroutines that they
believe will need to be called by the main program.

4. As a class, they should review the various lists which they have produced whilst one
of the students plays the game. They should try to pause at each stage. The class
should check that they have called enough subroutines to run the program and not
missed any out.

Plenary:

Use this opportunity to discuss and reflect with your students that:

1. They have undertaken a process of stepwise checking of a program.

2. They have listed subroutines which are abstract.

3. They have seen the program in operation with parameters i.e. the choice of car, the
skills of the player, the speed of the player, the skill levels chosen in the game etc.

Students can be asked to
design or suggest classes for
a rock/paper/scissors game,
for example: Game (with
attributes of score, time,
player ID, etc.), Player (human/
computer, one or two, etc.),
Sprite (if using graphics).

A Level Computing OCR 2.indd 6 18/09/2015 13:33

© Cambridge University Press 2015 7

Chapter 2 Thinking ahead

Learning objectives

• To be able to identify the inputs and outputs for a given situation.

• To be able to determine the preconditions for devising a solution to a problem.

• To understand the nature, benefits and drawbacks of caching.

• To understand the need for reusable program components.

What your students need to know

• There are different data types. Students need to be familiar with string, real, integer, Boolean and object
variables, as well as abstract data structures like arrays and lists.

• There are different types of memory. Students need to understand how variables are stored in a physical memory
and that physical memory is classified as primary, secondary, and cache.

Common misconceptions

• Many students whilst learning to code do not sufficiently plan their programs at the outset. Students usually dive
in and spend time on features that are later found to be unnecessary. Another result of insufficient planning is the
need for endless debugging of variables passed between procedures.

• Students should be encouraged to plan their programs on a piece of paper, so they must be shown how it can be
done and given examples.

• This chapter ties in well with the Waterfall and System Design part of the syllabus. Discussion of prototyping and
agile development will help convince your students of the benefits of planning ahead.

• Some students don’t fully understand the Object-oriented Paradigm. This may be due in part to the fact that
school exercises are often not complex enough to justify using it. However, it is really important for students to
try writing a few programs that use inheritance and polymorphism. Game making, as shown in this chapter, is a
good way to introduce these concepts. An even easier approach would be to use classes as records, even without
many class methods. A programmer could create a class called employee which has some basic functionality,
for example: salary, name, year of joining, method of being hired, fired and promoted, etc. From this employee
superclass, subclasses could be created, for example, part-time employee and full-time employee that would
inherit from the employee superclass.

A Level Computing OCR 2.indd 7 18/09/2015 13:33

8 © Cambridge University Press 2015

Lesson activity suggestions

Topic Lesson suggestions Follow-up areas/
Homework

Identify inputs
and outputs.

Starter:

Discuss with your students why planning before starting to code is absolutely necessary,
especially for complex problems. You may like to explain that professional developers
often complete the planning step as a team. A standard planning method is therefore
needed to reduce miscommunication within the team and the costly duplication of
work.

Main activity:

Your students should work in teams to create a program to simulate the operations
required to run a refreshments stall (as simple or as complex as the students can
manage) at a local outdoor event for a day.

Planning starts with identifying the inputs and outputs of a problem (e.g. supplies,
electricity, requests from customers, food and drinks produced, money and change etc.).

The students should initially consider the overall task, then break it down into smaller
tasks and keep repeating that process until the problem can’t be broken down any
further. For the data inputs and outputs, the students need to look at their types,
whether they are a primitive variable, like an integer, or an abstract structure like an
array (e.g. to represent elements of the customers’ orders).

They should also consider any preconditions. Which functions, or sub-procedures, must
be run before others, (e.g. a login procedure, greet the customer etc., needs to run before
most other procedures run). Activity diagrams and other Unified Modelling Language
(UML) diagrams are useful in this decision-making process.

The students should plan who in their group is going to handle which aspect of the
problem. Where the problem is a sub-problem they need to plan its interaction with the
other parts of the program. They also need to plan the scope of its variables; the way
parameters are passed in and out.

They also need to consider whether data needs to be stored in a database or in a
simple log text file. How will the customers’ orders be retained until their food order is
completed and how will changes to the stock and takings be tracked?

The data flow needs to be validated. Multiple validations may need to be run and
in a particular order. For example, range validation needs to run after the data-type
validation. Trying to compare a number, to determine range, to a non-number which
could have been erroneously entered will trigger an error. If validation is not complete a
programmer needs to supply error-trapping code, so the program displays an error but
doesn’t crash. The students should consider, for example, what happens if a customer
requests an item which is not on the menu board, or they don’t provide the right amount
of money, or a drink is spilt.

Plenary:

How do the students feel about their simulation programs? Have a reflective discussion
about abstraction. Best practice involves the use of abstraction at the planning stage. In
other words, certain requirements and operations are identified as the most important
and other details are left until later. This creates layers of abstraction. Did your students
use any form of abstraction in their programs?

Wedding ceremonies are often
planned well ahead. What
is the reason for this? What
might happen if a wedding is
not planned properly? How
is this similar to planning
a program? What can go
wrong? Individually, the
students could show their
understanding of the inherent
complexity in programming
projects by planning a
wedding in the same way
as they planned for the
refreshment stall.

A Level Computing OCR 2.indd 8 18/09/2015 13:33

© Cambridge University Press 2015 9

Programming,
making use of a
cache.

Starter:

Explain to your students that, in addition to the planning required to design a program, planning
to optimise running, in terms of both hardware and software, is also advantageous. At the
hardware level, when a program runs, certain parts of it are more active and use memory more
often. Particular data elements are needed more often, so it makes sense to put them in a special
cache memory rather than to have to retrieve these elements from the memory every time. A
smaller capacity, faster memory buffer exists at many levels in a computer system; ranging from
those built into the CPU or hard disk controller, to those utilised in an internet browser to speed
up the loading of frequently revisited pages. This process is also repeated at Internet Service
Provider (ISP) level, where the most popular sites are cached on local servers, to save bandwidth
between the provider and the internet backbone. For these reasons, computer systems need to
be designed so that they can predict what data will be needed; they need to be able to do the
equivalent of thinking ahead.

Main activity:

Discuss with your students why it is easier to get to places in a town that you know compared with
one you haven’t visited before. Do they agree that perhaps our memory in effect caches details of
familiar places which helps us to navigate faster?

To experience the concept of caching, give the students a map of a big city and challenge them to
design a routefinder computer program. The students should be given a number of destinations
starting from the railway station (e.g. eight destinations to which their routefinder must give
directions). The first player/team, creates a list of directions from the starting to the destination
point, which could be written on one piece of paper for each and laid out in front of the
classroom. The second team does the same but they need to reuse as many of the steps on the
first team’s directions as they can. The third team does the same. The advantage of reusing the
existing directions – this should save time. While some time is needed to determine which of the
existing directions can be used, this is still faster than writing them out on their own piece of card.

With each subsequent team, the time to lay out the route should be decreasing – illustrating the
benefits of caching.

However, if one route is very different from others where no existing directions can be used, there
will be a large time penalty because the player/team has to write all directions themselves, but
they will also spend the time looking over the existing directions of the players before them,
desperately trying to find something they could use. This is also a reality of caching in the real
world.

The extension could be that the players/teams are given a fixed cache size. For example, they
cannot reuse more than five directions from the players/teams before them. This will speed up
the process for some of the teams and slow it down for others.

Plenary:

Discuss with your students the benefits and drawbacks of cache memory and look at why the
industry favours it.

Cache capacity is limited so when a system incorrectly ‘guesses’ which data will be needed, cache
misses occur. The system accesses the cache but doesn’t find the needed data so has to go back
to the original source and retrieve data from there instead. This is slow. The efficiency of a cache
is known as the Hit Rate Ratio; the proportion of successful cache hits to misses. When multiple
CPU cores and threads are considered, the Hit Rate Ratio becomes even more important. Splitting
tasks between cores needs to take account of how busy they are and whether some are not
currently needed so could be switched off to conserve energy.

Effective cache management requires the use of heuristics which are generic algorithms known to
work in similar conditions. Algorithms like the clairvoyant algorithm or Least Recently Used (LRU)
allows the cache to keep the bestsellers; the most often used elements which are swapped with
the less often used.

Logistically, the process of filling and refreshing cache from the main memory unit is done
through a number of hashing algorithms, such as Direct Mapping, Two- or Four-way Associativity.
Different methods have trade-offs between cache size, cache-hit-accuracy and access speeds.
Direct Mapped caches will map a single memory location to a single cache location using the
formula pc = pm mod n where pc is the location in cache memory, pm is the memory location and
n is the size of the cache. In computing, mod (division with remainder) is used to break something
into equal-sized groups, often connected with addressing systems, such as the one the operating
system uses for random access files.

Students should research
and answer the following
questions:

1. Different hardware
devices that make
up a computer
system work at
different speeds,
for example, while
a hard disk works
in milliseconds,
primary memory
works in
nanoseconds. How
do we smooth out
the differences
in the speed of
devices?

2. Google search
results sometimes
provide an option
to load a cached
version of the page.
What is the reason
for this feature and
how can this be
implemented?

3. Search engine
results usually
depend on whether
a user is logged in
to their personal
account. How would
knowing something
about the user affect
the search results
returned?

4. Why is it
recommended to
clear out a web
browser’s cache
memory from time
to time?

5. Research Local Area
Network (LAN)-
based web caching.

A Level Computing OCR 2.indd 9 18/09/2015 13:33

10 © Cambridge University Press 2015

Reusable
program
components.

Starter:

Discuss with your students why programmers don’t often write their code from scratch and
how it is more time- and cost-efficient to reuse something already written. The current scale of
the software industry, tight deadlines and growing demands of product cycles has driven this
change. Programmers have access to basic libraries of code in addition to third-party plug-ins
which can be open- or closed-source software. Additionally, most programmers accumulate
code that they know works, so they reuse parts of their own programs.

Experience reveals that in many programs there are often similar parts for which the code
can be accessed from templates. Templates have the code elements that are commonly used
together packaged or encapsulated into objects. This has led to the Object-oriented Paradigm,
as it is known, being the most popular way of writing code now supported by all the current
programming languages.

A programmer who reuses their own or another’s code should be aware that writing in a more
abstract style makes their code more flexible and easier to reuse in multiple programs. For
example, rather than hard-coding a certain number, like a VAT rate of 20%, a better program
would receive the VAT rate as an entered parameter. When VAT is different, the program can still
be used. In another program, the printing of the output of a complex calculation to the screen
would, in a better program, instead pass out of the function, so that it can be used in other
programs, saved to file or fed into another calculation.

Inheritance is another very useful feature of the reuse of code. Rather than writing code for
an object from scratch, the closest existing object is accessed in order to piggy-back the new
code on top of it. The old code is modified by adding different elements, a process known as
Polymorphism. The donor or parent class is known as the superclass. The new class which has
access to the superclass’ features is known as the subclass or child class. Multiple inheritance is
also possible, where features are reused from multiple superclasses.

Main activity:

The students should prepare for a team quiz. You could start by providing a handout containing
the following text:

The Python programming language places great emphasis on efficient coding, which includes
making code reuse as easy as possible. Python packages come as plain text files which can be
viewed and imported so a programmer can build on their functionality. A lot of Python features are
contributed by third parties, either from open- or closed-source software. Some popular examples
are:

• Pygame for game design,

• Tkinter for Graphical User Interface (GUI) implementation; Python natively doesn’t support
GUI,

• Turtle for learning to program,

• SQLlite for implementing databases.

The file turtle.py is great fun. The file itself inherits features from Tkinter, so Turtle will not work
without Tkinter. (Please note that Tkinter doesn’t work on mobile platforms, so neither will Turtle).
If a user creates and saves their Python program as turtle.py it will disable the original turtle.py as
it is assumed that the user is trying to write their own (better) version of Turtle.

Third-party code is distributed in the form of component classes, as they are self-contained and
can work in a wide range of applications. Third-party classes are often distributed in collections
with clear structure and documentation. These are also known as frameworks. Pygame, Ruby on
Rails, QT, and Windows Foundation Classes are examples of frameworks.

Then ask your students to spend some time doing some research, for example, reading wikis
and online tutorials in order to find out what is available to Python programmers as reusable
program components. They should be prepared to answer some questions in a team about the
subject.

Plenary:

Hold a quiz to see who has managed to understand the most information from their research.

Explore a framework
with your students
called Django. What is
its relationship with
Python?

A Level Computing OCR 2.indd 10 18/09/2015 13:33

© Cambridge University Press 2015 11

Importing
a program
component.

Starter:

It will be useful for your students to experience a reusable program component for themselves.

Main activity:

Using Python, students should create a short simple program and then import it into another
Python program to explore how the import process works.

Plenary:

Explore this component framework from Pony ORM: What is the purpose of this library and why
would somebody use it when there are other libraries available that perform the same tasks?

Explore a framework
called SL4A. What is it
for? Is it popular? Why
or why not?

1 Development time can be reduced due to using code which has already been tried and
tested. As the code has already been thoroughly tested then the final product should be
more reliable. Software is modular and can be shared through the use of library software.

2 Hit ratio shows the number of cache hits in comparison to a cache miss. When a cache miss
occurs data has to be copied from the main store to the cache which in turn could cause
stale data to be ejected. This process is slow and will reduce the overall speed of the system.
The more cache hits you get the faster the system will perform therefore a high hit ratio is
crucial.

3 If modules destined for reuse were made specific to the implementation they were first
used in then it would be harder to use them in a different context. Abstraction is the process
of separating the idea from implementation and this is key for reusing code in different
contexts.

4 Caching gives faster access to data and can reduce bandwidth and load on resources.
However caching increases complexity and can potentially deliver stale data.

End of chapter answers

A Level Computing OCR 2.indd 11 18/09/2015 13:33

12 © Cambridge University Press 2015

Chapter 3 Thinking procedurally

Learning objectives

• To be able to identify the components of a problem.

• To be able to identify the components of a solution to a problem.

• To be able to determine the order of the steps needed to solve a problem.

• To be able to identify the sub-procedures necessary to solve a problem.

What your students need to know

• How to draw up a flowchart including standard shapes for input, output, process, decisions, etc. This includes
being able to show nested loops or selection statements which require planning so that all the parallel lines fit on
the same sheet of paper.

• How to describe a problem’s solution in pseudocode. Standard rules need to be used which include the terms for
input, output, assignment, iteration, selection and other common tasks. Pseudocode must not be programming
language specific. When reading an algorithm written in pseudocode there should be no indication which
language this will be programmed in later. Pseudocode is a planning tool and should not be reverse-engineered
from the existing code.

• How to implement parameter passing. This is standard practice in procedural language to indicate how blocks
of code communicate with each other. Parameter passing is almost always preferable to using global variables,
but it is harder to visualise so less suitable for beginners. More able students should be aware that multiple
parameters and lists can be passed, and that optional parameters may or may not be passed.

• That there are variable types, including string (text), numeric (integer, float, real), Boolean (true/false), as well as
lists and arrays.

• That practical programming in a high-level programming language supports procedures and modules which are
imported as needed.

Common misconceptions

• Inexperienced programmers often change their code significantly when they can’t overcome a particular
problem. The reworking often breaks the connection with other procedures which results in unexpected errors.

• Students may not use the correct descriptive names for procedures or follow the correct conventions. For
example, in some languages (e.g. Python), procedures must be lower case with underscores, whilst in others,
camel case should be used.

• Students need to be careful not to use the same name for a local and a global variable as this results in confusion
and random values appearing in calculations. Students should be encouraged to either avoid using global
variables or name them appropriately.

• Students can struggle to understand the difference between functions and subroutines. It is advisable to discuss
a number of different examples with your students to highlight the differences and to experiment using a
function as a parameter to a different function, for example: show_result(compute_result(10)).

• Parameter passing can cause problems for students if they don’t plan ahead. The data type returned by one
procedure may not be one that another procedure is expecting, for example, if the procedure: get_input() asks
the user to enter their age and returns the value as a string to the procedure: compute_result(x) which relies on
an integer, the program will crash.

A Level Computing OCR 2.indd 12 18/09/2015 13:33

© Cambridge University Press 2015 13

When introducing procedural programming, it is useful to make use of global variables. This way, instead of receiving
and passing parameters, the procedures that make up a program just tap into global variables. When relying on glob-
al variables, it is possible to avoid parameter passing so less able students may initially prefer to use them. However,
all students need to appreciate that global variables are insecure and waste memory space because they remain
even when not immediately needed (e.g. when no procedure that uses them is running). This is unlike parameters
which are garbage-collected as soon as a procedure stops running.

An important concept related to procedures is unit testing; being able to test a procedure in isolation from the rest of
the program. It is very important that students know how to do this and have opportunities to practise it.

Object-oriented programming is more complex than procedural programming. A source of confusion for students
when running a method in an object-oriented program is that they are not always aware which object ran its meth-
od. For example, when using Python Turtle there can be multiple turtles, each of which can turn left. As each object
contains a procedure that will rotate the turtle to the left, students have to make sure they keep track of which turtle
has turned left and when.

Lesson activity suggestions

Procedural Thinking: In every lesson activity, keep reminding your students of these important points:

1. The best programming and testing is done on small, self-contained chunks of code which are easy to write and
test and which can be used repeatedly. This is described as a ‘divide and conquer’ approach or ‘bottom-up’
design.

2. Procedures, also known as subroutines, or methods in object-oriented programming, are closely related to (and
sometimes indistinguishable from) functions. Procedures have: descriptive names, sets of local variables that are
specific to the particular procedures and parameters (which are variables that receive data from other parts of a
program).

3. Functions in this chapter describe particular types of procedures. Students can
distinguish a function by the use of the word return.

Rather like a Lego block that needs to connect to another, a function returns one or
more values (rather like the bumps on the Lego block) that are received by another
procedure where they are processed further. Conversely, procedures that are not
functions, don’t return any values, so they are like Lego blocks with smooth ends,
used for roofs or foundations of Lego structures.

4. Procedures can handle input and output, perform calculations or just call (trigger) other procedures. The
Imperative Paradigm, made popular by the Pascal programming language, contains a procedure called main
that doesn’t do any processing itself but serves as a dispatcher to run procedures as needed. Pascal has less
commercial use now but does have applications in teaching. If you have not had any prior experience of using
Pascal some research of the Imperative Paradigm is recommended.

5. Procedures have the additional benefit of improving teamwork as different procedures can be written
concurrently by different programmers. With proper planning, each programmer will know how each of the
other procedures will interact with the one they are writing. They can then prepare all the piping required to
connect their part to the other procedures when they are complete. The set of rules which describe how different
procedures interact in a system is known as an interface. Students may be familiar with the word interface as
used in Human User Interface which describes when humans trigger code elements to run. A procedure interface
requires different parts of the program to trigger each other so a program will have its own internal interface.
The interface is effectively a contract between different program parts to establish what each part will do for the
common goal.

A Level Computing OCR 2.indd 13 18/09/2015 13:33

14 © Cambridge University Press 2015

6. Procedures are planned at the development stage through stepwise refinement. This refers to a process of
identifying all operations, or steps, in solving a problem and assigning a procedure to each step. Early in the
development process, these procedures might be minimally functional. For example, the procedures may have
all their validation in place but the code might not be optimised, however it will be sufficiently complete to do a
test-run which will assess whether the system is working and the planning was correct.

Lesson activity suggestions

Topic Lesson suggestions Follow-up areas/
Homework

Write a
procedure.

Starter:

Introduce programming techniques using a visual tool (e.g. Python Turtle or any of the
Logo clones)

Main activity:

Demonstrate the basic commands of the chosen tool and then ask the students to write
a program to draw a triangle. They should next write a program to draw a rectangle.
The students should then wrap their code for the two separate shapes in individual
procedures triggered from the procedure called main. Finally, they should create a
procedure that can do any shape given a number of sides (e.g. polygon(5)) which would
result in a pentagon.

Plenary:

Discuss with the students the efficiency of having a generic polygon function rather than
having to write specific functions for each shape.

A Level Computing OCR 2.indd 14 18/09/2015 13:33

© Cambridge University Press 2015 15

Increase the
students’
experience of
procedures.

Starter:

Most students will have previous experience of procedures. Ask them how they can view
one function inside another (n.b. some languages like Python and JavaScript allow this,
most others don’t).

Main activity:

Share the following example with your students (it is not good programming practice but
food for thought) of a procedure inside another procedure using Python Turtle:

Which produces this output:

If possible, ask the students to set up and run this program.

Plenary:

Use the following questions to prompt a discussion:

1. When would one use global variables and when would it be better to use parameter
passing?

2. What differentiates functions from other procedures?

3. Is a function a variable?

4. What are we looking for in creating descriptive procedure names?

5. Why is it possible to define procedures in a different order from the one they will be
called?

A Level Computing OCR 2.indd 15 18/09/2015 13:33

16 © Cambridge University Press 2015

Reflect on the
order of steps
needed to solve
a problem.

Starter:

When planning procedures, we use pseudocode and/or flowcharts. Each procedure will
have its own flowchart.

In the Object-oriented Paradigm, related procedures are grouped together in classes,
which act like folders for code allowing programmers to be more organised. Once inside
a class, procedures known as methods are named using dot notation. For example,
Turtle.left(90) describes an object representing a turtle. The notation left describes a
method that rotates the turtle to the left, and (90) is a parameter value of 90 degrees
which will be added to the current heading, i.e. direction of the turtle. Heading is an
attribute of this particular turtle (there can be multiple turtles), and is therefore a
variable local to the object. If the turtle in question was facing up (it would have an initial
heading of 90 degrees, depending on version and installation settings), after applying
the method it will now have a heading of 180 degrees, facing left.

Main activity:

Ask the students to produce a flowchart to represent the following sequence. You could
ask students to run the sequence on a simulation, if the procedures are available to call.

Plenary:

Have a group discussion to decide what has been learnt from this activity. What next
steps would the students apply to develop the sequence further or to write alternative
sequences?

A Level Computing OCR 2.indd 16 18/09/2015 13:33

© Cambridge University Press 2015 17

Widen the
students’
experience of
procedures and
function.

Starter:

Explain that functions and procedures operate in many different programming
languages. Scratch 2.0 uses procedures. Snap supports functions.

Main activity:

Ask the students (in small teams) to complete a task which they have designed using
Python Turtle. They should also complete the same task using procedures in Scratch.
Then complete the same task in Snap using functions.

Students should use a flowchart to consolidate their ideas.

Plenary:

Showcase the students’ ideas to the class, using their flowcharts to explain.

More able students could
research a computing concept
called Closure and another
sophisticated concept of first
order functions.

Understand
parameter
passing.

Starter:

Most modern languages support Structured Query Language (SQL) and as database
operations are often repetitive, they lend themselves to procedural implementation.

Main activity:

Using SQL to demonstrate parameter passing and the dot notation would be a good
idea, as SQL is easy to read and students can follow the logic of query parameters etc.

Plenary:

Ensure that your students understand how important it is to pass parameters between
program sections, subroutines, etc.

It may be worthwhile for
students to research SQL
views which are the most
equivalent to procedures in
SQL. Information about views
can be obtained via this link.

Understand
database
normalisation.

Starter:

Discuss database normalisation with your students.

Main activity:

Create an activity to explore database normalisation using primary- and foreign-key
constraints to illustrate parameter passing.

Plenary:

Discuss what the students have learnt from this activity.

1 Procedural thinking describes the process of thinking through a problem and developing a
sequence of steps that can be used to reach a solution.

2 A procedural programming language is one that solves problems by executing a sequence of
instructions.

3 Selection\branching.

4 Iteration.

5 Sequence.

End of chapter answers

A Level Computing OCR 2.indd 17 18/09/2015 13:33

18 © Cambridge University Press 2015

Chapter 4 Thinking logically

Learning objectives

• To be able to identify the points in a solution where a decision has to be taken.

• To be able to determine the logical conditions that affect the outcome of a decision.

• To be able to determine how decisions affect flow through a program.

What your students need to know

• How to be able to identify in an algorithm where decisions need to be implemented.

• Logic is a fundamental component of Computer Science. Students need to be able to break problems down
and identify the input and output of an algorithm in order to determine the program flow. Elements of formal
logic should be introduced to the students to provide a structured mechanism for determining conditions.
Propositional logic evaluates statements to a value of TRUE or FALSE. Compound logic statements use
connectives such as AND, OR and NOT. The basic tool of propositional logic is a truth table. These are developed
to give the output values from all possible combinations of input.

• Predicate logic uses a different approach. Facts and rules are defined to evaluate a query in order to find a true
match.

• How selection can be used in an algorithm to control program flow.

• Students who previously studied GCSE Computer Science will have already created programs that use simple
IF statements and a single operator (e.g. to test whether a value is equal to a given number). They should be
confident in writing such programs. They should be aware of a wide range of logical operators and be able to use
combinations of these to produce the desired conditional statement.

• How multiple conditions can be handled descriptively in pseudocode and practically in a program language.

• Program code can be written using nested statements or by having multiple conditions in a single statement.
The following screenshot shows two simple programs that check whether three numbers entered by a user are in
ascending order.

A Level Computing OCR 2.indd 18 18/09/2015 13:33

© Cambridge University Press 2015 19

• How precedence affects how conditions are executed (e.g. nested conditions and the use of logical operators).

• As illustrated in the program above, the nesting instruction ensures that the outermost conditions are checked
first before the inner conditions. If the outer condition is not true, the program will not proceed with the inner
condition check. It may be that conditions are required to be checked independently of one another regardless of
whether a previous statement has been matched. Separate conditions can be constructed as illustrated below.

• In the following example, logical operators are used to test whether a user has entered a sequence of three
numbers in ascending or descending order.

A Level Computing OCR 2.indd 19 18/09/2015 13:33

20 © Cambridge University Press 2015

• About logical operators and their related truth tables.

• Students should know and have used a variety of logical operators:

Image taken from Student Book

• They should also be able to understand and be able to produce truth tables for logical operators:

Image taken from Student Book

• How logical operators can be used in combination to achieve the desired output.

• Students need to be able to interpret a problem in terms of input and output data required and how logical
operators can achieve this.

• The process of dry running an algorithm to test program logic.

• Students should gain experience and confidence in using trace tables and documenting paths of execution.

Common misconceptions

• Students should be encouraged to switch their practice of ‘trial and error’ programming to developing and
testing algorithms in pseudocode before starting to program. They are often too focused on a solution and do
not take sufficient time to consider the problem holistically. Remind students that developing an algorithm can
be completed separately from coding as, at an early stage, the target language may not be known. It is more
important to encourage a general problem-solving approach. Students should not become restricted by their
capabilities in any one language.

A Level Computing OCR 2.indd 20 18/09/2015 13:33

© Cambridge University Press 2015 21

• An understanding of binary logic and truth tables is also important. Students should have encountered these
for AND, OR and NOT operators at GCSE level and will have already interpreted combinations of individual
logic gates. However, these can be easily confused and the significance of a binary 1 over a binary 0 may be
overlooked. It is useful to consolidate and expand upon these concepts.

• Inputs and desired outputs need to be interpreted in terms of program logic. Sometimes students find it difficult
to get started. It may be helpful to use general logic problems so that students think about problems that are not
related to programming. There are numerous examples online and some links are provided at the end of Chapter
4 in the Student Book.

• Although simple selection constructs will have been encountered at GCSE level, students will not have used
nested statements before. A key issue to understanding them is the concept of precedence. The order that
statements are executed in is critical in generating the correct output. To avoid errors, students should be
encouraged to design their algorithms in a stepwise fashion and consider the output from each line (which
becomes the input for the next). It may be helpful to provide examples of problems for which an algorithm can be
designed and tested without necessarily having to write a program.

Lesson activity suggestions

Topic Lesson suggestions Follow-up areas/
Homework

Identifying
decisions.

Starter:

True or False? Working in small groups, students decide whether an algorithm’s output
would be true or false depending on the input provided.

Main activity:

Correct Change Algorithm. Students will work through the stages of developing an
algorithm for an automatic Point of Sale system. The algorithm should take the cost of
an item being purchased and add it to a total cost. The algorithm should also take the
amount of money that a shopper has tendered, calculate the change required and show
how this should be tendered. The lesson should be a paper activity and will require
students to determine where in their programs decisions and logical operations are
required.

Plenary:

Discuss the potential drawbacks of writing a program with multiple conditional
statements. How does this impact on its performance? What could happen if an
algorithm is designed incorrectly?

Design and develop a text-
based adventure game.
Students will have to think
through the logic of a program
with an added element of fun.
They should consider different
themes for their game and
have different pathways that
lead to different outcomes for
a player.

Logical
conditions and
program output.

Starter:

Spotting Errors.

Students work in small groups to identify errors in program code printed onto cards.

Main activity:

Reaction timer.

Students write a reaction timer program which will reward the player who presses a key
on the keyboard when they believe that a set amount of time has elapsed. This activity
will allow them to develop an algorithm that requires the use of logical operators in
sequence to meet the requirements of a brief.

Plenary:

Group discussion on the topic of software testing. What techniques are effective in
systematically testing program logic? The discussion should include tracing paths of
execution.

Students are provided with
program code in a language
that they are familiar with.
The code will contain logic
errors. Students should test
the program to identify and
document the errors. As an
additional exercise, they could
correct the errors.

A Level Computing OCR 2.indd 21 18/09/2015 13:33

22 © Cambridge University Press 2015

Controlling
the flow of a
program using
decisions.

Starter:

Noughts and Crosses.

Students consider a suitable starting move and subsequent moves for a fictional game
of Noughts and Crosses. They will need to consider viable options when an opponent’s
move has been given to them.

Main activity:

Paired programming challenges.

Students complete sets of programming challenges that are ranked Green when easy
(simple selection), Amber when intermediate (WHILE loops and multiple conditions IF,
ELSE IF, ELSE and SELECT CASE) and Red when advanced (multiple logical operators,
nested IF statements).

Plenary:

Evaluation of the paired programming activity and completion of an ‘exit ticket’ covering
three questions:

1. What skill have you developed in completing this lesson?

2. Which programming technique have you found most challenging and why?

3. Please write one question that you would like to discuss in the starter of the next
lesson.

Research expert systems and
their uses. How can these be
used to make decisions?

Understanding
logic in
Computer
Science.

Starter:

Discuss what is logic? Students should develop their own definition. What is a logical
statement? Can all statements be evaluated as TRUE or FALSE?

Main activity:

An investigation into propositional and predicate logic.

A short introduction should be provided that covers these two branches of logic.
Students then investigate both and produce a brief summary of each and their
relevance/importance in Computer Science.

Plenary:

Group discussion.

Is it possible to have a logic value between 1 and 0 (true and false)? What is fuzzy logic
and what are its applications?

Students are provided with a
series of fun logic-puzzles to
think about logic from a non-
programming perspective.

1 FALSE.

2 FALSE.

3 TRUE.

4 FALSE.

End of chapter answers

A Level Computing OCR 2.indd 22 18/09/2015 13:33

© Cambridge University Press 2015 23

Chapter 5:Thinking concurrently

Learning objectives

• To be able to determine the parts of a problem that can be tackled at the same time.

• To be able to outline the benefits and trade-offs that might result from concurrent processing in a particular
situation.

What your students need to know

• That processes and threads are basic execution units. They should know how programs can be written to
implement concurrency and how this can improve efficiency and performance. They should also understand how
modern computer systems facilitate parallelism (the ability to run multiple threads or processes simultaneously)
in addition to traditional concurrency (the ability to run multiple processes or threads but traditionally using a
scheduling algorithm, such as round-robin). They should appreciate that the latter is also possible on single-core
CPUs. Examples should be provided to illustrate the key principles. Maintaining multiple client connections and
programs that require several simultaneous pathways should be discussed. Students should have an opportunity
to identify where threads could be programmed in an algorithm.

• The issues related to the implementation of threading (e.g. synchronisation, starvation, deadlock and data
races). Students should also appreciate that programs that implement threading are more complex to write.
When badly written, programs can cause issues such as deadlock and starvation. Discuss classic algorithms that
illustrate these problems. Students should also appreciate the states that threads can exist in: ready, running,
waiting and stopped.

Common misconceptions

• The difference between concurrency and parallelism is a subtle one. Concurrent threads on a single-core CPU
are, in reality, being swapped in and out of the processor. Multi-core CPUs permit true parallelism where threads
can run simultaneously. Students will appreciate the principles of concurrency more effectively if they can relate
them to their understanding of CPU architecture.

• Students should appreciate that implementing concurrency can make programs more complex to write but the
gains are always positive. Scheduling algorithms and writing a more complex program relies on more advanced
programming skills but the advantages are improved performance during execution. In contrast, poorly written
code can cause synchronisation issues which can lead to less efficient programs.

A Level Computing OCR 2.indd 23 18/09/2015 13:33

24 © Cambridge University Press 2015

Lesson activity suggestions

Topic Lesson suggestions Follow-up areas/
Homework

Identifying
where
concurrency
can be
implemented.

Starter:

Students are asked to make ten paper models as quickly as possible. They can choose
how they are going to tackle the challenge. It is likely that they will utilise some form of
parallelism. They should then be challenged to think of ways to speed up processing but
with a single person (i.e. single-core).

Main activity:

Concurrent programming. Students are challenged to write a simple program that
implements threads which start at different intervals during the program. They should
draw a simple timeline for their program to show when the threads start and end during
the program’s lifetime.

Plenary:

Group discussion about the advantages and typical uses of concurrent programming.

Preparing a mind-map is a
useful way to appreciate the
links between concurrent
programming, CPU structure
and operating system function
which all support multi-
threading.

Advantages and
disadvantages
of implementing
concurrent
programming.

Starter:

Concurrent programming keyword anagrams. This activity will help to reinforce key
terms. As an additional activity, students could write definitions for the words that they
have deciphered.

Main activity:

Students research the key advantages and potential disadvantages of concurrent
programming. From their findings they will produce a short informative video that would
be helpful to A level students.

Plenary:

What next for concurrent programming? Students should discuss those aspects of
concurrent programming which are less desirable (e.g. deadlock or starvation, data
races, issues due to shared memory space etc.). Challenge your students to consider how
these issues could be overcome.

Produce an information leaflet
to accompany their video
completed in the main activity.

1 Programs take less time to run.

2 Deadlock; Starvation; Race conditions.

3 They must be completely independent of one another.

4 True.

5 Threading.

End of chapter answers

A Level Computing OCR 2.indd 24 18/09/2015 13:33

© Cambridge University Press 2015 25

Chapter 6 Programming techniques

Learning objectives

• To understand the three main programming constructs: sequence, iteration and branching.

• To understand recursion, how it can be used and how it compares to an iterative approach.

• To learn about global and local variables.

• To understand modularity, functions and procedures, and parameter passing by value and by reference.

• To know how to use an IDE to develop/debug a program.

What your students need to know

• The characteristics of procedural programming.

• Global and local scope of variables.

• The characteristics of object-oriented languages including encapsulation, inheritance and polymorphism.

• The advantages of defining classes and code reuse.

• The differences between classes, objects, attributes and methods.

• The advantages of encapsulation, inheritance and polymorphism.

• How stacks are implemented within programs.

• The purpose of assembly language.

• Direct, immediate, indirect, relative and indexed modes of addressing.

• How programming constructs are implemented in assembly language (e.g. iteration and selection).

• How the Little Man Computer (LMC) simulator can be used to understand assembly language programming.

Common misconceptions

• Students need to understand the fundamental differences between different programming paradigms. It is also
helpful if students learn example languages and understand their typical use. There are a number of technical
terms associated with paradigms. A glossary or wiki can be of benefit. Addressing modes can also be the cause of
misunderstandings. Clear definitions and examples are helpful but students should be mindful of the similarities
of terms (e.g. indexed and indirect).

A Level Computing OCR 2.indd 25 18/09/2015 13:33

26 © Cambridge University Press 2015

Lesson activity suggestions

Topic Lesson suggestions Follow-up areas/
Homework

Procedural
languages.

Starter:

Provide sequencing instructions to complete a simple task (e.g. drawing a square on
a whiteboard with a marker pen or similar activity). Students should then plan the
algorithm and, once complete, pass it to another who then ‘acts out’ their instructions.
Explain that procedural languages execute instructions in a particular order and that the
program code describes how it will run.

Main activity:

Investigation of a procedural language (e.g. Python). Students will write simple
procedural code such as calculating the number of rolls of wallpaper needed to paper a
room or the area of a circle.

Plenary:

Produce a procedural programming factsheet.

Simple programming exercises
involving mathematical
calculations (e.g. averaging
numbers, calculating a
discount, times tables or
finding areas or volumes).

The object-
oriented
Paradigm.

Starter:

Begin the lesson with a brief introduction to the terms: class, object, attributes and
methods.

Main activity:

Define the key characteristics of object-orientated programming. Students can
investigate pseudocode or, preferably, an environment such as Eclipse Java.

Plenary:

Compare object-orientated programming to procedural and discuss the strengths,
limitations and typical uses of each.

Write a fictional magazine
article about the history and
uses of Java.

Assembly
language
programming.

Starter:

Discuss simple devices where computers might be installed (e.g. in a car). What is the
computer’s purpose in the chosen device?

Main activity:

Create a board game using an 8×8 grid to represent RAM and individual cards containing
opcodes, memory addresses and data. Put together a simple program that adds two
numbers. Allocate memory to instructions by placing the card in a grid space. Take cards
out in sequence to illustrate the instruction being executed. This board game could be
extended to include storage of instructions, data and memory addresses in registers on
the CPU.

Plenary:

Discuss the uses, disadvantages and advantages of assembly language.

A series of challenges that
start with simple activities and
progress to harder ones. These
should be assigned according
to students’ abilities.

Practical
experience
of assembly
language.

Starter:

Give the students an introduction to the LMC. Show them how to download an emulator.

Main activity:

Give your students a series of challenges using the LMC. Provide a range of increasingly
more difficult challenges.

Plenary:

Explain that in the early days of computing, machine code and assembly language were
the only ways of input. Explain that computers still rely on these but that we now have
interpreters, assemblers and compilers to help.

Students could research and
identify the early computer
developments at this time in
history as this will be useful to
them.

Additionally they could
complete the necessary
research to know the
difference between
interpreters, assemblers and
compilers.

A Level Computing OCR 2.indd 26 18/09/2015 13:33

© Cambridge University Press 2015 27

Memory
addressing
modes.

Starter:

Talk about memory addressing modes and explain how these might have improved the
programs created in their last lesson. Provide students with a list of mnemonics. They
can fill in the second column with what they believe the instruction to be. Students
should also write memory address or no memory address next to each to indicate which
need to use a memory address (e.g. HLT (halt) should be no memory address and STA
(store) does require one).

Main activity:

Different addressing modes. Students should investigate different addressing modes
and produce an interactive poster or presentation to illustrate how they work.

Plenary:

Discuss how different addressing modes are used. Review why different modes are
needed.

It may be useful to consider an additional lesson that gives the students the opportunity
to test out their new knowledge of addressing modes on the LMC emulator. They could
be given some tasks that only really work with relative addressing for example.

Web-based quiz on the
characteristics of different
programming paradigms.

1 A recursive function is one which repeatedly calls itself until a base case is met.

2 Sequence, selection/branching.

3 A sequence of instructions is repeated a set number of times or until a condition is met.

4 In recursion, a new version of the function is created in memory every time it is called, taking
up a lot of memory.

5 A local variable is only available inside a particular subroutine but a global variable can be
accessed from anywhere in the code.

End of chapter answers

A Level Computing OCR 2.indd 27 18/09/2015 13:33

28 © Cambridge University Press 2015

Chapter 7:Computational methods

Learning objectives

• To understand problem recognition.

• To understand problem decomposition.

• To know when to use divide and conquer.

• How to solve problems using backtracking; data mining; heuristics; performance modelling; pipelining and
visualisation.

What your students need to know

• In order to develop an algorithm a problem must be solvable. Solvable problems are defined using the principles
of logic.

• Decidable problems have a true or false answer and will not loop indefinitely. The halting problem is the problem
of determining whether a given algorithm and input is decidable (i.e. will finish running) or not within a finite
time.

• A Turing machine is a hypothetical problem-solving device.

• Undecidable problems include Entscheidungsproblem, the halting problem and the Kolmogorov complexity of
strings.

• One algorithm can be used to check another algorithm, for example in the blank tape problem. Reduction is a
technique when one algorithm is used to make another solvable.

• Decomposition is the process of breaking a problem down into its constituent parts. Abstraction filters out
unnecessary detail in order to focus on the general requirements, including data structures, that are required to
solve the problem.

• Divide and conquer describes a process where irrelevant choices for solving a problem are discarded in order to
narrow the focus and increase the chance of success with each reduction. Examples include binary search and
quick sort. Divide and conquer routines are recursive in nature.

• Parallelism can also employ divide and conquer to work on multiple parts of a problem at the same time (e.g.
handling data in arrays). Parallelism is linked to concurrency. Concurrency is the ability to have multiple parts of
processes executing at the same time.

• Backtracking is the process of searching for alternative solutions to a problem even when a solution may have
already been found. This term is often associated with declarative programming.

• Data mining is the process of analysing large amounts of data to look for patterns or trends. Complex, fast
algorithms are required. This technique is widely used by large commercial organisations to refine their services
and products.

• Heuristics is an approach to solve problems in the least time. Examples of heuristic algorithms include modern
routing protocols, firewalls, Intrusion Protection Systems (IPS) and virus scanners.

A Level Computing OCR 2.indd 28 18/09/2015 13:33

© Cambridge University Press 2015 29

• Performance modelling measures system performance and seeks to reduce latency (e.g. queueing). This is
usually achieved via simulation and refinement of the current system. Performance modelling is often used in
networked systems.

• Pipelining maximises the use of resources by initiating the execution of an instruction before the previous one
has completed. Modern processors make extensive use of pipelines and logical execution threads.

• Visualisation is a problem-solving technique often deployed in everyday life to solve commonplace activities. The
more abstract the problem becomes, the more difficult it becomes to visualise.

Common misconceptions

• A number of aspects of this topic can be misunderstood. Students need clear definitions of problem-solving
terms and understanding of the distinctions between them (e.g. abstraction and decomposition, concurrency
and parallelism).

• Students may not always be able to decide which technique is best to solve a problem. However, it is vital that
they know how to recognise whether or not a problem can indeed be solved. Although the theory of solvability
involves complex mathematics, all students need to know and appreciate that they cannot write an algorithm for
an unsolvable problem.

• Students often find the concept of recursion challenging. A useful approach to the subject is to combine
programming experimentation with reasoned algorithm development. This way, students can more easily
appreciate that there are three possible outcomes. Firstly their algorithm functions correctly because they have
included a base case and the correct return value is given. Secondly they have not coded a base case (or it is
incorrect) resulting in infinite recursions (or until maximum depth is reached). Or thirdly that a step has been
incorrectly coded giving the wrong return value to the next call. Experimenting with code and repeatedly asking
the question ‘why is this right?’ can often be a more successful learning method than that of tackling just the
algebraic representation. This method can also be particularly useful for students who have less mathematical
knowledge or understanding.

A Level Computing OCR 2.indd 29 18/09/2015 13:33

30 © Cambridge University Press 2015

Lesson activity suggestions

Topic Lesson suggestions Follow up ideas/Home-
work

Features that
make a problem
solvable by
computational
methods.

Starter:

Students should discuss some solvable and unsolvable problems in everyday scenarios.
For example, the students have purchased several items at a supermarket but when they
get to the checkout, they find they don’t have enough money to pay for it all; they are £1
short. This is a solvable problem as the students can put items back on the shelf to the
value of £1 or more.

Main Activity:

Students will now have a basic understanding of the problem of solvability. They will
also be aware that a decision should result in one of two outcomes: true or false.

Plenary:

Discussion of unsolvable algorithms. How can students recognise problems which are
unsolvable?

Research the concept and
basis of the Turing machine.

Problem
recognition.

Starter:

Complete the Harold the Robot activity available from CS unplugged site. (Students are
asked to write an algorithm for carrying out an activity such as drawing a square on a
whiteboard, painting their nails with nail varnish, placing beads in a jar and screwing on
the lid etc.)

Main Activity:

Small groups of students (up to four) should each be given a card with an algorithm
name on it (e.g. process scheduling, routing, binary search, quick sort, merge sort etc.).
Within their groups students write the algorithm, then use the checklist of requirements
for solvable problems against their solution to check for correctness. This should confirm
that the algorithms provided are indeed solvable.

Plenary:

Can algorithms ‘learn’? If an algorithm does not provide a perfect solution, can it refine
itself to provide a closer solution? Group discussion leading into a homework task.

Investigate shortest-path-first
algorithms.

Problem
decomposition.

Starter:

Ask students to plan a route to a point of interest in your local area. They can travel by
any means but need to identify the route which costs the least to complete.

Main Activity:

Working in groups, students should design a new ‘casual game’. The ‘casual’ genre of
games consists of puzzles or simple problem-solving challenges with increasing levels
of complexity/difficulty. There are many commercially available examples that the
students will be familiar with. The students’ game needs to include a scoring system and
multiple levels. Students must use decomposition to break down the whole problem
into constituent parts. Elements of abstraction can also be included. If time is available,
students should present their game ideas to the rest of the class.

Plenary:

Can the skills used in decomposing problems help in everyday life? Discuss examples
where this might be the case (e.g. cooking a meal).

Produce a poster that presents
the algorithms used in game
programs.

A Level Computing OCR 2.indd 30 18/09/2015 13:33

© Cambridge University Press 2015 31

Use of divide
and conquer.

Starter:

Present students with a practical challenge that will demonstrate the concept of divide
and conquer that they should solve in small teams. An example would be to provide a
computer with intentional faults (e.g. the monitor is not switched on or a piece of black
insulating tape is placed over the LED of an optical mouse). The students should provide
a list of typical faults and symptoms. They should complete a table explaining how
they eliminated some faults to narrow down possible causes. They can also produce a
troubleshooting flowchart (or this could be saved for the plenary).

Main Activity:

Investigate binary searches and quick sort as examples of algorithms that use divide and
conquer. Develop an example of a Twenty Questions game in which questions for which
the answer is true or false determine the pathways.

Investigate recursive algorithms such as the Fibonacci sequence and the need for a base
case.

Plenary:

Provide students with classic recursive images (e.g. patterns drawn by M. C. Escher). Can
the students recognise the patterns of recursion?

Students should write a
recursive routine to draw a
pattern. It will be helpful to
provide some background on
fractals as a starting point.

Abstraction. Starter:

Have a discussion of the term ‘abstract’.

Main Activity:

Students could complete the ‘Knight’s Tour’ and the ‘Tourist Bus’ available from CS4FN.
These activities will reinforce the principle that by removing details, we begin to see
general patterns and trends.

Plenary:

The importance of abstraction and abstract classes in object-oriented programming.

Students could produce a
web page with content that
acts as a guide for KS3/4
students explaining these key
topics in Computer Science:
abstraction, decomposition,
pattern recognition and
algorithm development.

Problem-solving
techniques.

Starter:

Students are presented with the classic game known as Fox and Geese. They should
investigate the possible outcomes including the quickest way for the fox to win and the
quickest way for the geese to win.

Main Activity:

Produce a guide to computational thinking methods as a summary of all that they have
learnt.

Plenary:

Discuss which approaches are likely to be successful in solving particular types of
problems (e.g. problems involving large amounts of statistical data, a medical diagnosis
problem, handling data in arrays etc.).

Produce a report that reviews
the use of heuristics in
algorithm development (e.g. in
satellite navigation systems).

A Level Computing OCR 2.indd 31 18/09/2015 13:33

32 © Cambridge University Press 2015

1 Abstraction could be used to separate key ideas from reality. For example they would want
to focus on which stations are connected to each other (and by what line) rather than trivial
details such as the size of the station. Symbols and colours can be used to represent reality.

 Creating an algorithm which uses route finding would be the next step. Using a route-finding
algorithm such as Dijkstra’s algorithm would be a starting point. The tube map can be
represented as a graph with each station represented as a vertex, each edge as a tube line
and the weights as timings between them.

 Considering if there are any existing components which could be reused will allow for a
more robust solution. For example, using a library for Dijkastra’s, or for representing a graph.

2 Divide and conquer is a programming technique which will repeatedly split a problem down
into smaller parts until those parts become trivial to solve. In a concurrent environment
each processor would be working on a different part of the problem. Therefore if a problem
is split up into parts, each part could then be allocated to a different processor. This must be
carefully managed and allocated by a single processor. The standard quick sort algorithm
would have to be updated.

3 (a) A graph – representing the tube could be reused in other maps or route finding
applications.

 Algorithms used to perform route finding – For example A* or Dijkstra’s.

 (b)

Code

INPUT Tube graph as G

INPUT station name as S

FUNCTION findDisabledStation(C, visitedStations)

visitedStations.add (C)

IF all stations visited THEN RETURN FALSE

FOR station IN C.connectedStations

 IF station.disabled == TRUE AND station NOT IN visitedStations THEN

 RETURN station

 END IF

 findDisabledStation(station, visitedStations)

End of chapter answers

A Level Computing OCR 2.indd 32 18/09/2015 13:33

© Cambridge University Press 2015 33

Chapter 8 Algorithms

Learning objectives

• To look at how algorithms are designed and analysed for a given situation or problem.

• To appreciate the suitability of algorithms for a given task with regard to execution time and space.

• To understand the complexity of algorithms using the Big O notation and use it to allow comparison between
algorithms.

• To understand algorithms that are related to stacks, queues, linked lists and trees.

• To understand and use the following standard algorithms: bubble sort; insertion sort; merge sort; quick sort;
Dijkstra’s shortest path; A* algorithm; binary search; serial search.

What your students need to know

• How to draw up a flowchart.

• How to describe a problem’s solution in pseudocode.

• The use of trace tables and dry runs.

• Understanding of mathematical functions and calculus, including functional domains.

Common misconceptions

• It should be noted that the Python examples given in this chapter are in Python 2 syntax which is different from
Python 3 syntax, so modifications are needed to implement these examples on more modern installations (e.g.
the print function now requires brackets, raw_input has been replaced with input, etc.).

A Level Computing OCR 2.indd 33 18/09/2015 13:33

34 © Cambridge University Press 2015

Lesson activity suggestions

Topic Lesson suggestions Follow-up areas/
Homework

Develop a model
algorithm, using
flowcharts.

Starter:

Explain to the students that an algorithm can be designed to be repeatable and
predictable. The students should assess the inputs and outputs to an algorithm that
they are going to design.

Main activity:

Create flowcharts to solve the mathematical equations using the following (suggested)
steps:

1. Assess the problem. Students should be shown graphs of common functions,
e.g. y = x2, y =

, y = and asked to identify them.

2. Establish the stages of the solution. Students should establish which formulae are
to be used to solve the problem and/or whether iterations (repeated application) of
various processes are needed.

3. Map out the solution algorithm. Students produce a flowchart of their proposed
solution to the problem.

4. Assess the algorithm. Students test their algorithms using dry runs. i.e. pretending
to be a computer and finding values of variables at every step/iteration of the
program.

Plenary:

Discuss how the students’ programs ran and what problems they encountered.

Progress from
flowchart to
pseudocode.

Starter:

Explain to the students that using pseudocode is the usual way that programmers
progress a program from the flowchart stage. At this stage, it may not be known exactly
which programming language is to be used.

Main activity:

Code the flowcharts from the last activity in pseudocode, using the following (suggested)
steps:

1. Create the main program which is going to take the inputs and call the various
procedures as they are needed.

2. Write each procedure as a separate entity for each task. This would work well
as a team-building exercise as the students would experience an aspect of a
programmer’s professional life where individual team members write different
elements of a program.

3. Assess the main program and the procedures. The students could take their other
team member’s work and try it out by acting as computers and ‘running the code’.

4. By Stage 3, the students (ideally) will run into problems because the domains have
not been defined. If they don’t detect the problems, they need to use numbers
to test their program which will cause problems (e.g. require the square roots of
negative numbers).

5. Stop the development process (temporarily) and have a discussion in the plenary
with your students.

Plenary:

Explain that they will be continuing with the programming task but that another area
of their understanding needs to be discussed prior to continuing. The next lesson will
address the problem of domains.

A Level Computing OCR 2.indd 34 18/09/2015 13:33

© Cambridge University Press 2015 35

Understanding
domains.

Starter:

Following the starter with the mathematical functions’ graphs, students should be asked
to talk about the domains of functions (e.g. what might be interesting about the domain
of the y =

function (zero is excluded), or the square root function (x must be positive).

Main activity:

[Following the examples provided in this section of the student book, students may
choose to take one or two algorithms they have done before instead of the example
used below, and analyse their domains, ranges and codomains, as well as express the
algorithms in pseudocode, paying attention to pseudocode conventions.]

Use the algorithm for deciding the winner of a rock/paper/scissors game. In the case of
this game the domain is made up of combinations of two inputs which were the choices
made by two players (e.g. rock/paper, scissors/rock, etc.), while the range will be: Player
1 wins; Player 2 wins; Draw.

Analysis could be followed up by actual implementation which can be timed.

Plenary:

Discussion of problems encountered in the process of performing the tasks.

Undertake the main lesson
activity with an algorithm to
give the minimum number
of coins in change given a
purchase price and the money
given by a customer. This
problem is actually quite
similar to the tax calculation
used as an example in this
section of the student book,
so it could be a nice extension
activity.

Completing the
programming
project.

Starter:

The students should now be able to complete their program to solve selected quadratic
equations by taking care to define the domains.

Main activity:

Complete the project.

Plenary:

Discuss the process of testing the algorithm on a computer and the steps required to
progress from accuracy to performance. Explain how to time the execution of algorithms
so that various alternative algorithms can be compared. This is a process known as
benchmarking. Most modern programming languages use a built-in timer which enables
an appreciation of an algorithm’s complexity.

A Level Computing OCR 2.indd 35 18/09/2015 13:33

36 © Cambridge University Press 2015

Complexity and
scalability.

Starter:

Scalability is a significant issue when creating a program. It is always important to
be able to predict how much an algorithm will slow down in response to a particular
increase in data volume. If data volume increases tenfold, will the time taken to process
the data also increase tenfold or higher? The complexity of an algorithm affects its
performance. Some algorithms are fast with certain types of data and slow with others.
Finding the most efficient (best performing) algorithm is therefore a key component of
program development.

Ask the students to find the fastest way to fold a shirt or go around the classroom,
touching every chair without stepping on the same place on the floor twice. The physical
element of this exercise will ease the transition to this non-trivial section.

Alternatively, students might be asked to randomly stand and then sort themselves by
height. (The last section of this chapter covers sorting algorithms, so it might be a good
connection.)

Main activity:

A better task might be to write an algorithm to find all the English words with at least
2 letter O’s in them. Alternatively the students could create a spell-checking program
that when given a word, would look at a word list and decide if it was misspelled or
not. The students could use a free words text file (used in Linux) located here. There
is a more sophisticated site which offers multiple word lists by English dialect, so
an algorithm to read the words and find the ones that match could be created. Most
students with programming experience should be able to create at least two versions of
their algorithm. They can then benchmark their algorithms and get involved in the later
discussions about complexity.

Plenary:

The students should compare the speed of their algorithms with their classmates.

This is a compiled list of the 10
best algorithms. Do you agree
with them? What would your
top 10 list look like?

1 For logarithmic growth as x increases y increases more slowly than for exponential growth.
Logarithmic growth is the inverse of exponential growth.

2 Heuristic methods take a best guess approach when it is not feasible to account for all pos-
sible scenarios. A heuristic algorithm can be used to detect patterns in network traffic. If the
pattern matches a known hacking style then that IP address could be blocked. The heuristic
will take a best guess approach and may sometimes miss new hacking methods or block
legitimate traffic.

3 Quick sort is faster than other types of sorting methods, but it is also more complicated to
implement. It has a time complexity of n logn which means that, because the number of
bands will be a small number, we do not get a huge benefit. For example, if the number of
bands was 10, then 10 × log10 = 33.2. If bubble sort was used, which has a time complexity
of n2, then it would be 100. In processing terms this difference is negligible which means that
bubble sort would be more effective due to its simpler implementation.

4 A balanced binary tree will only have enough levels to represent the data. For the worst
case scenario when searching a binary tree you have to look at each level exactly once. This
means that the efficiency of the tree is directly proportional to the number of levels it con-
tains. A binary tree could have one item per level, if it was poorly constructed, which means
that it would have to look at n number of levels. A balanced binary tree will limit the number
of levels to log n meaning that, at worst, we have to compare log n items.

End of chapter answers

A Level Computing OCR 2.indd 36 18/09/2015 13:33

© Cambridge University Press 2015 37

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/ukschools/9781107531956
(Cambridge Elevate-enhanced Edition)

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2015

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-53195-6 Cambridge Elevate-enhanced Edition

Additional resources for this publication at www.cambridge.org/ukschools
Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate. Information regarding prices, travel timetables, and other
factual information given in this work is correct at the time of � rst printing but
Cambridge University Press does not guarantee the accuracy of such information thereafter.

NOTICE TO TEACHERS IN THE UK

It is illegal to reproduce any part of this work in material form (including
photocopying and electronic storage) except under the following circumstances:
(i) where you are abiding by a licence granted to your school or institution by the
Copyright Licensing Agency;
(ii) where no such licence exists, or where you wish to exceed the terms of a licence,
and you have gained the written permission of Cambridge University Press;
(iii) where you are allowed to reproduce without permission under the provisions of
Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for
example, the reproduction of short passages within certain types of educational
anthology and reproduction for the purposes of setting examination questions.

Acknowledgements
Acknowledgements
Cover provided by Fabian Oefner © 2013 www.fabianoefner.com

A Level Computing OCR 2.indd 37 18/09/2015 13:33

