Skip to content

Online ordering will be unavailable on Saturday 10 December 2022, 0800-1800 GMT.

To place an order, please contact Customer Services.

UK/ROW directcs@cambridge.org +44 (0) 1223 326050 | US customer_service@cambridge.org 1 800 872 7423 or 1 212 337 5000 | Australia/New Zealand enquiries@cambridge.edu.au 61 3 86711400 or 1800 005 210, New Zealand 0800 023 520

Register Sign in Wishlist

Well-Posed Linear Systems

$215.00 (C)

Part of Encyclopedia of Mathematics and its Applications

  • Date Published: March 2005
  • availability: In stock
  • format: Hardback
  • isbn: 9780521825849

Hardback

Add to wishlist

Other available formats:
eBook


Looking for an examination copy?

This title is not currently available for examination. However, if you are interested in the title for your course we can consider offering an examination copy. To register your interest please contact collegesales@cambridge.org providing details of the course you are teaching.

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Many infinite-dimensional linear systems can be modelled in a Hilbert space setting. Others, such as those dealing with heat transfer or population dynamics, need to be set more generally in Banach spaces. This is the first book dealing with well-posed infinite-dimensional linear systems with an input, a state, and an output in a Hilbert or Banach space setting. It is also the first to describe the class of non-well-posed systems induced by system nodes. The author shows how standard finite-dimensional results from systems theory can be extended to these more general classes of systems, and complements them with new results which have no finite-dimensional counterpart. Much of the material presented is original, and many results have never appeared in book form before. A comprehensive bibliography rounds off this work which will be indispensable to all working in systems theory, operator theory, delay equations and partial differential equations.

    • The first book on infinite-dimensional linear systems which are well-posed in a p-integrable setting
    • This book contains several original results which have not been published before, and many of the remaining results appear here for the first time in a book
    • A number of researchers already use and quote this book (15 citations in ISI Web OS Science in April 2004)
    Read more

    Reviews & endorsements

    "The book is well and carefully written. The material is self-contained and all the proofs are provided within the text. ...presents a ... complete treatment of well-posed linear control systems."
    Mathematical Reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: March 2005
    • format: Hardback
    • isbn: 9780521825849
    • length: 794 pages
    • dimensions: 240 x 165 x 46 mm
    • weight: 1.485kg
    • availability: In stock
  • Table of Contents

    1. Introduction and overview
    2. Basic properties of well-posed linear systems
    3. Strongly continuous semigroups
    4. The generations of a well-posed linear system
    5. Compatible and regular systems
    6. Anti-causal, dual and inverted systems
    7. Feedback
    8. Stabilization and detection
    9. Realizations
    10. Admissibility
    11. Passive and conservative scattering systems
    12. Discrete time systems
    13. Appendix.

  • Resources for

    Well-Posed Linear Systems

    Olof Staffans

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to instructors whose faculty status has been verified. To gain access to locked resources, instructors should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other instructors may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Instructors are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact lecturers@cambridge.org.

  • Author

    Olof Staffans, Åbo Akademi University, Finland

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon
×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×