The Sensual (Quadratic) Form
c.$40.00 (P)
Part of Carus Mathematical Monographs
- Author: John Horton Conway, Princeton University, New Jersey
- Date Published: August 2015
- availability: This item is not supplied by Cambridge University Press in your region. Please contact Mathematical Association of America for availability.
- format: Paperback
- isbn: 9780883850404
c.$
40.00
(P)
Paperback
Other available formats:
Hardback
Looking for an examination copy?
This title is not currently available for examination. However, if you are interested in the title for your course we can consider offering an examination copy. To register your interest please contact collegesales@cambridge.org providing details of the course you are teaching.
-
The distinguished mathematician John Conway presents quadratic forms in a pictorial way that enables the reader to understand them mathematically without proving theorems in the traditional fashion. One learns to sense their properties. In his customary enthusiastic style, Conway uses his theme to cast light on all manner of mathematical topics from algebra, number theory and geometry, including many new ideas and features.
Read more- Conway is a very distinguished mathematician and well-known author
- Contains many original insights into the subject
- Can be appreciated without formal mathematical training
Reviews & endorsements
'Absolutely fascinating from beginning to end.' New Scientist
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: August 2015
- format: Paperback
- isbn: 9780883850404
- length: 162 pages
- dimensions: 205 x 140 x 10 mm
- weight: 0.2kg
- contains: 68 b/w illus.
- availability: This item is not supplied by Cambridge University Press in your region. Please contact Mathematical Association of America for availability.
Table of Contents
Preface
1. The first lecture: can you see the values of 2x2 + 6xy – 5y2?
2. Afterthoughts: PSL2(Z) and Farey functions
3. The second lecture: can you hear the shape of a lattice?
4. Afterthoughts: Kneser's gluing method – unimodular lattices
5. The third lecture: ... and can you feel its form?
6. Afterthoughts: feeling the form of a four dimensional lattice
7. The fourth lecture: the primary fragrances
8. Afterthought: more about the invariants – p-adic numbers
9. Postscript: a taste of number theory
Bibliography.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×