Skip to content

Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27.

To place an order, please contact Customer Services.

UK/ROW directcs@cambridge.org +44 (0) 1223 326050 | US customer_service@cambridge.org 1 800 872 7423 or 1 212 337 5000 | Australia/New Zealand enquiries@cambridge.edu.au 61 3 86711400 or 1800 005 210, New Zealand 0800 023 520

Register Sign in Wishlist
Discrete and Continuous Nonlinear Schrödinger Systems

Discrete and Continuous Nonlinear Schrödinger Systems

$102.00 (C)

Part of London Mathematical Society Lecture Note Series

  • Date Published: January 2004
  • availability: Available
  • format: Paperback
  • isbn: 9780521534376

Paperback

Add to wishlist

Other available formats:
eBook


Looking for an examination copy?

This title is not currently available for examination. However, if you are interested in the title for your course we can consider offering an examination copy. To register your interest please contact collegesales@cambridge.org providing details of the course you are teaching.

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Over the past thirty years significant progress has been made in the investigation of nonlinear waves--including "soliton equations", a class of nonlinear wave equations that arise frequently in such areas as nonlinear optics, fluid dynamics, and statistical physics. The broad interest in this field can be traced to understanding "solitons" and the associated development of a method of solution termed the inverse scattering transform (IST). The IST technique applies to continuous and discrete nonlinear Schrödinger (NLS) equations of scalar and vector type. This work presents a detailed mathematical study of the scattering theory, offers soliton solutions, and analyzes both scalar and vector soliton interactions. The authors provide advanced students and researchers with a thorough and self-contained presentation of the IST as applied to nonlinear Schrödinger systems.

    • Solution of class of physically interesting nonlinear Schrödinger (NLS) equations
    • Fills important gap in field literature, covering nonlinear Schrödinger systems and discrete soliton systems in mathematical detail
    • Careful, concrete and systematic analysis of key aspects of NLS vector soliton interactions
    Read more

    Reviews & endorsements

    '… this valuable book provides a detailed and self-contained presentation of an extremely important tool used in the study of NLS systems.' EMS Newsletter

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: January 2004
    • format: Paperback
    • isbn: 9780521534376
    • length: 268 pages
    • dimensions: 224 x 150 x 15 mm
    • weight: 0.4kg
    • availability: Available
  • Table of Contents

    1. Introduction
    2. Nonlinear schrödinger equation (NLS)
    3. Integrable discrete nonlinear schrödinger equation (IDNSL)
    4. Matrix nonlinear Schrödinger equation (MNLS)
    5. Integrable discrete matrix NLS equation (IDMNLS)
    Appendix A. Summation by parts formula
    Appendix B. Transmission of the Jost function through a localized potential
    Appendix C. Scattering theory for the discrete Schrödinger equation
    Appendix D. Nonlinear Schrödinger systems with a potential term
    Appendix E. NLS systems in the limit of large amplitudes.

  • Authors

    M. J. Ablowitz, University of Colorado, Boulder

    B. Prinari, Università degli Studi di Lecce, Italy

    A. D. Trubatch, United States Military Academy

Related Books

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon
×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×