Online ordering will be unavailable from 07:00 GMT to 17:00 GMT on Sunday, June 15.

To place an order, please contact Customer Services.

UK/ROW directcs@cambridge.org +44 (0) 1223 326050 | US customer_service@cambridge.org 1 800 872 7423 or 1 212 337 5000 | Australia/New Zealand enquiries@cambridge.edu.au 61 3 86711400 or 1800 005 210, New Zealand 0800 023 520

Our systems are now restored following recent technical disruption, and we’re working hard to catch up on publishing. We apologise for the inconvenience caused. Find out more

Recommended product

Popular links

Popular links


Theory of Differential Equations

Theory of Differential Equations

Theory of Differential Equations

Ordinary Equations, Not Linear
Volume 2:
Andrew Russell Forsyth
July 2012
2
Available
Paperback
9781107640252

Looking for an examination copy?

This title is not currently available for examination. However, if you are interested in the title for your course we can consider offering an examination copy. To register your interest please contact collegesales@cambridge.org providing details of the course you are teaching.

$52.00
USD
Paperback

    Andrew Russell Forsyth (1858–1942) was an influential Scottish mathematician notable for incorporating the advances of Continental mathematics within the British tradition. Originally published in 1900, this book constitutes the second of six volumes in Forsyth's Theory of Differential Equations series, concentrating specifically on ordinary equations which are not linear. The text contains detailed information on the development of this area and substantial contributions made to it. All sources are quoted in their proper connection and a few fresh investigations are added. Examples are given, where necessary, in order to provide illustrations of various methods. This book will be of value to anyone with an interest in differential equations and the history of mathematics.

    Product details

    July 2012
    Paperback
    9781107640252
    358 pages
    216 × 140 × 20 mm
    0.46kg
    Available

    Table of Contents

    • 1. Introductory
    • 2. Cauchy's theorem on the existence of regular integrals of a system of equations
    • 3. Classes of non-ordinary points connected with the form of the equation of the first order and first degree in the derivative
    • 4. Influence, upon the integral, of an accidental singularity of the first kind possessed by the equation
    • 5. Reduction of the differential equation to final typical forms, valid in the vicinity of an accidental singularity of the second kind
    • 6. The character of the integrals possessed by the respective reduced forms of the original equation in the vicinity of the accidental singularity of the second kind
    • 7. Effect, upon the integral, of essential singularities of the equation
    • 8. Branch-points of an equation of the first order and any degree, as determined by the equation: singular and particular solutions
    • 9. Differential equations of the first order having their integrals free from parametric branch-points
    • 10. Equations of first order with uniform integrals, and with algebraical integrals.
      Author
    • Andrew Russell Forsyth