Skip to content

Online ordering is currently undergoing maintenance. To place orders, please call our customer service team at +61 (03) 8671 1400. We apologize for any inconvenience.

Register Sign in Wishlist
Look Inside Œuvres de Charles Hermite

Œuvres de Charles Hermite

Volume 1

Part of Cambridge Library Collection - Mathematics

  • Date Published: July 2009
  • availability: Available
  • format: Paperback
  • isbn: 9781108003292

Paperback

Add to wishlist

Looking for an inspection copy?

Please email academicmarketing@cambridge.edu.au to enquire about an inspection copy of this book

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Charles Hermite (1822–1901) was a French mathematician who made significant contributions to pure mathematics, and especially to number theory and algebra. In 1858 he solved the equation of the fifth degree by elliptic functions, and in 1873 he proved that e (the base of natural logarithms) is transcendental. The legacy of his work can be shown in the large number of mathematical terms which bear the adjective 'Hermitian'. As a teacher at the École Polytechnique, the Faculté des Sciences de Paris and the École Normale Supérieure he was influential and inspiring to a new generation of scientists in many disciplines. The four volumes of his collected papers were published between 1905 and 1908.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: July 2009
    • format: Paperback
    • isbn: 9781108003292
    • length: 548 pages
    • dimensions: 234 x 156 x 28 mm
    • weight: 0.76kg
    • availability: Available
  • Table of Contents

    Avertissement
    Préface
    1. Lieu géométrique des pôles d'une section conique par rapport à une autre
    2. Considérations sur la résolution algébrique de l'équation du cinquième degré
    3. Extraits de deux lettres de M. Charles Hermite à M. Jacobi
    4. Sur la division des transcendantes à différentialles algébriques
    5. Principaux théorèmes de l'analyse des fonctions elliptiques
    6. Note sur la théorie des fonctions elliptiques
    7. Sur la théorie des fonctions elliptiques
    8. Rapport sur un Mémoire présenté par M. Hermite et relatif aux fonctions à double période
    9. Note sur la réduction des fonctions homogènes à coefficients entiers et à deux indéterminées
    10. Sur la théorie des formes quadratiques ternaires
    11. Lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres
    12. Sur l'introduction des variables continues dans la théorie des nombres
    13. Sur la théorie des formes quadratiques ternaires indéfinies
    14. Sur la théorie des formes quadratique
    15. Sur la théorie des formes quadratique
    16. Note sur un théorème relatif aux nombres entiers
    17. Sur une question relative à la théorie des nombres
    18. Démonstration élémentaire d'une proposition relative aux diviseurs de x² + A y²
    19. Sur les fonctions algébriques
    20. Sur l'extension du théorème de M. Sturm à un système d'équations simultanées
    21. Remarques sur le théorème de M. Sturm
    22. Sur la décomposition d'un nombre en quatre carrés
    23. Remarques sur un mémoire de M. Cayley relatif aux déterminants gauches
    24. Sur la théorie des fonctions homogènes à deux indéterminées, première partie, seconde partie
    25. Sur la théorie des fonctions homogènes à deux indéterminées, premier mémoire
    26. Sur la théorie des fonctions homogènes à deux indéterminées, second mémoire
    27. Sur le nombre des racines d'une équation algébrique comprises entre des limites données
    28. Sur le nombre limité d'irrationnalités auxquelles se réduisent les racines des équations à coefficients entiers complexes d'un degré et d'un discriminant donnés
    29. Sur l'invariablilité du nombre des carrés positifs et des carrés négatifs dans la transformation des polynomes homogènes du second degré
    30. Sur les formes cubiques à deux indéterminées
    31. Lettre à Cayley sur les formes cubiques
    32. Extrait d'une lettre à Sylvester sur les solutions de l'equation ax + by = n
    33. Sur la théorie de la transformation des fonctions abéliennes
    34. Remarkque sur un théorème de Cauchy
    35. Sur quelques formules relatives à la transformation des fonctions elliptiques
    36. Sur quelques formules relatives à la transformation des fonctions elliptiques.

  • Author

    Charles Hermite

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×