We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
References
1
Wang, L.Guiding treatment for carpal tunnel syndrome. Phys Med Rehabil Clin N Am. 2018;29:751–760.CrossRefGoogle ScholarPubMed
2
Wipperman, J, Goerl, K.Carpal tunnel syndrome: Diagnosis and management. Am Fam Physician. 2016;94(12):993–999.Google ScholarPubMed
3
Gillig, JD, White, SD, Rachel, JN. Acute carpal tunnel syndrome. A Review of Current Literature Orthop Clin North Am. 2016;47(3):599–607.CrossRefGoogle ScholarPubMed
4
Weiss, AP, Sachar, K, Gendreau, M.Conservative management of carpal tunnel syndrome: A reexamination of steroid injection and splinting. The Journal of Hand Surgery. 1994;19(3):410–415.CrossRefGoogle ScholarPubMed
5
Huisstede, BM, van den Brink, J, Randsdorp, MS, Geelen, SJ, Koes, BW. Effectiveness of surgical and postsurgical interventions for carpal tunnel syndrome: A systematic review. Arch Phys Med Rehabil. 2018;99(8):1660–1680.CrossRefGoogle ScholarPubMed
6
Ingram, J, Mauck, BM, Thompson, NB, Calandruccio, JH. Cost, value, and patient satisfaction in carpal tunnel surgery. Orthop Clin North Am. 2018;49(4):503–507.CrossRefGoogle ScholarPubMed
7
Padua, L, Coraci, D, Erra, C et al. Carpal tunnel syndrome: Clinical features, diagnosis, and management. Lancet Neurol. 2016;15(12):1273–1284.CrossRefGoogle ScholarPubMed
8
Wipperman, J, Goerl, K.Carpal tunnel syndrome: Diagnosis and management. Am Fam Physician. 2016;94(12):993–999.Google ScholarPubMed
9
Sharma, D, Jaggi, AS, Bali, A.Clinical evidence and mechanisms of growth factors in idiopathic and diabetes-induced carpal tunnel syndrome. Eur J Pharmacol. 2018;837:156–163.CrossRefGoogle ScholarPubMed
10
Minieka, MM, Nishida, T, Benzon, H.Chapter 56 – Entrapment neuropathies. In Honorio T. Benzon, Srinivasa N. Raja, Spencer S. Liu, et al. (eds.). Essentials of Pain Medicine, 3rd ed. Elsevier; 2011. pp. 395–402.CrossRefGoogle Scholar
11
Festen-Schrier, VJMM, Amadio, PC. The biomechanics of subsynovial connective tissue in health and its role in carpal tunnel syndrome. J Electromyogr Kinesiol. 2018;38:232–239.CrossRefGoogle ScholarPubMed
12
Papanas, N, Stamatiou, I, Papachristou, S.Carpal tunnel syndrome in diabetes mellitus. Curr Diabetes Rev. 2022;18(4):e010921196025. doi: 10.2174/1573399817666210901114610.CrossRefGoogle ScholarPubMed
Shiri, R.Arthritis as a risk factor for carpal tunnel syndrome: A meta-analysis. Scand J Rheumatol. 2016;45(5):339–346.CrossRefGoogle ScholarPubMed
15
Hammer, HB, Hovden, IA, Haavardsholm, EA, Kvien, TK. Ultrasonography shows increased cross-sectional area of the median nerve in patients with arthritis and carpal tunnel syndrome. Rheumatology. 2006;45:584–588.CrossRefGoogle ScholarPubMed
16
Karadag, O, Kalyoncu, U, Akdogan, A et al. Sonographic assessment of carpal tunnel syndrome in rheumatoid arthritis: Prevalence and correlation with disease activity. Rheumatol Int. 2012;32:2313–2319.CrossRefGoogle ScholarPubMed
17
Luckhaupt, SE, Dahlhamer, JM, Ward, BW et al. Prevalence and work-relatedness of carpal tunnel syndrome in the working population, United States, 2010 national health interview survey. Am J Ind Med. 2013;56(6):615–624.CrossRefGoogle ScholarPubMed
18
Dale, AM, Harris-Adamson, C, Rempel, D, et al. Prevalence and incidence of carpal tunnel syndrome in US working populations: Pooled analysis of six prospective studies. Scand J Work Env Hea. 2013;39(5):495–505.CrossRefGoogle ScholarPubMed
19
Palmer, KT, Harris, EC, Coggon, D.Carpal tunnel syndrome and its relation to occupation: A systematic literature review. Occup Med (Lond). 2007;57(1):57–66.CrossRefGoogle ScholarPubMed
20
Franklin, GM, Friedman, AS. Work-related carpal tunnel syndrome: Diagnosis and treatment guideline. Phys Med Rehabil Clin N Am. 2015;26(3):523–537.CrossRefGoogle ScholarPubMed
21
Sucher, BM, Schreiber, AL. Carpal tunnel syndrome diagnosis. Phys Med Rehabil Clin N Am. 2014;25(2):229–247.CrossRefGoogle ScholarPubMed
22
Zhang, D, Chruscielski, CM, Blazar, P, Earp, BE. Accuracy of provocative tests for carpal tunnel syndrome. J Hand Surg Glob Online. 2020;2(3):121–125.CrossRefGoogle ScholarPubMed
23
Sasaki, T, Makino, K, Nimura, A et al. Assessment of grip-motion characteristics in carpal tunnel syndrome patients using a novel finger grip dynamometer system. J Orthop Surg Res. 2020;15(1):245.CrossRefGoogle ScholarPubMed
24
Sonoo, M, Menkes, DL, Bland, JDP, Burke, D.Nerve conduction studies and EMG in carpal tunnel syndrome: Do they add value?Clin Neurophysiol Pract. 2018;3:78–88.CrossRefGoogle ScholarPubMed
25
Alanazy, MH. Clinical and electrophysiological evaluation of carpal tunnel syndrome: Approach and pitfalls. Neurosciences (Riyadh). 2017;22(3):169–180.CrossRefGoogle ScholarPubMed
26
Mills, KR. The basics of electromyography. J Neurol Neurosurg Psychiatry. 2005;76(Suppl 2):ii32–ii35.CrossRefGoogle ScholarPubMed
Fowler, JR, Munsch, M, Tosti, R, Hagberg, WC, Imbriglia, JE. Comparison of ultrasound and electrodiagnostic testing for diagnosis of carpal tunnel syndrome: Study using a validated clinical tool as the reference standard. J Bone Joint Surg Am. 2014;96(17):e148.CrossRefGoogle ScholarPubMed
29
Page, MJ, Massy-Westropp, N, O’Connor, D, Pitt, V.Splinting for carpal tunnel syndrome. Cochrane Database Syst Rev. 2012;7:CD010003.Google Scholar
30
Gatheridge, MA, Sholty, EA, Inman, A et al. Splinting in carpal tunnel syndrome: The optimal duration. Mil Med. 2020;185(11–12):e2049–e2054.CrossRefGoogle ScholarPubMed
31
Krause, D, Roll, SC, Javaherian-Dysinger, H, Daher, N.Comparative efficacy of the dorsal application of Kinesio tape and splinting for carpal tunnel syndrome: A randomized controlled trial. J Hand Ther. 2021;34(3):351–361.CrossRefGoogle ScholarPubMed
32
Golriz, B, Ahmadi Bani, M, Arazpour, M et al. Comparison of the efficacy of a neutral wrist splint and a wrist splint incorporating a lumbrical unit for the treatment of patients with carpal tunnel syndrome. Prosthet Orthot Int. 2016;40(5):617–623.CrossRefGoogle Scholar
Ijaz, MJ, Karimi, H, Ahmad, A et al. Comparative efficacy of routine physical therapy with and without neuromobilization in the treatment of patients with mild to moderate carpal tunnel syndrome. Biomed Res Int. 2022; 2022:2155765.CrossRefGoogle ScholarPubMed
35
Wolny, T, Saulicz, E, Linek, P, Shacklock, M, Myśliwiec, A.Efficacy of manual therapy including neurodynamic techniques for the treatment of carpal tunnel syndrome: A randomized controlled trial. J Manipulative Physiol Ther. 2017;40(4):263–272.CrossRefGoogle ScholarPubMed
36
Shem, K, Wong, J, Dirlikov, B.Effective self-stretching of carpal ligament for the treatment of carpal tunnel syndrome: A double-blinded randomized controlled study. J Hand Ther. 2020;33(3):272–280.CrossRefGoogle ScholarPubMed
37
Hamzeh, H, Madi, M, Alghwiri, AA, Hawamdeh, Z.The long-term effect of neurodynamics vs exercise therapy on pain and function in people with carpal tunnel syndrome: A randomized parallel-group clinical trial. J Hand Ther. 2021;34(4):521–530.CrossRefGoogle ScholarPubMed
38
Lewis, KJ, Coppieters, MW, Ross, L et al. Group education, night splinting and home exercises reduce conversion to surgery for carpal tunnel syndrome: A multicentre randomised trial. J Physiother. 2020;66(2):97–104.CrossRefGoogle ScholarPubMed
39
Horng, YS, Hsieh, SF, Tu, YK et al. The comparative effectiveness of tendon and nerve gliding exercises in patients with carpal tunnel syndrome: A randomized trial. Am J Phys Med Rehabil. 2011;90(6):435–442.CrossRefGoogle ScholarPubMed
40
Paquette, P, Higgins, J, Danino, MA, Harris, P, Lamontagne, M, Gagnon, DH. Effects of a preoperative neuromobilization program offered to individuals with carpal tunnel syndrome awaiting carpal tunnel decompression surgery: A pilot randomized controlled study. J Hand Ther2021;34(1):37–46.CrossRefGoogle ScholarPubMed
41
Huisstede, BM, Hoogvliet, P, Randsdorp, MS et al. Carpal tunnel syndrome: Part I: Effectiveness of nonsurgical treatments – a systematic review. Arch Phys Med Rehabil. 2010;91(7):981–1004.CrossRefGoogle ScholarPubMed
Gesslbauer, C, Mickel, M, Schuhfried, O et al. Effectiveness of focused extracorporeal shock wave therapy in the treatment of carpal tunnel syndrome: A randomized, placebo-controlled pilot study. Wien Klin Wochenschr. 2021;133(11–12):568–577.CrossRefGoogle ScholarPubMed
44
Wu, YT, Ke, MJ, Chou, YC et al. Effect of radial shock wave therapy for carpal tunnel syndrome: A prospective randomized, double-blind, placebo-controlled trial. J Orthop Res. 2016;34(6):977–984.CrossRefGoogle ScholarPubMed
45
Paoloni, M, Tavernese, E, Cacchio, A et al. Extracorporeal shock wave therapy and ultrasound therapy improve pain and function in patients with carpal tunnel syndrome: A randomized controlled trial. Eur J Phys Rehabil Med. 2015;51(5):521–528.Google ScholarPubMed
46
Ke, MJ, Chen, LC, Chou, YC et al. The dose-dependent efficiency of radial shock wave therapy for patients with carpal tunnel syndrome: A prospective, randomized, single-blind, placebo-controlled trial. Sci Rep. 2016;6:38344.CrossRefGoogle ScholarPubMed
47
Atthakomol, P, Manosroi, W, Phanphaisarn, A et al. Comparison of single-dose radial extracorporeal shock wave and local corticosteroid injection for treatment of carpal tunnel syndrome including mid-term efficacy: A prospective randomized controlled trial. BMC Musculoskelet Disord. 2018;19(1):32.CrossRefGoogle ScholarPubMed
48
Seok, H, Kim, SH. The effectiveness of extracorporeal shock wave therapy vs. local steroid injection for management of carpal tunnel syndrome: A randomized controlled trial. Am J Phys Med Rehabil. 2013;92(4):327–334.CrossRefGoogle ScholarPubMed
49
Habibzadeh, A, Mousavi-Khatir, R, Saadat, P, Javadian, Y.The effect of radial shockwave on the median nerve pathway in patients with mild-to-moderate carpal tunnel syndrome: A randomized clinical trial. J Orthop Surg Res. 2022;17(1):46.CrossRefGoogle ScholarPubMed
Atroshi, I, Flondell, M, Hofer, M, Ranstam, J.Methylprednisolone injections for the carpal tunnel syndrome: A randomized, placebo-controlled trial. Ann Intern Med. 2013;159(5):309–317.CrossRefGoogle ScholarPubMed
52
Karadaş, Ö, Tok, F, Akarsu, S, Tekin, L, Balaban, B.Triamcinolone acetonide vs procaine hydrochloride injection in the management of carpal tunnel syndrome: Randomized placebo-controlled study. J Rehabil Med. 2012;44(7):601–604.CrossRefGoogle ScholarPubMed
53
Peters-Veluthamaningal, C, Winters, JC, Groenier, KH, Meyboom-de Jong, B.Randomised controlled trial of local corticosteroid injections for carpal tunnel syndrome in general practice. BMC Fam Pract. 2010;11:54.CrossRefGoogle ScholarPubMed
54
So, H, Chung, VCH, Cheng, JCK, Yip, RML. Local steroid injection versus wrist splinting for carpal tunnel syndrome: A randomized clinical trial. Int J Rheum Dis. 2018;21(1):102–107.CrossRefGoogle ScholarPubMed
55
Evers, S, Bryan, AJ, Sanders, TL et al. Corticosteroid injections for carpal tunnel syndrome: Long-term follow-up in a population-based cohort. Plast Reconstr Surg. 2017;140(2):338–347.CrossRefGoogle Scholar
56
Guo, XY, Xiong, MX, Zhao, Y et al. Comparison of the clinical effectiveness of ultrasound-guided corticosteroid injection with and without needle release of the transverse carpal ligament in carpal tunnel syndrome. Eur Neurol. 2017;78(1–2):33–40.CrossRefGoogle ScholarPubMed
57
Racasan, O, Dubert, T.The safest location for steroid injection in the treatment of carpal tunnel syndrome. J Hand Surg Br. 2005;30(4):412–414.CrossRefGoogle ScholarPubMed
58
Green, DP, MacKay, BJ, Seiler, SJ, Fry, MT. Accuracy of carpal tunnel injection: A prospective evaluation of 756 patients. Hand (N Y), 2020;15(1):54–58.CrossRefGoogle ScholarPubMed
59
Babaei-Ghazani, A, Roomizadeh, P, Forogh, B et al. Ultrasound-guided versus landmark-guided local corticosteroid injection for carpal tunnel syndrome: A systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2018;99(4):766–775.CrossRefGoogle ScholarPubMed
60
Lee, JY, Park, Y, Park, KD, Lee, JK, Lim, OK. Effectiveness of ultrasound-guided carpal tunnel injection using in-plane ulnar approach: A prospective, randomized, single-blinded study. Medicine (Baltimore). 2014;93(29):e350.CrossRefGoogle ScholarPubMed
61
Malahias, MA, Chytas, D, Mavrogenis, AF et al. Platelet-rich plasma injections for carpal tunnel syndrome: A systematic and comprehensive review. Eur J Orthop Surg Traumatol. 2019;29(1):1–8.CrossRefGoogle ScholarPubMed
62
Catapano, M, Catapano, J, Borschel, G et al. Effectiveness of platelet-rich plasma injections for nonsurgical management of carpal tunnel syndrome: A systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2020;101(5):897–906.CrossRefGoogle ScholarPubMed
63
Rankin, IA, Sargeant, H, Rehman, H, Gurusamy, KS. Low‐level laser therapy for carpal tunnel syndrome. Cochrane Database Syst. Rev.2017;8(8):CD012765.Google ScholarPubMed
64
Scholten, RJPM, Mink van der Molen, A, Uitdehaag, BMJ, Bouter, LM, de Vet, HCW. Surgical treatment options for carpal tunnel syndrome. Cochrane Database Syst. Rev.2007;(4):CD003905. doi: 10.1002/14651858.CD003905.pub3.Google ScholarPubMed
Neviaser, AS, Neviaser, RJ. Adhesive capsulitis of the shoulder. J Am Acad Orthop Surg. 2011;19(9):536–542.CrossRefGoogle ScholarPubMed
2
Tighe, CB, Oakley, WS Jr. The prevalence of a diabetic condition and adhesive capsulitis of the shoulder. South Med J. 2008;101(6):591–595.CrossRefGoogle ScholarPubMed
3
Milgrom, C, Novack, V, Weil, Y et al. Risk factors for idiopathic frozen shoulder. Isr Med Assoc J. 2008;10(5):361–364.Google ScholarPubMed
4
Kelley, MJ, Shaffer, MA, Kuhn, JE et al. Shoulder pain and mobility deficits: Adhesive capsulitis. J Orthop Sports Phys Ther. 2013;43(5):A1–31.CrossRefGoogle ScholarPubMed
5
Rundquist, PJ, Anderson, DD, Guanche, CA, Ludewig, PM. Shoulder kinematics in subjects with frozen shoulder. Arch Phys Med Rehabil. 2003;84(10):1473–1479.CrossRefGoogle ScholarPubMed
6
Ewald, A.Adhesive capsulitis: A review. Am Fam Physician. 2011;83(4):417–422.Google ScholarPubMed
7
Rangan, A, Hanchard, N, McDaid, C.What is the most effective treatment for frozen shoulder?BMJ. 2016;354:i4162.CrossRefGoogle ScholarPubMed
Huang, SW, Lin, JW, Wang, WT et al. Hyperthyroidism is a risk factor for developing adhesive capsulitis of the shoulder: A nationwide longitudinal population-based study. Sci Rep. 2014;4:4183.CrossRefGoogle ScholarPubMed
11
Smith, SP, Devaraj, VS, Bunker, TD. The association between frozen shoulder and Dupuytren’s disease. J Shoulder Elbow Surg. 2001;10(2):149–151.CrossRefGoogle ScholarPubMed
12
Yang, S, Park, DH, Ahn, SH et al. Prevalence and risk factors of adhesive capsulitis of the shoulder after breast cancer treatment. Support Care Cancer. 2017;25(4):1317–1322.CrossRefGoogle ScholarPubMed
13
Lo, SF, Chu, SW, Muo, CH et al. Diabetes mellitus and accompanying hyperlipidemia are independent risk factors for adhesive capsulitis: A nationwide population-based cohort study (version 2). Rheumatol Int. 2014;34(1):67–74.CrossRefGoogle ScholarPubMed
14
Ryan, V, Brown, H, Minns Lowe, CJ, Lewis, JS. The pathophysiology associated with primary (idiopathic) frozen shoulder: A systematic review. BMC Musculoskelet Disord. 2016;17(1):340.CrossRefGoogle ScholarPubMed
15
Lho, YM, Ha, E, Cho, CH et al. Inflammatory cytokines are overexpressed in the subacromial bursa of frozen shoulder. J Shoulder Elbow Surg. 2013;22(5):666–672.CrossRefGoogle ScholarPubMed
16
Hagiwara, Y, Mori, M, Kanazawa, K et al. Comparative proteome analysis of the capsule from patients with frozen shoulder. J Shoulder Elbow Surg. 2018;27(10):1770–1778.CrossRefGoogle ScholarPubMed
17
Fields, BKK, Skalski, MR, Patel, DB et al. Adhesive capsulitis: Review of imaging findings, pathophysiology, clinical presentation, and treatment options. Skeletal Radiol. 2019;48(8):1171–1184.CrossRefGoogle ScholarPubMed
18
Whelton, C, Peach, CA. Review of diabetic frozen shoulder. Eur J Orthop Surg Traumatol. 2018;28(3):363–371.CrossRefGoogle ScholarPubMed
19
Wong, CK, Levine, WN, Deo, K et al. Natural history of frozen shoulder: Fact or fiction? A systematic review. Physio. 2017;103(1):40–47.Google ScholarPubMed
20
Kim, SJ, Gee, AO, Hwang, JM, Kwon, JY. Determination of steroid injection sites using lidocaine test in adhesive capsulitis: A prospective randomized clinical trial. J Clin Ultrasound. 2015;43(6):353–360.CrossRefGoogle ScholarPubMed
21
Bak, K, Sørensen, AK, Jørgensen, U et al. The value of clinical tests in acute full-thickness tears of the supraspinatus tendon: Does a subacromial lidocaine injection help in the clinical diagnosis? A prospective study. Arthrosc. 2010;26(6):734–742.CrossRefGoogle ScholarPubMed
22
Tandon, A, Dewan, S, Bhatt, S, Jain, AK, Kumari, R.Sonography in diagnosis of adhesive capsulitis of the shoulder: A case-control study. J Ultrasound. 2017;20(3):227–236.CrossRefGoogle ScholarPubMed
23
Page, MJ, Green, S, Kramer, S et al. Manual therapy and exercise for adhesive capsulitis (frozen shoulder). Cochrane Database Syst. Rev.2014;8:CD011275.Google Scholar
24
Nakandala, P, Nanayakkara, I, Wadugodapitiya, S, Gawarammana, I.The efficacy of physiotherapy interventions in the treatment of adhesive capsulitis: A systematic review. J Back Musculoskelet Rehabil. 2021;34(2):195–205.CrossRefGoogle ScholarPubMed
25
Noten, S, Meeus, M, Stassijns, G et al. Efficacy of different types of mobilization techniques in patients with primary adhesive capsulitis of the shoulder: A systematic review. Arch Phys Med Rehabil. 2016;97(5):815–825.CrossRefGoogle ScholarPubMed
26
Mertens, MG, Meert, L, Struyf, F, Schwank, A, Meeus, M.Exercise therapy is effective for improvement in range of motion, function, and pain in patients with Frozen shoulder: A systematic review and meta-analysis. Arch Phys Med Rehabil. 2022;103(5):998–1012.CrossRefGoogle ScholarPubMed
27
Costantino, C, Nuresi, C, Ammendolia, A, Ape, L, Frizziero, A.Rehabilitative treatments in adhesive capsulitis: A systematic review. J Sports Med Phys Fitness. 2022;62(11):1505–1511. doi: 10.23736/S0022-4707.22.13054-9.CrossRefGoogle ScholarPubMed
28
Tedla, JS, Sangadala, DR. Proprioceptive neuromuscular facilitation techniques in adhesive capsulitis: A systematic review and meta-analysis. J Musculoskelet Neuronal Interact. 2019;19(4):482–491.Google ScholarPubMed
van der Windt, DA, van der Heijden, GJ, Scholten, RJ, Koes, BW, Bouter, LM. The efficacy of non-steroidal anti-inflammatory drugs (NSAIDS) for shoulder complaints. A systematic review. J Clin Epidemiol. 1995;48(5):691–704.CrossRefGoogle ScholarPubMed
31
Hsu, JE, Anakwenze, OA, Warrender, WJ, Abboud, JA. Current review of adhesive capsulitis. J Shoulder Elbow Surg. 2011;20(3):502–514.CrossRefGoogle ScholarPubMed
32
Neviaser, AS, Hannafin, JA. Adhesive capsulitis: A review of current treatment. Am J Sports Med. 2010;38(11):2346–2356.CrossRefGoogle ScholarPubMed
33
Georgiannos, D, Markopoulos, G, Devetzi, E, Bisbinas, I.Adhesive capsulitis of the shoulder: Is there consensus regarding the treatment? A comprehensive review. Open Orthop J. 2017;11:65–76.CrossRefGoogle ScholarPubMed
34
Song, A, Higgins, LD, Newman, J, Jain, NB. Glenohumeral corticosteroid injections in adhesive capsulitis: A systematic search and review. PM R. 2014;6(12):1143–1156.CrossRefGoogle ScholarPubMed
35
Griesser, MJ, Harris, JD, Campbell, JE, Jones, GL. Adhesive capsulitis of the shoulder: A systematic review of the effectiveness of intra-articular corticosteroid injections. J Bone Joint Surg Am2011;93(18):1727–1733.CrossRefGoogle ScholarPubMed
36
Wang, W, Shi, M, Zhou, C et al. Effectiveness of corticosteroid injections in adhesive capsulitis of shoulder: A meta-analysis. Medicine (Baltimore)2017;96(28):e7529.CrossRefGoogle ScholarPubMed
37
Xiao, RC, Walley, KC, DeAngelis, JP, Ramappa, AJ. Corticosteroid injections for adhesive capsulitis: A review. Clin J Sport Med. 2017;27(3):308–320.CrossRefGoogle ScholarPubMed
38
Koh, KH. Corticosteroid injection for adhesive capsulitis in primary care: A systematic review of randomised clinical trials. Singapore Med J2016;57(12):646–657.CrossRefGoogle ScholarPubMed
39
Hettrich, CM, DiCarlo, EF, Faryniarz, D et al. The effect of myofibroblasts and corticosteroid injections in adhesive capsulitis. J Shoulder Elbow Surg. 2016;25(8):1274–1279.CrossRefGoogle ScholarPubMed
40
Shang, X, Zhang, Z, Pan, X, Li, J, Li, Q. Intra-articular versus subacromial corticosteroid injection for the treatment of adhesive capsulitis: A meta-analysis and systematic review. Biomed Res Int.2019;1274790. doi: 10.1155/2019/1274790. PMID: 31737653CrossRefGoogle Scholar
41
Blanchard, V, Barr, S, Cerisola, FL. The effectiveness of corticosteroid injections compared with physiotherapeutic interventions for adhesive capsulitis: A systematic review. Physiotherapy2010;96(2):95–107.CrossRefGoogle ScholarPubMed
42
Widiastuti-Samekto, M, Sianturi, GP. Frozen shoulder syndrome: Comparison of oral route corticosteroid and intra-articular corticosteroid injection. Med J Malaysia. 2004;59(3):312–316.Google ScholarPubMed
43
Zadro, J, Rischin, A, Johnston, RV, Buchbinder, R.Image-guided glucocorticoid injection versus injection without image guidance for shoulder pain. Cochrane Database Syst Rev. 2021;8(8):CD009147.Google ScholarPubMed
44
Harris, JD, Griesser, MJ, Copelan, A, Jones, GL. Treatment of adhesive capsulitis with intra-articular hyaluronate: A systematic review. Int J Shoulder Surg. 2011;5(2):31–37.CrossRefGoogle ScholarPubMed
45
Papalia, R, Tecame, A, Vadalà, G et al. The use of hyaluronic acid in the treatment of shoulder capsulitis: A systematic review. J Biol Regul Homeost Agents. 2017;31(4 Suppl 2):23–32.Google ScholarPubMed
46
Lim, TK, Koh, KH, Shon, MS et al. Intra-articular injection of hyaluronate versus corticosteroid in adhesive capsulitis. Orthopedics. 2014;37(10):860–865.CrossRefGoogle ScholarPubMed
47
Khenioui, H, Houvenagel, E, Catanzariti, JF et al. Usefulness of intra-articular botulinum toxin injections: A systematic review. Jt Bone Spine. 2016;83(2):149–154.CrossRefGoogle ScholarPubMed
Ozkan, K, Ozcekic, AN, Sarar, S et al. Suprascapular nerve block for the treatment of frozen shoulder. Saudi J Anaesth. 2012;6(1):52–55.Google ScholarPubMed
50
Klç, Z, Filiz, MB, Çakr, T, Toraman, NF. Addition of suprascapular nerve block to a physical therapy program produces an extra benefit to adhesive capsulitis: A randomized controlled trial. Am J Phys Med Rehabil. 2015;94(10 Suppl 1):912–920.CrossRefGoogle ScholarPubMed
51
Sonune, SP, Gaur, AK, Gupta, S.Comparative study of ultrasound guided supra-scapular nerve block versus intra-articular steroid injection in frozen shoulder. Int J Res Orthop. 2016;2(4):387.CrossRefGoogle Scholar
52
Jung, TW, Lee, SY, Min, SK, Lee, SM, Yoo, JC. Does Combining a Suprascapular Nerve Block With an Intra-articular Corticosteroid Injection Have an Additive Effect in the Treatment of Adhesive Capsulitis? A Comparison of Functional Outcomes After Short-term and Minimum 1-Year Follow-up. Orthop J Sports Med. 2019;7(7):2325967119859277.CrossRefGoogle ScholarPubMed
53
Kraal, T, Beimers, L, The, B et al. Manipulation under anaesthesia for frozen shoulders: Outdated technique or well-established quick fix?EFORT Open Rev. 2019;4(3):98–109.CrossRefGoogle ScholarPubMed
54
Vastamäki, H, Varjonen, L, Vastamäki, M.Optimal time for manipulation of frozen shoulder may be between 6 and 9 months. Scand J Surg. 2015;104(4):260–266.CrossRefGoogle ScholarPubMed
55
Jacobs, LG, Smith, MG, Khan, SA, Smith, K, Joshi, M.Manipulation or intra-articular steroids in the management of adhesive capsulitis of the shoulder? A prospective randomized trial. J Shoulder Elbow Surg. 2009;18(3):348–353.CrossRefGoogle ScholarPubMed
56
Ranalletta, M, Rossi, LA, Zaidenberg, EE et al. Midterm outcomes after arthroscopic anteroinferior capsular release for the treatment of Idiophatic Adhesive Capsulitis. Arthrosc. 2017;33(3):503–508.CrossRefGoogle ScholarPubMed
Mubark, IM, Ragab, AH, Nagi, AA, Motawea, BA. Evaluation of the results of management of frozen shoulder using the arthroscopic capsular release. Ortop Traumatol Rehabil. 2015;17(1):21–28.CrossRefGoogle ScholarPubMed
60
Smith, CD, Hamer, P, Bunker, TD. Arthroscopic capsular release for idiopathic frozen shoulder with intra-articular injection and a controlled manipulation. Ann R Coll Surg Engl. 2014;96(1):55–60.CrossRefGoogle Scholar
References
1
Jones, MR, Prabhakar, A, Viswanath, O et al. Thoracic outlet syndrome: A comprehensive review of pathophysiology, diagnosis, and treatment. Pain Ther. 2022;8:5–18. https://doi.org/10.6084/.CrossRefGoogle Scholar
Abdolrazaghi, H, Riyahi, A, Taghavi, M, Farshidmehr, P, Mohammadbeigi, A.Concomitant neurogenic and vascular thoracic outlet syndrome due to multiple exostoses. Ann Card Anaesth. 2018;21(1):71–73. https://pubmed.ncbi.nlm.nih.gov/29336398/.Google ScholarPubMed
Jordan, JM, Helmick, CG, Renner, JB et al. Prevalence of hip symptoms and radiographic and symptomatic hip osteoarthritis in African Americans and Caucasians: The Johnston County osteoarthritis project. J Rheumatol. 2009;36(4):809–815.CrossRefGoogle ScholarPubMed
2
Long, H, Liu, Q, Yin, H, et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: Findings from the global burden of disease study 2019.Arthritis Rheumatol. 2022;74(7):1172–1183. doi: 10.1002/art.42089.CrossRefGoogle ScholarPubMed
3
Johnson, VL, Hunter, DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 2014;28(1):5–15.CrossRefGoogle ScholarPubMed
4
Loeser, RF. The role of aging in the development of osteoarthritis. Trans Am Clin Climatol Assoc. 2017;128:44–54.Google ScholarPubMed
5
Katz, JN, Arant, KR, Loeser, RF. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA. 2021;325(6):568–578.CrossRefGoogle ScholarPubMed
6
Kim, C, Linsenmeyer, KD, Vlad, SC et al. Prevalence of radiographic and symptomatic hip osteoarthritis in an urban United States community: The Framingham osteoarthritis study. Arthritis Rheumatol. 2014;66(11):3013–3017.CrossRefGoogle Scholar
7
Spector, TD, MacGregor, AJ. Risk factors for osteoarthritis: Genetics. Osteoarthritis Cartilage. 2004;12(Suppl A):S39–S44.CrossRefGoogle ScholarPubMed
8
Chen, D, Shen, J, Zhao, W et al. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5:16044. doi: 10.1038/boneres.2016.44.CrossRefGoogle Scholar
9
Urits, I, Orhurhu, V, Powell, J et al. Minimally invasive therapies for osteoarthritic hip pain: A comprehensive review. Curr Pain Headache Rep. 2020;24(7):37. doi: 10.1007/s11916-020-00874-8.CrossRefGoogle ScholarPubMed
10
Bannuru, RR, Osani, MC, Vaysbrot, EE et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage. 2019;27(11):1578–1589.CrossRefGoogle ScholarPubMed
11
Robson, EK, Hodder, RK, Kamper, SJ et al. Effectiveness of weight-loss interventions for reducing pain and disability in people with common musculoskeletal disorders: A systematic review with meta-analysis. J Orthop Sports Phys Ther. 2020;50(6):319–333.CrossRefGoogle ScholarPubMed
12
Daugaard, CL, Hangaard, S, Bartels, EM et al. The effects of weight loss on imaging outcomes in osteoarthritis of the hip or knee in people who are overweight or obese: A systematic review. Osteoarthritis Cartilage. 2020;28(1):10–21.CrossRefGoogle ScholarPubMed
13
Gill, RS, Al-Adra, DP, Shi, X et al. The benefits of bariatric surgery in obese patients with hip and knee osteoarthritis: A systematic review. Obes Rev. 2011;12(12):1083–1089.CrossRefGoogle ScholarPubMed
14
Hurley, M, Dickson, K, Hallett, R et al. Exercise interventions and patient beliefs for people with hip, knee or hip and knee osteoarthritis: A mixed methods review. Cochrane Database Syst Rev. 2018;4(4):CD010842.Google ScholarPubMed
15
Bartels, EM, Juhl, CB, Christensen, R et al. Aquatic exercise for the treatment of knee and hip osteoarthritis. Cochrane Database Syst Rev. 2016;3:CD005523.Google ScholarPubMed
16
Fransen, M, McConnell, S, Hernandez-Molina, G, Reichenbach, S.Exercise for osteoarthritis of the hip. Cochrane Database Syst Rev. 2014;(4):CD007912. doi: 10.1002/14651858.CD007912.pub2.Google ScholarPubMed
17
Puljak, L, Marin, A, Vrdoljak, D et al. Celecoxib for osteoarthritis. Cochrane Database Syst Rev. 2017;5(5):CD009865.Google ScholarPubMed
18
Towheed, TE, Maxwell, L, Judd, MG et al. Acetaminophen for osteoarthritis. Cochrane Database Syst Rev. 2006;(1):CD004257. doi: 10.1002/14651858.CD004257.pub2.Google ScholarPubMed
19
Toupin April, K, Bisaillon, J, Welch, V et al. Tramadol for osteoarthritis. Cochrane Database Syst Rev. 2019;5(5):CD005522.Google ScholarPubMed
20
da Costa, BR, Nüesch, E, Kasteler, R et al. Oral or transdermal opioids for osteoarthritis of the knee or hip. Cochrane Database Syst Rev. 2014;(9):CD003115. doi: 10.1002/14651858.CD003115.pub4.Google ScholarPubMed
Zhong, HM, Zhao, GF, Lin, T et al. Intra-articular steroid injection for patients with hip osteoarthritis: A systematic review and meta-analysis. Biomed Res Int. 2020;2020:6320154. doi: 10.1155/2020/6320154.CrossRefGoogle ScholarPubMed
24
McCabe, PS, Maricar, N, Parkes, MJ, Felson, DT, O’Neill, TW. The efficacy of intra-articular steroids in hip osteoarthritis: A systematic review. Osteoarthritis Cartilage. 2016;24(9):1509–1517.CrossRefGoogle ScholarPubMed
25
Kanthawang, T, Lee, A, Baal, JD et al. Predicting outcomes in patients undergoing intra-articular corticosteroid hip injections. Skeletal Radiol. 2021;50(7):1347–1357.CrossRefGoogle ScholarPubMed
26
Kruse, DW. Intraarticular cortisone injection for osteoarthritis of the hip. Is it effective? Is it safe?Curr Rev Musculoskelet Med. 2008;1(3–4):227–233.CrossRefGoogle ScholarPubMed
27
Ravi, B, Escott, BG, Wasserstein, D et al. Intraarticular hip injection and early revision surgery following total hip arthroplasty: A retrospective cohort study. Arthritis Rheumatol. 2015;67(1):162–168.CrossRefGoogle ScholarPubMed
28
Schairer, WW, Nwachukwu, BU, Mayman, DJ, Lyman, S, Jerabek, SA. Preoperative hip injections increase the rate of periprosthetic infection after total hip arthroplasty. J Arthroplasty. 2016;31(Suppl 9):166–169.CrossRefGoogle ScholarPubMed
29
Chambers, AW, Lacy, KW, Liow, MHL et al. Multiple hip intra-articular steroid injections increase risk of periprosthetic joint infection compared with single injections. J Arthroplast. 2017;32(6):1980–1983.CrossRefGoogle ScholarPubMed
30
Ebad Ali, SM, Farooqui, SF, Sahito, B et al. Clinical outcomes of intra-articular high molecular weight hyaluronic acid injection for hip osteoarthritis: A systematic review and meta-analysis. J Ayub Med Coll Abbottabad. 2021;33(2):315–321.Google ScholarPubMed
31
Gazendam, A, Ekhtiari, S, Bozzo, A, Phillips, M, Bhandari, M.Intra-articular saline injection is as effective as corticosteroids, platelet-rich plasma and hyaluronic acid for hip osteoarthritis pain: A systematic review and network meta-analysis of randomised controlled trials. Br J Sports Med. 2021;55(5):256–261.CrossRefGoogle Scholar
32
Belk, JW, Houck, DA, Littlefield, CP et al. Platelet-rich plasma versus hyaluronic acid for hip osteoarthritis yields similarly beneficial short-term clinical outcomes: A systematic review and meta-analysis of level I and II randomized controlled trials. Arthroscopy. 2022;38(6):2035–2046.CrossRefGoogle Scholar
33
Vilabril, F, Rocha-Melo, J, Gonçalves, JV, Vilaça-Costa, J, Brito, I.Hip osteoarthritis treatment with intra-articular injections: Hyaluronic acid versus glucocorticoid: A systematic review. Acta Reumatol Port. 2020;45(2):127–136.Google ScholarPubMed
34
Mardones, R, Jofré, CM, Tobar, L, Minguell, JJ. Mesenchymal stem cell therapy in the treatment of hip osteoarthritis. J Hip Preserv Surg. 2017;4(2):159–163.CrossRefGoogle ScholarPubMed
35
McIntyre, JA, Jones, IA, Han, B, Vangsness, CT. Intra-articular Mesenchymal stem cell therapy for the human joint: A systematic review. Am J Sports Med. 2018;46(14):3550–3563.CrossRefGoogle ScholarPubMed
36
Rodriguez-Fontan, F, Piuzzi, NS, Kraeutler, MJ, Pascual-Garrido, C.Early clinical outcomes of intra-articular injections of bone marrow aspirate concentrate for the treatment of early osteoarthritis of the hip and knee: A cohort study. PM&R. 2018;10(12):1353–1359.Google ScholarPubMed
37
Darrow, M, Shaw, B, Darrow, B, Wisz, S.Short-term outcomes of treatment of hip osteoarthritis with 4 bone marrow concentrate injections: A case series. Clin Med Insights Case Rep. 2018;11:1–4.CrossRefGoogle ScholarPubMed
References
1
Dillon, CF, Rasch, EK, Gu, Q, Hirsch, R.Prevalence of knee osteoarthritis in the United States: Arthritis data from the Third National Health and Nutrition Examination Survey 1991–94. J Rheumatol. 2006;33(11):2271–2279.Google ScholarPubMed
2
Federal Interagency Forum on Aging-Related Statistics. Older Americans 2016: Key indicators of well-being. US Government Printing Office; 2016.Google Scholar
3
Felson, DT, Niu, J, Clancy, M et al. Effect of recreational physical activities on the development of knee osteoarthritis in older adults of different weights: The Framingham study. Arthritis Rheum. 2007;57:6–12.CrossRefGoogle ScholarPubMed
4
Barbour, KE, Hootman, JM, Helmick, CG et al. Meeting physical activity guidelines and the risk of incident knee osteoarthritis: A population-based prospective cohort study. Arthritis Care Res (Hoboken). 2014;66:139–146.CrossRefGoogle ScholarPubMed
5
Mora, JC, Przkora, R, Cruz-Almeida, Y.Knee osteoarthritis: Pathophysiology and current treatment modalities. J Pain Res. 2018;11:2189–2196.CrossRefGoogle ScholarPubMed
6
Heidari, B.Knee osteoarthritis diagnosis, treatment and associated factors of progression: Part II. Caspian J Intern Med. 2011;2(3):249–255.Google ScholarPubMed
7
Cui, A, Li, H, Wang, D et al. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine. 2020;29–30:100587. doi: 10.1016/j.eclinm.2020.100587.CrossRefGoogle ScholarPubMed
8
Chen, D, Shen, J, Zhao, W et al. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5:16044. doi: 10.1038/boneres.2016.44.CrossRefGoogle Scholar
9
Zhang, W, Doherty, M, Peat, G et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis. 2010;69(3):483–489.CrossRefGoogle ScholarPubMed
10
Webb, EJ, Osmotherly, PG, Baines, SK. Effect of dietary weight loss and macronutrient intake on body composition and physical function in adults with knee osteoarthritis: A systematic review. J Nutr Gerontol Geriatr. 2022;41(2):103–125.CrossRefGoogle ScholarPubMed
11
Robson, EK, Hodder, RK, Kamper, SJ et al. Effectiveness of weight-loss interventions for reducing pain and disability in people with common musculoskeletal disorders: A systematic review with meta-analysis. J Orthop Sports Phys Ther. 2020;50(6):319–333.CrossRefGoogle ScholarPubMed
12
Landsmeer, MLA, de Vos, BC, van der Plas, P et al. Effect of weight change on progression of knee OA structural features assessed by MRI in overweight and obese women. Osteoarthritis Cartilage. 2018;26(12):1666–1674.CrossRefGoogle ScholarPubMed
13
Goh, SL, Persson, MSM, Stocks, J et al. Efficacy and potential determinants of exercise therapy in knee and hip osteoarthritis: A systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(5):356–365.CrossRefGoogle ScholarPubMed
14
Raposo, F, Ramos, M, Lúcia Cruz, A.Effects of exercise on knee osteoarthritis: A systematic review. Musculoskeletal Care. 2021;19(4):399–435.CrossRefGoogle ScholarPubMed
15
Fransen, M, McConnell, S, Harmer, AR et al. Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev. 2015;1:CD004376.Google ScholarPubMed
16
Puljak, L, Marin, A, Vrdoljak, D et al. Celecoxib for osteoarthritis. Cochrane Database Syst Rev. 2017;5(5):CD009865.Google ScholarPubMed
17
Towheed, TE, Maxwell, L, Judd, MG et al. Acetaminophen for osteoarthritis. Cochrane Database Syst Rev. 2006;(1):CD004257. doi: 10.1002/14651858.CD004257.pub2.Google ScholarPubMed
18
Toupin April, K, Bisaillon, J, Welch, V et al. Tramadol for osteoarthritis. Cochrane Database Syst Rev. 2019;5(5):CD005522.Google ScholarPubMed
19
da Costa, BR, Nüesch, E, Kasteler, R et al. Oral or transdermal opioids for osteoarthritis of the knee or hip. Cochrane Database Syst Rev. 2014;(9):CD003115. doi: 10.1002/14651858.CD003115.pub4.Google ScholarPubMed
Jüni, P, Hari, R, Rutjes, AW et al. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev. 2015;(10):CD005328. doi: 10.1002/14651858.CD005328.pub3.Google ScholarPubMed
23
McAlindon, TE, LaValley, MP, Harvey, WF et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: A randomized clinical trial. JAMA. 2017;317:1967–1975.CrossRefGoogle ScholarPubMed
24
McLarnon, M, Heron, N.Intra-articular platelet-rich plasma injections versus intra-articular corticosteroid injections for symptomatic management of knee osteoarthritis: Systematic review and meta-analysis. BMC Musculoskelet Disord. 2021;22(1):550. doi: 10.1186/s12891-021-04308-3.CrossRefGoogle ScholarPubMed
25
Meheux, CJ, McCulloch, PC, Lintner, DM, Varner, KE, Harris, JD. Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: A systematic review. Arthroscopy. 2016;32(3):495–505.CrossRefGoogle ScholarPubMed
26
Bellamy, N, Campbell, J, Robinson, V et al. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;(2):CD005321. doi: 10.1002/14651858.CD005321.pub2.Google ScholarPubMed
27
Richette, P, Chevalier, X, Ea, HK et al. Hyaluronan for knee osteoarthritis: An updated meta-analysis of trials with low risk of bias. RMD Open. 2015;1(1):e000071.CrossRefGoogle ScholarPubMed
28
Xing, D, Wang, B, Liu, Q et al. Intra-articular hyaluronic acid in treating knee osteoarthritis: A PRISMA-compliant systematic review of overlapping meta-analysis. Sci Rep. 2016;6:32790. doi: 10.1038/srep32790.CrossRefGoogle ScholarPubMed
29
Peck, J, Slovek, A, Miro, P et al. A comprehensive review of viscosupplementation in osteoarthritis of the knee. Orthop Rev (Pavia). 2021;13(2):25549. doi: 10.52965/001c.25549.CrossRefGoogle ScholarPubMed
30
Di Matteo B, Vandenbulcke F, Vitale ND et al. Minimally manipulated mesenchymal stem cells for the treatment of knee osteoarthritis: A systematic review of clinical evidence. Stem Cells Int. 2019;2019:1735242. doi: 10.1155/2019/1735242.CrossRefGoogle Scholar
References
1
Thomas, MJ, Roddy, E, Zhang, W et al. The population prevalence of foot and ankle pain in middle and old age: A systematic review. Pain. 2011;152(12):2870–2880.CrossRefGoogle ScholarPubMed
2
Menz, HB, Dufour, AB, Casey, VA et al. Foot pain and mobility limitations in older adults: The Framingham foot study. J Gerontol A Biol Sci Med Sci. 2013;68(10):1281–1285.CrossRefGoogle ScholarPubMed
3
Belatti, DA, Phisitkul, P.Economic burden of foot and ankle surgery in the US Medicare population. Foot Ankle Int. 2014;35(4):334–340.CrossRefGoogle ScholarPubMed
4
Werner, RA, Gell, N, Hartigan, A, Wiggermann, N, Keyserling, WM. Risk factors for foot and ankle disorders among assembly plant workers. Am J Ind Med. 2010;53(12):1233–1239.CrossRefGoogle ScholarPubMed
5
Oh-Park, M, Kirschner, J, Abdelshahed, D, Kim, DDJ. Painful foot disorders in the geriatric population: A narrative review. Am J Phys Med Rehabil. 2019;98(9):811–819.CrossRefGoogle ScholarPubMed
6
Yong, RJ, Mullins, PM, Bhattacharyya, N.Prevalence of chronic pain among adults in the United States. Pain. 2022;163(2):e328–e332.CrossRefGoogle ScholarPubMed
Miklovic, TM, Donovan, L, Protzuk, OA, Kang, MS, Feger, MA. Acute lateral ankle sprain to chronic ankle instability: A pathway of dysfunction. Phys Sportsmed. 2018;46(1):116–122.CrossRefGoogle ScholarPubMed
9
Czajka, CM, Tran, E, Cai, AN, DiPreta, JA. Ankle sprains and instability. Med Clin North Am. 2014;98(2):313–329.CrossRefGoogle ScholarPubMed
10
Urits, I, Smoots, D, Franscioni, H et al. Injection techniques for common chronic pain conditions of the foot: A comprehensive review. Pain Ther. 2020;9(1):145–160.CrossRefGoogle ScholarPubMed
11
van der Merwe, C, Shultz, SP, Colborne, GR, Fink, PW. Foot muscle strengthening and lower limb injury prevention. Res Q Exerc Sport. 2021;92(3):380–387.CrossRefGoogle ScholarPubMed
12
Urits, I, Hasegawa, M, Orhurhu, V et al. Minimally invasive treatment of chronic ankle instability: A comprehensive review. Curr Pain Headache Rep. 2020;24(3): 1040–1048. doi: 10.1007/s00167-016-4041-1.CrossRefGoogle ScholarPubMed
13
Khlopas, H, Khlopas, A, Samuel, LT et al. Current concepts in osteoarthritis of the ankle: Review. Surg Technol Int. 2019;35:280–294.Google ScholarPubMed
14
Pietramaggiori, G, Sapino, G, De Santis, G, Bassetto, F, Scherer, S.Chronic knee and ankle pain treatment through selective microsurgical approaches: A minimally invasive option in the treatment algorithm for refractory lower limb pain. J Reconstr Microsurg. 2021;37(3):234–241.Google ScholarPubMed
Di Caprio, F, Meringolo, R, Shehab Eddine, M, Ponziani, L.Morton’s interdigital neuroma of the foot: A literature review. Foot Ankle Surg. 2018;24(2):92–98.CrossRefGoogle ScholarPubMed
17
Longo, UG, Ronga, M, Maffulli, N.Achilles tendinopathy. Sports Med Arthrosc Rev. 2018;26(1):16–30.CrossRefGoogle ScholarPubMed
18
McSweeney, SC, Cichero, M.Tarsal tunnel syndrome: A narrative literature review. Foot (Edinb). 2015;25(4):244–250.CrossRefGoogle ScholarPubMed
Evans, PL, Prior, JA, Belcher, J et al. Obesity, hypertension and diuretic use as risk factors for incident gout: A systematic review and meta-analysis of cohort studies. Arthritis Res Ther. 2018;20(1):136. doi: 10.1186/s13075-018-1612-1.CrossRefGoogle Scholar
21
Al-Mohrej, OA, Al-Kenani, NS. Chronic ankle instability: Current perspectives. Avicenna J Med. 2016;6(4):103–108.Google ScholarPubMed
22
Gougoulias, N, Lampridis, V, Sakellariou, A.Morton’s interdigital neuroma: Instructional review. EFORT Open Rev. 2019;4(1):14–24.CrossRefGoogle ScholarPubMed
23
Kader, D, Saxena, A, Movin, T, Maffulli, N.Achilles tendinopathy: Some aspects of basic science and clinical management. Br J Sports Med. 2002;36(4):239–249.CrossRefGoogle ScholarPubMed
24
Ragab, G, Elshahaly, M, Bardin, T.Gout: An old disease in new perspective: A review. J Adv Res. 2017;8(5):495–511.CrossRefGoogle ScholarPubMed
25
Paterson, KL, Gates, L.Clinical assessment and management of foot and ankle osteoarthritis: A review of current evidence and focus on pharmacological treatment. Drugs Aging. 2019;36(3):203–211.CrossRefGoogle ScholarPubMed
26
Aletaha, D, Neogi, T, Silman, AJ et al. Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–2581.CrossRefGoogle ScholarPubMed
27
Gribble, PA, Delahunt, E, Bleakley, CM et al. Selection criteria for patients with chronic ankle instability in controlled research: A position statement of the International Ankle Consortium. J Athl Train. 2014;49(1):121–127.CrossRefGoogle ScholarPubMed
Zellers, JA, Bley, BC, Pohlig, RT, Alghamdi, NH, Silbernagel, KG. Frequency of pathology on diagnostic ultrasound and relationship to patient demographics in individuals with insertional Achilles tendinopathy. Int J Sports Phys Ther. 2019;14(5):761–769.CrossRefGoogle ScholarPubMed
Rinkel, WD, Cabezas, MC, Van Neck, JW et al. Validity of the Tinel sign and prevalence of tibial nerve entrapment at the tarsal tunnel in both diabetic and nondiabetic subjects: A cross-sectional study. Plast Reconstr Surg. 2018;142(5):1258–1266.CrossRefGoogle ScholarPubMed
32
Roddy, E, Thomas, MJ, Marshall, M et al. The population prevalence of symptomatic radiographic foot osteoarthritis in community-dwelling older adults: Cross-sectional findings from the clinical assessment study of the foot. Ann Rheum Dis. 2015;74(1):156–163.CrossRefGoogle ScholarPubMed
33
Simonsen, MB, Hørslev-Petersen, K, Cöster, MC, Jensen, C, Bremander, A.Foot and ankle problems in patients with rheumatoid arthritis in 2019: Still an important issue. ACR Open Rheumatol. 2021;3(6):396–402.CrossRefGoogle ScholarPubMed
34
Heidari, B.Rheumatoid arthritis: Early diagnosis and treatment outcomes. Caspian J Intern Med. 2011;2(1):161–170.Google ScholarPubMed
Khan, M, Shanmugaraj, A, Prada, C et al. The role of hyaluronic acid for soft tissue indications: A systematic review and meta-analysis. Sports Health. 2022;15(1):86–96. doi: 10.1177/19417381211073316. .CrossRefGoogle ScholarPubMed
37
Petrella, MJ, Coglian;o, A, Petrella, RJ. Original research: Long-term efficacy and safety of periarticular hyaluronic acid in acute ankle sprain. Phys Sportsmed. 2009;37:64–70.CrossRefGoogle ScholarPubMed
38
Vannini, F, Di Matteo, B, Filardo, G.Platelet-rich plasma to treat ankle cartilage pathology – from translational potential to clinical evidence: A systematic review. J Exp Orthop. 2015;2(1):2. doi: 10.1186/s40634-015-0019-z.CrossRefGoogle ScholarPubMed
39
Cruz-Díaz, D, Lomas Vega, R, Osuna-Pérez, MC, Hita-Contreras, F, Martínez-Amat, A.Effects of joint mobilization on chronic ankle instability: A randomized controlled trial. Disabil Rehabil. 2015;37(7):601–610.CrossRefGoogle ScholarPubMed
40
Cain, MS, Ban, RJ, Chen, YP et al. Four-week ankle-rehabilitation programs in adolescent athletes with chronic ankle instability. J Athl Train. 2020;55(8):801–810.CrossRefGoogle ScholarPubMed
41
Anguish, B, Sandrey, MA. Two 4-week balance-training programs for chronic ankle instability. J Athl Train. 2018;53(7):662–671.CrossRefGoogle ScholarPubMed
42
Chang, SH, Morris, BL, Saengsin, J et al. Diagnosis and treatment of chronic lateral ankle instability: Review of our biomechanical evidence. J Am Acad Orthop Surg. 2021;29(1):3–16.CrossRefGoogle ScholarPubMed
43
Matthews, BG, Hurn, SE, Harding, MP, Henry, RA, Ware, RS. The effectiveness of non-surgical interventions for common plantar digital compressive neuropathy (Morton’s neuroma): A systematic review and meta-analysis. J Foot Ankle Res. 2019;12:12. doi: 10.1186/s13047-019-0320-7.CrossRefGoogle ScholarPubMed
44
Santos, D, Morrison, G, Coda, A.Sclerosing alcohol injections for the management of intermetatarsal neuromas: A systematic review. Foot (Edinb). 2018;35:36–47.CrossRefGoogle ScholarPubMed
45
Campbell, CM, Diamond, E, Schmidt, WK et al. A randomized, double-blind, placebo-controlled trial of injected capsaicin for pain in Morton’s neuroma. Pain. 2016;157(6):1297–1304.CrossRefGoogle ScholarPubMed
46
Lee, K, Hwang, IY, Ryu, CH, Lee, JW, Kang, SW. Ultrasound-guided hyaluronic acid injection for the management of Morton’s neuroma. Foot Ankle Int. 2018;39(2):201–204.CrossRefGoogle ScholarPubMed
47
Zhang, YJ, Xu, SZ, Gu, PC et al. Is platelet-rich plasma injection effective for chronic Achilles tendinopathy? A meta-analysis. Clin Orthop Relat Res. 2018;476(8):1633–1641.CrossRefGoogle ScholarPubMed
48
Chen, X, Jones, IA, Park, C, Vangsness, CT Jr. The efficacy of platelet-rich plasma on tendon and ligament healing: A systematic review and meta-analysis with bias assessment. Am J Sports Med. 2018;46(8):2020–2032.CrossRefGoogle ScholarPubMed
49
Yelland, MJ, Sweeting, KR, Lyftogt, JA et al. Prolotherapy injections and eccentric loading exercises for painful Achilles tendinosis: A randomised trial. Br J Sports Med. 2011;45(5):421–428.CrossRefGoogle ScholarPubMed
50
Ferkel, E, Davis, WH, Ellington, JK. Entrapment neuropathies of the foot and ankle. Clin Sports Med. 2015;34(4):791–801.CrossRefGoogle ScholarPubMed
51
Tu, P.Heel pain: Diagnosis and management. Am Fam Physician. 2018;97(2):86–93.Google ScholarPubMed
52
Choo, YJ, Park, CH, Chang, MC. Rearfoot disorders and conservative treatment: A narrative review. Ann Palliat Med. 2020;9(5):3546–3552.CrossRefGoogle ScholarPubMed
53
Vij, N, Kaley, HN, Robinson, CL et al. Clinical results following conservative management of tarsal tunnel syndrome compared with surgical treatment: A systematic review. Orthop Rev (Pavia). 2022;14(3):37539. doi: 10.52965/001c.37539.CrossRefGoogle ScholarPubMed
54
Kang, MH, Moon, KW, Jeon, YH, Cho, SW. Sonography of the first metatarsophalangeal joint and sonographically guided intraarticular injection of corticosteroid in acute gout attack. J Clin Ultrasound. 2015;43(3):179–186.CrossRefGoogle ScholarPubMed
55
Fernández, C, Noguera, R, González, JA, Pascual, E.Treatment of acute attacks of gout with a small dose of intraarticular triamcinolone acetonide. J Rheumatol. 1999;26(10):2285–2286.Google ScholarPubMed
56
Wechalekar, MD, Vinik, O, Moi, JH et al. The efficacy and safety of treatments for acute gout: Results from a series of systematic literature reviews including Cochrane reviews on intraarticular glucocorticoids, colchicine, nonsteroidal antiinflammatory drugs, and interleukin-1 inhibitors. J Rheumatol Suppl. 2014;92:15–25.CrossRefGoogle ScholarPubMed
57
Richette, P, Doherty, M, Pascual, E et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis. 2017;76(1):29–42.CrossRefGoogle ScholarPubMed
58
Wechalekar, MD, Vinik, O, Schlesinger, N, Buchbinder, R.Intra-articular glucocorticoids for acute gout. Cochrane Database Syst Rev. 2013;(4):CD009920. doi: 10.1002/14651858.CD009920.pub2.Google ScholarPubMed
59
Roddy, E, Menz, HB. Foot osteoarthritis: Latest evidence and developments. Therap Adv Musculoskelet Dis. 2018;10:91–103.CrossRefGoogle ScholarPubMed
60
Drakonaki, EE, Kho, JSB, Sharp, RJ, Ostlere, SJ. Efficacy of ultrasound-guided steroid injections for pain management of midfoot joint degenerative disease. Skelet Radiol. 2011;40(8):1001–1006.CrossRefGoogle ScholarPubMed
61
Protheroe, D, Gadgil, A.Guided intra-articular corticosteroid injections in the midfoot. Foot Ankle Int. 2018;39(8):1001–1004.CrossRefGoogle ScholarPubMed
62
Grice, J, Marsland, D, Smith, G, Calder, J.Efficacy of foot and ankle corticosteroid injections. Foot Ankle Int. 2017;38(1):8–13.CrossRefGoogle ScholarPubMed
63
Pons, M, Alvarez, F, Solana, J, Viladot, R, Varela, L.Sodium hyaluronate in the treatment of hallux rigidus. A single-blind, randomized study. Foot ankle Int. 2007;28(1):38–42.CrossRefGoogle ScholarPubMed
64
Vannabouathong, C, Del Fabbro, G, Sales, B et al. Intra-articular injections in the treatment of symptoms from ankle arthritis: A systematic review. Foot Ankle Int. 2018;39(10):1141–1150.CrossRefGoogle ScholarPubMed
65
Fukawa, T, Yamaguchi, S, Akatsu, Y et al. Safety and efficacy of intra-articular injection of platelet-rich plasma in patients with ankle osteoarthritis. Foot Ankle Int. 2017;38(6):596–604.CrossRefGoogle ScholarPubMed
66
Repetto, I, Biti, B, Cerruti, P, Trentini, R, Felli,