Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-6pl8d Total loading time: 0.513 Render date: 2022-01-23T16:01:01.894Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Chapter 5 - Information from Paleoclimate Archives

Published online by Cambridge University Press:  05 June 2014

Get access

Summary

Executive Summary

Greenhouse-Gas Variations and Past Climate Responses

It is a fact that present-day (2011) concentrations of the atmospheric greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) exceed the range of concentrations recorded in ice cores during the past 800,000 years. Past changes in atmospheric GHG concentrations can be determined with very high confidence from polar ice cores. Since AR4 these records have been extended from 650,000 years to 800,000 years ago. {5.2.2}

With very high confidence, the current rates of CO2, CH4 and N2O rise in atmospheric concentrations and the associated radiative forcing are unprecedented with respect to the highest resolution ice core records of the last 22,000 years. There is medium confidence that the rate of change of the observed GHG rise is also unprecedented compared with the lower resolution records of the past 800,000 years. {5.2.2}

There is high confidence that changes in atmospheric CO2 concentration play an important role in glacial–interglacial cycles. Although the primary driver of glacial–interglacial cycles lies in the seasonal and latitudinal distribution of incoming solar energy driven by changes in the geometry of the Earth's orbit around the Sun (“orbital forcing”), reconstructions and simulations together show that the full magnitude of glacial–interglacial temperature and ice volume changes cannot be explained without accounting for changes in atmospheric CO2 content and the associated climate feedbacks. During the last deglaciation, it is very likely that global mean temperature increased by 3°C to 8°C.

Type
Chapter
Information
Climate Change 2013 – The Physical Science Basis
Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
, pp. 383 - 464
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
24
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×