Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-q6bj7 Total loading time: 1.122 Render date: 2022-11-30T08:31:14.968Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

11 - The effects of spilled oil on coastal ecosystems: lessons from the Exxon Valdez spill

Published online by Cambridge University Press:  05 June 2014

James L. Bodkin
Affiliation:
US Geological Survey, Alaska Science Center, Anchorage, AK, USA
Dan Esler
Affiliation:
US Geological Survey, Alaska Science Center, Anchorage, AK, USA
Stanley D. Rice
Affiliation:
National Marine Fisheries Service, Auke Bay Laboratory, Juneau, AK, USA
Craig O. Matkin
Affiliation:
North Gulf Oceanic Society, Homer, AK, USA
Brenda E. Ballachey
Affiliation:
US Geological Survey, Alaska Science Center, Anchorage, AK, USA
Brooke Maslo
Affiliation:
Rutgers University, New Jersey
Julie L. Lockwood
Affiliation:
Rutgers University, New Jersey
Get access

Summary

Introduction

Oil spilled from ships or other sources into the marine environment often occurs in close proximity to coastlines, and oil frequently accumulates in coastal habitats. As a consequence, a rich, albeit occasionally controversial, body of literature describes a broad range of effects of spilled oil across several habitats, communities, and species in coastal environments. This statement is not to imply that spilled oil has less of an effect in pelagic marine ecosystems, but rather that marine spills occurring offshore may be less likely to be detected, and associated effects are more difficult to monitor, evaluate, and quantify (Peterson et al., 2012). As a result, we have a much greater awareness of coastal pollution, which speaks to our need to improve our capacities in understanding the ecology of the open oceans. Conservation of coastal ecosystems and assessment of risks associated with oil spills can be facilitated through a better understanding of processes leading to direct and indirect responses of species and systems to oil exposure.

It is also important to recognize that oil spilled from ships represents only ~9% of the nearly 700 000 barrels of petroleum that enter waters of North America annually from anthropogenic sources (NRC, 2003). The immediate effects of large spills can be defined as acute, due to the obvious and dramatic effects that are observed. In contrast, the remaining 625 000 barrels that are released each year can be thought of as chronic non-point pollution, resulting from oil entering the coastal ocean as runoff in a more consistent but much less conspicuous rate. In this chapter, we primarily address the effects of large oil spills that occur near coastlines and consider their potential for both acute and chronic effects on coastal communities. As described below, in some instances, the effects from chronic exposure may meet or exceed the more evident acute effects from large spills. Consequently, although quantifying chronic effects from low exposure rates can be challenging and time-consuming, the results of such efforts provide insights into the understudied effects of chronic non-point oil pollution.

Type
Chapter
Information
Coastal Conservation , pp. 311 - 346
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, E. & Inmar, M. (2007). Shoreline sensitivity to oil spills, the Mediterranean coast of Israel: Assessment and analysis. Ocean and Coastal Management, 50, 24–34.CrossRefGoogle Scholar
Alonso-Alvarez, C., Cristobol, P. & Velando, A. (2007). Effects of acute exposure to heavy fuel oil from the Prestige spill on a seabird. Aquatic Toxicology, 84, 103–110.CrossRefGoogle ScholarPubMed
Babcock, M. M., Irvine, G. V., Harris, P. M., Cusick, J. A. & Rice, S. D. (1996). Persistence of oiling in mussel beds three and four years after the Exxon Valdez oil spill. In Rice, S. D., Spies, R. B., Wolfe, D. A. & Wright, B. A. (eds.), Proceedings of the Exxon Valdez Oil Spill Symposium. Bethesda, MD: American Fisheries Society Symposium 18, pp. 286–297.Google Scholar
Ballachey, B. E., Bodkin, J. L., Howlin, S., Doroff, A. M. & Rebar, A. H. (2003). Correlates to survival of juvenile sea otters in Prince William Sound, Alaska. Canadian Journal of Zoology, 81, 1494–1510.CrossRefGoogle Scholar
Bernabeu, A., Rey, D., Rubio, B., et al. (2009). Assessment of cleanup needs of oiled sand beaches: Lessons from the Prestige oil spill. Environmental Science and Technology, 43, 2470–2475.CrossRefGoogle ScholarPubMed
Bernatowicz, J. A., Schemph, P. F. & Bowman, T. D. (1996). Bald eagle productivity in south-central Alaska in 1989 and 1990 after the Exxon Valdez oil spill. In Rice, S. D., Spies, R. B., Wolfe, D. A. & Wright, B. A. (eds.), Proceedings of the Exxon Valdez Oil Spill Symposium. Bethesda, MD: American Fisheries Society Symposium 18, pp. 785–797.Google Scholar
Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. B. (1990). Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington state. Report to the International Whaling Commission, Special Issue, 12, 386–406.Google Scholar
Bodkin, J. L. & Ballachey, B. E. (2010). Modeling the Effects of Mortality on Sea Otter Populations. US Geological Survey Scientific Investigation Report 2010–5096. Reston, VA: US Geological Survey.Google Scholar
Bodkin, J. L. & Udevitz, M. S. (1994). Intersection model for estimating sea otter mortality along the Kenai Peninsula. In Loughlin, T. (ed.), Marine Mammals and the Exxon Valdez. San Diego, CA: Academic Press, pp. 81–95.CrossRefGoogle Scholar
Bodkin, J. L., Ballachey, B. E., Dean, T. A., et al. (2002). Sea otter population status and the process of recovery from the Exxon Valdez oil spill. Marine Ecology Progress Series, 241, 237–253.CrossRefGoogle Scholar
Bodkin, J. L., Esslinger, G. G. & Monson, D. H. (2004). Foraging depths of sea otters and implications to coastal marine communities. Marine Mammal Science, 20, 305–321.CrossRefGoogle Scholar
Bodkin, J. L., Ballachey, B. E. & Esslinger, G. G. (2011). Trends in Sea Otter Population Abundance in Western Prince William Sound, Alaska: Progress Toward Recovery Following the 1989 Exxon Valdez Oil Spill. US Geological Survey Scientific Investigations Report 2011–5213. Reston, VA: US Geological Survey.Google Scholar
Bodkin, J. L., Ballachey, B. E., Coletti, H. A., et al. (2012). Long-term effects of the Exxon Valdez oil spill: Sea otter foraging in the intertidal as a pathway of exposure to lingering oil. Marine Ecology Progress Series, 447, 273–287.CrossRefGoogle Scholar
Boehm, P. D., Page, D. S., Neff, J. M. & Johnson, C. B. (2007). Potential for sea otter exposure to remnants of buried oil from the Exxon Valdez oil spill. Environmental Science and Technology, 41, 6860–6867.CrossRefGoogle ScholarPubMed
Born, A. F., Espinoza, E., Murillo, J. C., Nicolaides, F. & Edgar, G. J. (2003). Effects of the Jessica oil spill on artisanal fisheries in the Galapagos. Marine Pollution Bulletin, 47, 319–324.CrossRefGoogle ScholarPubMed
Bowen, L., Schwartz, J., Aldridge, B., et al. (2007). Differential gene expression induced by exposure of captive mink to fuel oil: A model for the sea otter. EcoHealth, 4, 298–309.CrossRefGoogle Scholar
Bragg, J. R., Prince, R. C., Harner, E. J. & Atlas, R. M. (1994). Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature, 368, 413–418.CrossRefGoogle Scholar
Brannon, E. L., Collins, K. C., Cronin, M. A., et al. (2007). Risk of weathered residual Exxon Valdez oil to pink salmon embryos in Prince William Sound. Environmental Toxicology and Chemistry, 26, 780–786.CrossRefGoogle ScholarPubMed
Brault, S. & Caswell, H. (1993). Pod-specific demography of killer whales (Orcinus orca). Ecology, 74, 1444–1454.CrossRefGoogle Scholar
Bue, B. G., Sharr, S., Moffitt, S. D. & Craig, A. (1994). Assessment of injury to pink salmon embryos and fry. Proceedings of the 16th Northeast Pacific Pink and Chum Salmon Workshop, AK-SG-94–02. Fairbanks, AK: Alaska Sea Grant College Program, pp. 173–176.Google Scholar
Bue, B. G., Sharr, S., Moffitt, S. D. & Craig, A. (1996). Effects of the Exxon Valdez oil spill on pink salmon embryos and pre-emergent fry. In Rice, S. D., Spies, R. B., Wolfe, D. A. & Wright, B. A. (eds.), Proceedings of the Exxon Valdez Oil Spill Symposium. Bethesda, MD: American Fisheries Society Symposium 18, pp. 619–627.Google Scholar
Bue, B. G., Sharr, S. & Seeb, J. E. (1998). Evidence of damage to pink salmon populations inhabiting Prince William Sound, Alaska, two generations after the Exxon Valdez oil spill. Transactions of the American Fisheries Society, 127, 35–43.2.0.CO;2>CrossRefGoogle Scholar
Burns, K. A., Garrity, S. D. & Levings, S. C. (1993). How many years until mangrove ecosystems recover from catastrophic oil spills?Marine Pollution Bulletin, 26, 239–248.CrossRefGoogle Scholar
Carls, M. G., Wertheimer, A. C., Short, J. W., Smolowitz, R. M. & Stegeman, J. J. (1996). Contamination of juvenile pink and chum salmon by hydrocarbons in Prince William Sound after the Exxon Valdez oil spill. In Rice, S. D., Spies, R. B., Wolfe, D. A. & Wright, B. A. (eds.), Proceedings of the Exxon Valdez Oil Spill Symposium. Bethesda, MD: American Fisheries Society Symposium 18, pp. 608–618.Google Scholar
Carls, M. G., Babcock, M. M., Harris, P. M., et al. (2001). Persistence of oiling in mussel beds after the Exxon Valdez oil spill. Marine Environmental Research, 51, 167–190.CrossRefGoogle ScholarPubMed
Carls, M. G., Marty, G. D. & Rice, S. D. (2003). Is pink salmon spawning habitat recovering from the Exxon Valdez oil spill? In Proceedings of the Twenty-sixth Arctic and Marine Oilspill Program (AMOP) Technical Seminar, 10–12 June 2003. Victoria, British Columbia: Environment Canada, vol. 1, pp. 335–248.Google Scholar
Corredor, J. E., Morell, J. M. & Del Castillo, C. E. (1990). Persistence of spilled crude oil in a tropical environment. Marine Pollution Bulletin, 21, 385–388.CrossRefGoogle Scholar
Davies, J. M., McIntosh, A. M., Stagg, R. M. & Topping, G. (1996). The impact of an oil spill in turbulent waters. In Davies, J. M. & Topping, G. (eds.), The Braer. Edinburgh: HMSO, pp. 26–4.Google Scholar
Dean, T. A., Bodkin, J. L., Fukuyama, A. K., et al. (2002). Food limitation and the recovery of sea otters in Prince William Sound. Marine Ecology Progress Series, 241, 255–270.CrossRefGoogle Scholar
DeGange, A. R., Doroff, A. M. & Monson, D. H. (1994). Experimental recovery of sea otter carcasses at Kodiak Island, Alaska, following the Exxon Valdez oil spill. Marine Mammal Science, 10, 492–496.CrossRefGoogle Scholar
Duffy, L. K., Bowyer, R. T., Tests, J. W. & Faro, J. B. (1994). Chronic effects of the Exxon Valdez oil spill on blood and enzyme chemistry of river otters. Environmental Toxicology and Chemistry, 13, 643–647.CrossRefGoogle Scholar
Duke, C., Zuleika, S., Pinzon, M. & Prada T., M. C. (1997). Large scale damage to mangrove forests following two large oil spills in Panama. Biometrica, 29, 2–14.Google Scholar
Edgar, G. J., Kerrison, L., Scoresby, S. A. & Toral-Granda, M. V. (2003). Impacts of the Jessica oil spill on intertidal and shallow subtidal plants and animals. Marine Pollution Bulletin, 47, 276–283.CrossRefGoogle ScholarPubMed
Esler, D. & Iverson, S. A. (2010). Female harlequin duck winter survival 11 to 14 years after the Exxon Valdez oil spill. Journal of Wildlife Management, 74, 471–478.CrossRefGoogle Scholar
Esler, D., Schmutz, J. A., Jarvis, R. L. & Mulcahy, D. M. (2000). Winter survival of adult female harlequin ducks in relation to history of contamination by the Exxon Valdez oil spill. Journal of Wildlife Management, 64, 839–847.CrossRefGoogle Scholar
Esler, D., Bowman, T. D., Trust, K. A., et al. (2002). Harlequin duck population recovery following the Exxon Valdez oil spill: Progress, process and constraints. Marine Ecology Progress Series, 241, 271–286.CrossRefGoogle Scholar
Esler, D., Ballachey, B. E., Trust, K. A., et al. (2011). Cytochrome P4501A biomarker indication of the timeline of chronic exposure of Barrow’s goldeneyes to residual Exxon Valdez oil. Marine Pollution Bulletin, 62, 609–614.CrossRefGoogle ScholarPubMed
Ford, J. K. B., Ellis, G. M., Barrett-Lennard, L. G., Morton, A. B. & BalcombIII, K. B. C. (1998). Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Canadian Journal of Zoology, 76, 1456–1471.CrossRefGoogle Scholar
Ford, J. K. B., Ellis, G. M., Matkin, C. O., et al. (2011). Shark predation and tooth wear in a population of northeastern Pacific killer whales. Aquatic Biology, 11, 213–224.CrossRefGoogle Scholar
Frost, K. J., Lowry, L. F., Sinclair, E. H., Ver Hoef, J. & McAllister, D. C. (1994a). Impacts on distribution, abundance and productivity of harbor seals. In Loughlin, T. R. (ed.), Marine Mammals and the Exxon Valdez. San Diego, CA: Academic Press, pp. 97–118.CrossRefGoogle Scholar
Frost, K. J., Manen, C. & Wade, T. L. (1994b). Petroleum hydrocarbons in tissues of harbor seals from Prince William Sound and the Gulf of Alaska. In Loughlin, T. R. (ed.), Marine Mammals and the Exxon Valdez. San Diego, CA: Academic Press, pp. 331–358.CrossRefGoogle Scholar
Fukuyama, A. K., Shigenaka, G. & Hoff, R. Z. (2000). Effects of residual Exxon Valdez oil on intertidal Protothaca staminea: Mortality, growth, and bioaccumulation of hydrocarbons in transplanted clams. Marine Pollution Bulletin, 40, 1042–1050.CrossRefGoogle Scholar
Garrott, R. A., Eberhardt, L. L. & Burn, D. M. (1993). Mortality of sea otters in Prince William Sound following the Exxon Valdez oil spill. Marine Mammal Science, 9, 343–359.CrossRefGoogle Scholar
Garshelis, D. L. (1997). Sea otter mortality estimated from carcasses collected after the Exxon Valdez oil spill. Conservation Biology, 11, 905–916.CrossRefGoogle Scholar
Geraci, J. R. (1990). Physiologic and toxic effects on cetaceans. In Geraci, J. R. & Daubin, D. J. (eds.), Sea Mammals and Oil: Confronting the Risks. New York, NY: Academic Press, pp. 167–197.Google Scholar
Golet, G. H., Seiser, P. E., McGuire, A. D., et al. (2002). Long-term direct and indirect effects of the Exxon Valdez oil spill on pigeon guillemots in Prince William Sound, Alaska. Marine Ecology Progress Series, 241, 287–304.CrossRefGoogle Scholar
Goodlad, J. (1996). Effects of the Braer oil spill on the Shetland seafood industry. Science of the Total Environment, 186, 127–133.CrossRefGoogle Scholar
Gundlach, E. R. (2006). Oil spills: Impacts, recovery and remediation. Journal of Coastal Resources, Special Issue, 39, 39–42.Google Scholar
Gundlach, E. R. & Hayes, M. O. (1978). Classification of coastal environments in terms of potential vulnerability to oil spill damage. Marine Technology Society Journal, 12, 18–27.Google Scholar
Guzman, H. M., Burns, K. A. & Jackson, J. B. C. (1994). Injury, regeneration and growth of Caribbean reef corals after a major oil spill in Panama. Marine Ecology Progress Series, 105, 231–241.CrossRefGoogle Scholar
Hall, A. J., Watkins, J. & Hiby, L. (1996). The impact of the 1993 Braer oil spill on grey seals in Shetland. Science of the Total Environment, 186, 119–125.CrossRefGoogle ScholarPubMed
Harwell, M. A., Gentile, J. H. & Parker, K. R. (2012). Quantifying population-level risks using an individual-based model: Sea otters, harlequin ducks, and the Exxon Valdez oil spill. Integrated Environmental Assessment and Management, 8, 503–522.CrossRefGoogle ScholarPubMed
Hayes, M. O. & Michel, J. (1999). Factors determining the long-term persistence of Exxon Valdez oil in gravel beaches. Marine Pollution Bulletin, 38, 92–101.CrossRefGoogle Scholar
Heintz, R. A., Short, J. W. & Rice, S. D. (1999). Sensitivity of fish embryos to weathered crude oil: Part II. Incubating downstream from weathered Exxon Valdez crude oil caused increased mortality of pink salmon (Oncorhynchus gorbuscha) embryos. Environmental Toxicology and Chemistry, 18, 494–503.CrossRefGoogle Scholar
Heintz, R. A., Rice, S. D., Wertheimer, A. C., et al. (2000). Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Marine Ecology Progress Series, 208, 205–216.CrossRefGoogle Scholar
Herman, D. P., Burrows, D. G., Wade, P. R., et al. (2005). Feeding ecology of eastern North Pacific killer whales Orcinus orca from fatty acid, stable isotope, and organochlorine analyses of blubber biopsies. Marine Ecology Progress Series, 302, 275–291.CrossRefGoogle Scholar
Irvine, G. V., Mann, D. H. & Short, J. W. (2006). Persistence of ten-year old Exxon Valdez oil on Gulf of Alaska beaches: The importance of boulder armoring. Marine Pollution Bulletin, 52, 1011–1022.CrossRefGoogle Scholar
Iverson, S. A. & Esler, D. (2006). Site fidelity and the demographic implications of winter movements by a migratory bird, the harlequin duck Histrionicus histrionicus. Journal of Avian Biology, 37, 219–228.CrossRefGoogle Scholar
Iverson, S. A. & Esler, D. (2010). Harlequin duck population injury and recovery dynamics following the 1989 Exxon Valdez oil spill. Ecological Applications, 20, 1993–2006.CrossRefGoogle ScholarPubMed
Iverson, S. A., Esler, D. & Rizzolo, D. J. (2004). Winter philopatry of harlequin ducks in Prince William Sound, Alaska. Condor, 106, 711–715.CrossRefGoogle Scholar
Jackson, C. B. C., Cubit, J. D., Keller, B. D., et al. (1989). Ecological effects of a major oil spill on Panamanian coastal marine communities. Science, 243, 37–44.CrossRefGoogle Scholar
Jewett, S. C., Dean, T. A., Woodin, B. R., Hoberg, M. K. & Stegeman, J. J. (2002). Exposure to hydrocarbons ten years after the Exxon Valdez oil spill: Evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes. Marine Environmental Research, 54, 21–48.CrossRefGoogle Scholar
Juanes, J. A., Puente, A. & Revilla, J. A. (2007). The Prestige oil spill in Cantabria (Bay of Biscay), Part II. Environmental assessment and monitoring of coastal ecosystems. Journal of Coastal Research, 23, 978–992.CrossRefGoogle Scholar
Kingston, P. F. (2002). Long-term environmental impact of oil spills. Spill Science and Technology Bulletin, 1, 53–61.CrossRefGoogle Scholar
Kingston, P. F., Dixon, I. M. T., Hamilton, S. & Moore, D. C. (1996). The impact of the Braer oil spill on the macrobenthic infauna of the sediments off the Shetland Islands. Marine Pollution Bulletin, 30, 445–459.CrossRefGoogle Scholar
Lees, D. C., Houghton, J. P. & Drickell, W. B. (1996). Short-term effects of several types of shoreline treatment on rocky intertidal biota in Prince William Sound. In Rice, S. D., Spies, R. B., Wolfe, D. A. & Wright, B. A. (eds.), Proceedings of the Exxon Valdez Oil Spill Symposium. Bethesda, MD: American Fisheries Society Symposium 18, pp. 329–348.Google Scholar
Li, H. L. & Boufadel, M. C. (2010). Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nature Geoscience, 3, 96–99.CrossRefGoogle Scholar
Lipscomb, T. K., Harris, R. K., Rebar, A. H., Ballachey, B. E. & Haebler, R. J. (1994). Pathology of sea otters. In Loughlin, T. R. (ed.), Marine Mammals and the Exxon Valdez. San Diego, CA: Academic Press, pp. 265–280.CrossRefGoogle Scholar
Lowry, L. F., Frost, K. J. & Pitcher, K. W. (1994). Observations of oiling of harbor seals in Prince William Sound. In Loughlin, T. R. (ed.), Marine Mammals and the Exxon Valdez. San Diego, CA: Academic Press, pp. 209–225.CrossRefGoogle Scholar
Martinez-Abrain, A., Velando, A., Oro, D., et al. (2006). Sex specific mortality of European shags after the Prestige oil spill: Demographic implications for the recovery of colonies. Marine Ecology Progress Series, 318, 271–276.CrossRefGoogle Scholar
Martinez-Gomez, C., Fernandez, B., Valdeset, J., et al. (2009). Evaluation of three-year monitoring with biomarkers in fish following the Prestige oil spill (N Spain). Chemosphere, 74, 613–620.CrossRefGoogle Scholar
Marty, G. D., Short, J. W., Dambach, D. M., et al. (1997). Ascites, premature emergence, increased gonadal cell apoptosis, and cytochrome P4501A induction in pink salmon larvae continuously exposed to oil-contaminated gravel during development. Canadian Journal of Zoology, 75, 989–1007.CrossRefGoogle Scholar
Matkin, C. O., Ellis, G. M., Dahlheim, M. E. & Zeh, J. (1994). Status of killer whale pods in Prince William Sound 1984–1992. In Loughlin, T. R. (ed.), Marine Mammals and the Exxon Valdez. San Diego, CA: Academic Press, pp. 141–161.CrossRefGoogle Scholar
Matkin, C. O., Ellis, G. M., Saulitis, E. L., Barrett-Lennard, L. & Matkin, D. R. (1999). Killer Whales of Southern Alaska. Homer, AK: North Gulf Oceanic Society.Google Scholar
Matkin, C. O., Saulitis, E. L., Ellis, G. M., Olesiuk, P. & Rice, S. D. (2008). Ongoing population-level impacts on killer whales Orcinus orca following the Exxon Valdez oil spill in Prince William Sound, Alaska. Marine Ecology Progress Series, 356, 269–281.CrossRefGoogle Scholar
Michel, J. & Hayes, M. O. (1999). Weathering patterns of oil residues eight years after the Exxon Valdez oil spill. Marine Pollution Bulletin, 38, 855–863.CrossRefGoogle Scholar
Miles, A. K., Bowen, L., Ballachey, B. E., et al. (2012). Variation in transcript profiles in sea otters (Enhydra lutris) from Prince William Sound, Alaska and clinically normal reference otters. Marine Ecology Progress Series, 451, 201–212.CrossRefGoogle Scholar
Moles, A. & Rice, S. D. (1983). Effects of crude oil and naphthalene on growth, caloric content and fat content of pink salmon juveniles in seawater. Transactions of the American Fisheries Society, 112, 205–211.2.0.CO;2>CrossRefGoogle Scholar
Monson, D. H., Doak, D. F., Ballachey, B. E., Johnson, A. & Bodkin, J. L. (2000). Long-term impacts of the Exxon Valdez oil spill on sea otters, assessed through age-dependent mortality patterns. Proceedings of the National Academy of Sciences of the United States of America, 97, 6562–6567.CrossRefGoogle ScholarPubMed
Monson, D. H., Doak, D. F., Ballachey, B. E. & Bodkin, J. L. (2011). Effect of the Exxon Valdez oil spill on the sea otter population of Prince William Sound, Alaska: Do lingering oil and source–sink dynamics explain the long-term population trajectory?Ecological Applications, 21, 2917–2932.CrossRefGoogle Scholar
Munilla, I., Arcos, J. M., Oro, D., et al. (2011). Mass mortality of seabirds in the aftermath of the Prestige oil spill. Ecosphere, 2(7), art. 83.CrossRefGoogle Scholar
Murphy, M. L., Heintz, R. A., Short, J. W., Larsen, M. L. & Rice, S. D. (1999). Recovery of pink salmon spawning after the Exxon Valdez oil spill. Transactions of the American Fisheries Society, 128, 909–918.2.0.CO;2>CrossRefGoogle Scholar
Neff, J. M., Owens, E. H., Stoker, S. W. & McCormick, D. M. (1995). Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill. In Wells, P. G., Butler, J. N. & Hughes, J. S. (eds.), Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters. Philadelphia, PA: American Society for Testing and Materials, pp. 312–346.CrossRefGoogle Scholar
Newey, S. & Seed, R. (1995). The effects of the Braer oil spill on rocky intertidal communities in south Shetland, Scotland. Marine Pollution Bulletin, 30, 274–280.CrossRefGoogle Scholar
NRC, National Research Council. (2003). Oil in the Sea III: Inputs, Fates, and Effects. Washington, DC: National Academies Press.Google Scholar
Olesiuk, P. F., Ellis, G. M. & Ford, J. K. B. (2005). Life History and Population Dynamics of Northern Resident Killer Whales (Orcinus orca) in British Columbia. Ottawa: Canadian Science Advisory Secretariat.Google Scholar
Paine, R. T., Ruesink, J. L., Sun, A., et al. (1996). Trouble on oiled waters: Lessons from the Exxon Valdez oil spill. Annual Review of Ecology, Evolution and Systematics, 27, 197–235.CrossRefGoogle Scholar
Penela-Aranez, M., Bellas, J. & Vasquez, E. (2009). Effects of the Prestige oil spill on the biota of NW Spain: 5 years of learning. Advances in Marine Biology, 56, 365–396.CrossRefGoogle Scholar
Perez, C., Velando, A., Munilla, I., Lopez-Alonso, M. & Oro, D. (2008). Monitoring polycyclic aromatic hydrocarbon pollution in the marine environment after the Prestige oil spill by means of seabird blood analysis. Environmental Science and Technology, 42, 707–713.CrossRefGoogle ScholarPubMed
Perez, C., Munilla, I., Lopez-Alonso, M. & Velando, A. (2009). Sublethal effects on seabirds after the Prestige oil-spill are mirrored in sexual signals. Biology Letters, 6, 33–35.CrossRefGoogle ScholarPubMed
Peterson, C. H., Rice, S. D., Short, J. W., et al. (2003). Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302, 2082–2086.CrossRefGoogle ScholarPubMed
Peterson, C. H., Anderson, S. S., Cherr, G. N., et al. (2012). A tale of two spills: Novel science and policy implications of an emerging new oil spill model. Bioscience, 62, 461–469.CrossRefGoogle Scholar
Piatt, J. F. & Ford, R. G. (1996). How many seabirds were killed by the Exxon Valdez oil spill? In Rice, S. D., Spies, R. B., Wolfe, D. A. & Wright, B. A. (eds.), Proceedings of the Exxon Valdez Oil Spill Symposium. Bethesda, MD: American Fisheries Society Symposium 18, pp. 712–719.Google Scholar
Pineira, J., Quesada, H., Rolan-Alvarez, E. & Caballero, A. (2008). Genetic impact of the Prestige oil spill in wild populations of a poor dispersal marine snail from intertidal rocky shores. Marine Pollution Bulletin, 56, 270–281.CrossRefGoogle ScholarPubMed
Reddy, C. M., Eglinton, T. I., Hounshell, A., et al. (2002). The West Falmouth oil spill after thirty years: The persistence of petroleum hydrocarbons in marsh sediments. Environmental Science and Technology, 36, 4754–4760.CrossRefGoogle ScholarPubMed
Rice, S. D., Thomas, R. E., Heintz, R. A., et al. (2001). Impacts to pink salmon following the Exxon Valdez oil spill: Persistence, toxicity, sensitivity, and controversy. Reviews in Fishery Science, 9, 165–211.CrossRefGoogle Scholar
Ritchie, W. (1993). Environmental impacts of the Braer oil spill and development of a strategy for the monitoring of change and recovery. Marine Policy, 17, 434–440.CrossRefGoogle Scholar
Rotzler, K. & Sterrer, W. (1970). Oil pollution: Damage observed in tropical communities along the Atlantic seaboard of Panama. Bioscience, 20, 222–224.Google Scholar
Salazar, S. (2003). Impacts of the Jessica oil spill on sea lion (Zalophus wollebaeki) populations. Marine Pollution Bulletin, 47, 313–318.CrossRefGoogle ScholarPubMed
Sanchez, F., Velascoa, F., Cartesb, J. E., et al. (2006). Monitoring the Prestige oil spill impacts on some key species of the Northern Iberian shelf. Marine Pollution Bulletin, 53, 332–349.CrossRefGoogle ScholarPubMed
Scheel, D., Matkin, C. O. & Saulitis, E. L. (2001). Distribution of killer whales pods in Prince William Sound, Alaska over a thirteen year period, 1984–1996. Marine Mammal Science, 17, 555–569.CrossRefGoogle Scholar
Short, J. W., Lindeberg, M. R., Harris, P. A., et al. (2004). Estimate of oil persisting on beaches of Prince William Sound, 12 years after the Exxon Valdez oil spill. Environmental Science and Technology, 38, 19–25.CrossRefGoogle Scholar
Short, J. W., Maselko, J. M., Lindeberg, M. R., Harris, P. M. & Rice, S. D. (2006). Vertical distribution and probability of encountering intertidal Exxon Valdez oil on shorelines of three embayments within Prince William Sound, Alaska. Environmental Science and Technology, 40, 3723–3729.CrossRefGoogle Scholar
Short, J. W., Irvine, G. V., Mann, D. H., et al. (2007). Slightly weathered Exxon Valdez oil persists in Gulf of Alaska beach sediments after 16 years. Environmental Science and Technology, 41, 1245–1250.CrossRefGoogle ScholarPubMed
Sturdevant, M. V., Wertheimer, A. C. & Lum, J. L. (1996). Diets of juvenile pink and chum salmon in oiled and non-oiled nearshore habitats in Prince William Sound, 1989 and 1990. In Rice, S. D., Spies, R. B., Wolfe, D. A. & Wright, B. A. (eds.), Proceedings of the Exxon Valdez Oil Spill Symposium. Bethesda, MD: American Fisheries Society Symposium 18, pp. 578–592.Google Scholar
Trust, K. A., Esler, D, Woodin, B. R. & Stegeman, J. J. (2000). Cytochrome P4501A induction in sea ducks inhabiting nearshore areas of Prince William Sound, Alaska. Marine Pollution Bulletin, 40, 397–403.CrossRefGoogle Scholar
Udevitz, M. S., Ballachey, B. R. & Bruden, D. L. (1996). A Population Model for Sea Otters in Western Prince William Sound. Exxon Valdez Oil Spill State/Federal Restoration Final Report, Restoration Study 93043–3. Anchorage, AK: National Biological Service.Google Scholar
Vandermeulen, J. H. & Singh, J. G. (1994). Arrow oil spill, 1970–90: Persistence of 20-yr weathered bunker C fuel oil. Canadian Journal of Fisheries and Aquatic Sciences, 51, 845–855.CrossRefGoogle Scholar
Vandermeulen, J. H., Platt, H. M., Baker, J. M. & Southward, J. Y. (1982). Some conclusions regarding the long-term biological effects of some major spills. Philosophical Transactions of the Royal Society of London, 297, 335–351.CrossRefGoogle Scholar
Velando, A., Munilla, I. & Leyenda, P. M. (2005). Short-term indirect effects of the Prestige oil spill on European shags: Changes in availability of prey. Marine Ecology Progress Series, 302, 263–274.CrossRefGoogle Scholar
Vinas, L., Franco, M. A., Soriano, J. A., et al. (2009). Accumulation trends of petroleum hydrocarbons in commercial shellfish from the Galician coast (NW Spain) affected by the Prestige oil spill. Chemosphere, 75, 534–541.CrossRefGoogle ScholarPubMed
Weins, J. A. & Parker, K. R. (1995). Analyzing the effects of accidental environmental impacts: Approaches and assumptions. Ecological Applications, 5, 1069–1083.CrossRefGoogle Scholar
Wertheimer, A. C. & Celewycz, A. G. (1996). Abundance and growth of juvenile pink salmon in oiled and non-oiled locations of western Prince William Sound after the Exxon Valdez oil spill. In Rice, S. D., Spies, R. B., Wolfe, D. A. & Wright, B. A. (eds.), Proceedings of the Exxon Valdez Oil Spill Symposium. Bethesda, MD: American Fisheries Society Symposium 18, pp. 509–517.Google Scholar
Wikelski, M., Wong, V., Chevalier, B., Rattenborg, N. & Snell, H. L. (2002). Galapagos Islands: Marine iguanas die from trace oil pollution. Nature, 417, 607–608.CrossRefGoogle ScholarPubMed
Willette, M. (1996). Impacts of the Exxon Valdez oil spill on migration, growth, and survival of juvenile pink salmon in Prince William Sound. In Rice, S. D., Spies, R. B., Wolfe, D. A. & Wright, B. A. (eds.), Proceedings of the Exxon Valdez Oil Spill Symposium. Bethesda, MD: American Fisheries Society Symposium 18, pp. 533–550.Google Scholar
Wolfe, D. A, Hameedi, M. J., Galt, J. A., et al. (1994). The fate of the oil spilled from the Exxon Valdez. Environmental Science and Technology, 28, 561A–568A.CrossRefGoogle ScholarPubMed
Xia, Y. Q. & Boufadel, M. C. (2011). Beach geomorphic factors for the persistence of subsurface oil from the Exxon Valdez spill in Alaska. Environmental Monitoring and Assessment, 183, 5–21.CrossRefGoogle ScholarPubMed
Zuberogoitia, I., Martinez, J. A., Iraeta, A., et al. (2006). Short-term effects of the Prestige oil spill on the peregrine falcon (Falco peregrinus). Marine Pollution Bulletin, 52, 1176–1181.CrossRefGoogle Scholar
3
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×