Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T07:19:29.586Z Has data issue: false hasContentIssue false

6 - Diatoms as indicators of surface-water acidity

from Part II - Diatoms as indicators of environmental change in flowing waters and lakes

Published online by Cambridge University Press:  05 June 2012

Richard W. Battarbee
Affiliation:
Department of Geography, UCL
Donald F. Charles
Affiliation:
Patrick Center for Environmental Research
Christian Bigler
Affiliation:
Umeå University
Brian F. Cumming
Affiliation:
Queen's University
Ingemar Renberg
Affiliation:
Umeå University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Lake acidification became an environmental issue of international significance in the late 1960s and early 1970s when Scandinavian scientists claimed that “acid rain” was the principal reason why fish populations had declined dramatically in Swedish and Norwegian lakes (Odén, 1968; Jensen & Snekvik, 1972; Almer et al., 1974). Similar claims were being made at about the same time in Canada (Beamish & Harvey, 1972). However, these claims were not immediately accepted by all scientists. It was argued by some that acidification was due to natural factors or to changes in catchment land use and management (Rosenqvist 1977, 1978; Krug & Frink, 1983; Pennington, 1984).

In the scientific debate that followed, diatom analysis played a pivotal role. It enabled the timing and extent of lake acidification to be reconstructed (Charles et al., 1989; Battarbee et al., 1990; Dixit et al., 1992a) and allowed the various competing hypotheses concerning the causes of lake acidification to be evaluated (Battarbee et al., 1985; Battarbee & Charles, 1994; Emmett et al., 1994). However, diatoms had been recognized and used as indicators of water pH well before the beginning of this controversy. The acid rain issue served to highlight the importance of diatoms and stimulated the advance of more robust and sophisticated techniques, especially the development of transfer functions for reconstructing lake-water pH and related hydrochemical variables.

This chapter outlines the history of diatoms as pH indicators, and describes how diatoms are currently used in studies of acid and acidified waters. It then describes how diatom-based paleolimnological methods have been used to trace the pH and acidification history of lakes and how diatoms are being used to monitor acidity trends in streams and lakes.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 98 - 121
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alhonen, P. (1968). On the late-glacial and early post-glacial diatom succession in Loch of Park, Aberdeenshire, Scotland. Memoranda Societatis Pro Fauna et Flora Fennica, 44, 13–20.Google Scholar
Almer, B., Dickson, W., Ekström, C., Hörnström, E., & Miller, U. (1974). Effects of acidification on Swedish lakes. Ambio, 3, 30–6.Google Scholar
Anderson, N. J. & Korsman, T. (1990). Land-use change and lake acidification: Iron-Age de-settlement in northern Sweden as a pre-industrial analogue. Philosophical Transactions of the Royal Society, London, B 327, 373–6.CrossRefGoogle Scholar
Appelberg, M. & Svenson, T. (2001). Long-term ecological effects of liming – the ISELAW programme. Water, Air and Soil Pollution, 130, 1745–50.CrossRefGoogle Scholar
Appleby, P. G., Nolan, P. J., Gifford, D. W., et al. (1986). 210Pb dating by low background gamma counting. Hydrobiologia, 143, 21–7.CrossRefGoogle Scholar
Arzet, K., Krause-Dellin, D., & Steinberg, C. (1986b). Acidification of four lakes in the Federal Republic of Germany as reflected by diatom assemblages, cladoceran remains, and sediment chemistry. In Diatoms and Lake Acidity, ed. Smol, J. P., Battarbee, R. W., Davis, R.B., & Meriläinen, J.. Dordrecht, The Netherlands: Dr. W. Junk, pp. 227–50.Google Scholar
Arzet, K., Steinberg, C., Psenner, R., & Schulz, N. (1986a). Diatom distribution and diatom inferred pH in the sediment of four alpine lakes. Hydrobiologia, 143, 247–54.CrossRefGoogle Scholar
Atkinson, K. M. & Haworth, E. Y. (1990). Devoke Water and Loch Sionascaig: recent environmental changes and the post-glacial overview. Philosophical Transactions of the Royal Society, London, B 327, 349–55.CrossRefGoogle Scholar
Baron, J., Norton, S. A., Beeson, D. R., & Herrmann, R. (1986). Sediment diatom and metal stratigraphy from Rocky Mountain lakes with special reference to atmospheric deposition. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1350–62.CrossRefGoogle Scholar
Battarbee, R. W. (1984). Diatom analysis and the acidification of lakes. Philosophical Transactions of the Royal Society, London, B 305, 451–77.CrossRefGoogle Scholar
Battarbee, R. W. (1990). The causes of lake acidification, with special reference to the role of acid deposition. Philosophical Transactions of the Royal Society, London, B 327, 339–47.CrossRefGoogle Scholar
Battarbee, R. W. (1991). Recent palaeolimnology and diatom-based reconstruction. In Quaternary Landscapes, ed. Shane, L. C. K. & Cushing, E. J.. Minneapolis: University of Minnesota Press, pp. 129–74.Google Scholar
Battarbee, R. W., Allott, T. E. H., Juggins, S., et al. (1996). An empirical critical loads model for surface water acidification, using a diatom-based palaeolimnological approach. Ambio, 25, 366–9.Google Scholar
Battarbee, R. W., Anderson, N. J., Appleby, P. G., et al. (1988). Lake Acidification in the United Kingdom 1800–1986: Evidence from Analysis of Lake Sediments. London: Ensis.Google Scholar
Battarbee, R. W. & Charles, D. F. (1986). Diatom-based pH reconstruction studies of acid lakes in Europe and North America: A synthesis. Water, Air and Soil Pollution, 31, 347–54.CrossRefGoogle Scholar
Battarbee, R. W. & Charles, D. F. (1987). The use of diatom assemblages in lake sediments as a means of assessing the timing, trends, and causes of lake acidification. Progress in Physical Geography, 11, 552–580.CrossRefGoogle Scholar
Battarbee, R. W. & Charles, D. F. (1994). Lake acidification and the role of paleolimnology. In Acidification of Freshwater Ecosystems: Implications for the Future, ed. Steinberg, C. & Wright, R., Dahlem Workshop Environmental Sciences Research Report 14, Chichester: Wiley, pp. 51–65.Google Scholar
Battarbee, R. W., Flower, R. J., Stevenson, A.C., & Rippey, B. (1985). Lake acidification in Galloway: a palaeoecological test of competing hypotheses. Nature, 314, 350–2.CrossRefGoogle Scholar
Battarbee, R. W., Juggins, S., Gasse, F., et al. (2001). European Diatom Database (EDDI). An Information System for Palaeoenvironmental Reconstruction. University College London, Environmental Change Research Centre, ECRC Research Report, 81.
Battarbee, R. W., Mason, J., Renberg, I., & Talling, J. F. (eds.) (1990). Palaeolimnology and Lake Acidification. London: The Royal Society.
Battarbee, R. W., Monteith, D. T., Juggins, S., et al. (2005). Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of palaeolimnological and modelling approaches. Environmental Pollution, 137, 135–49.CrossRefGoogle ScholarPubMed
Battarbee, R. W., Monteith, D. T., Juggins, S., et al. (2008). Assessing the accuracy of diatom-based transfer functions in defining reference pH conditions for acidified lakes in the United Kingdom. The Holocene 8, 57–67.CrossRefGoogle Scholar
Battarbee, R. W., Morley, D., Bennion, H., et al. (in press). A palaeolimnological meta-database for assessing the ecological status of lakes. Journal of Paleolimnology.
Battarbee, R. W. & Renberg, I. (1990). The Surface Water Acidification Project (SWAP) Palaeolimnology Programme. Philosophical Transactions of the Royal Society, London, B 327, 227–32.CrossRefGoogle Scholar
Beamish, J. & Harvey, H. H. (1972). Acidification of La Cloche Mountain lakes, Ontario, and resulting fish mortalities. Journal of the Fisheries Research Board of Canada, 29, 1131–43.CrossRefGoogle Scholar
Bennion, H. (1994). A diatom–phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia, 275, 391–410.CrossRefGoogle Scholar
Bennion, H. & Battarbee, R.W. (2007). The European Union Water Framework Directive: opportunities for palaeolimnology. Journal of Paleolimnology, 38, 285–95.CrossRefGoogle Scholar
Berge, F. (1976). Kiselalger og pH i noen elver og innsjöer i Agder og Telemark. En sammenlikning mellom årene 1949 og 1975. [Diatoms and pH in some rivers and lakes in Agder and Telemark (Norway): a comparison between the years 1949 and 1975.] Sur Nedbörs Virkning på Skog og Fisk. IR18/76. Aas, Norway: Norwegian Forest Research Institute.
Berge, F. (1979). Kiselalger og pH i noen innsjöer i Agder og Hordaland. [Diatoms and pH in some lakes in the Agder and Hordaland counties, Norway.] Sur Nedbörs Virkning på Skog og Fisk. IR42/79. Aas, Norway: Norwegian Forest Research Institute.
Bigler, C., Larocque, I., Peglar, S. M., Birks, H. J. B., & Hall, R. I. (2002). Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. The Holocene, 12, 481–96.CrossRef
Bindler, R., Korsman, T., Renberg, I., & Högberg, P. (2002). Pre-industrial atmospheric pollution: was it important for the pH of acid-sensitive Swedish lakes? Ambio, 6, 460–5.CrossRefGoogle Scholar
Birks, H. J. B. (1987). Methods for pH calibration and reconstruction from palaeolimnological data: procedures, problems, potential techniques. Surface Water Acidification Programme, Mid-term Review Conference, Bergen, Norway, pp. 370–80.
Birks, H. J. B. (1994). The importance of pollen and diatom taxonomic precision in quantative palaeoenvironmental reconstructions. Review of Palaeobotany and Palynology, 83, 107–17.CrossRefGoogle Scholar
Birks, H. J. B., Berge, F., Boyle, J. F. & Cumming, B. F. (1990c). A palaeoecological test of the land-use hypothesis for recent lake acidification in South-West Norway using hill-top lakes. Journal of Paleolimnology, 4, 69–85.CrossRefGoogle Scholar
Birks, H. J. B., Juggins, S., & Line, J. M. (1990b). Lake surface-water chemistry reconstructions from palaeolimnological data. In The Surface Waters Acidification Programme, ed. , B.J. Mason.Cambridge: Cambridge University Press, pp. 301–313.Google Scholar
Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A.C., & ter Braak, C. J. F. (1990a). Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society, London, B 327, 263–78.CrossRefGoogle Scholar
Boyle, J. F. (2007). Loss of apatite caused irreversible early Holocene lake acidification. The Holocene, 17, 539–40.CrossRefGoogle Scholar
Bradshaw, E. G., Jones, V. J., Birks, H. J. B., & Birks, H. H. (2000). Diatom responses to late-glacial and early-Holocene environmental changes at Kråkenes, western Norway. Journal of Paleolimnology, 23, 21–34.CrossRefGoogle Scholar
Bray, J., Broady, P. A., Niyogi, D. K., & Harding, J. (2008). Periphyton communities in New Zealand streams impacted by acid mine drainage. Marine and Freshwater Research, 59, 1084–91.CrossRefGoogle Scholar
Brugam, R. B. & Lusk, M. (1986). Diatom evidence for neutralization in acid surface mine lakes. In Diatoms and Lake Acidity, ed. Smol, J. P., Battarbee, R. W., Davis, R. B., & Meriläinen, J.. Dordrecht: Dr. W. Junk, pp. 115–29.CrossRefGoogle Scholar
Camburn, K. E. & Charles, D.F. (2000). Diatoms of Low-alkalinity Lakes in the Northeastern United States. Special Publication 18. Philadelphia, PA: Academy of Natural Sciences of Philadelphia.Google Scholar
Camburn, K. E. & Kingston, J. C. (1986). The genus Melosira from soft-water lakes with special reference to northern Michigan, Wisconsin and Minnesota. In Diatoms and Lake Acidity, ed. Smol, J. P., Battarbee, R. W., Davis, R. B., & Meriläinen, J.. Dordrecht: Dr. W. Junk, pp. 17–34.CrossRefGoogle Scholar
Camburn, K. E., Kingston, J. C. & Charles, D. F. (1986). PIRLA Diatom Iconograph. PIRLA Unpublished Report Number 3. Bloomington, IN: Indiana University.Google Scholar
Cameron, N. G. (1995). The representation of diatom communities by fossil assemblages in a small acid lake. Journal of Paleolimnology, 14, 185–223.CrossRefGoogle Scholar
Cameron, N. G., Birks, H. J. B., Jones, V. J., et al. (1999). Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. Journal of Paleolimnology, 22, 291–317.CrossRefGoogle Scholar
Cameron, N. G., Schnell, O. A., Rautio, M. L., et al. (2002). High-resolution analyses of recent sediments from a Norwegian mountain lake and comparison with instrumental records of climate. Journal of Paleolimnology, 28, 79–93.CrossRefGoogle Scholar
Charles, D. F. (1985). Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology, 66, 994–1011.CrossRefGoogle Scholar
Charles, D. F. (1990a). A checklist for describing and documenting diatom and chrysophyte calibration data sets and equations for inferring water chemistry. Journal of Paleolimnology, 3, 175–8.CrossRefGoogle Scholar
Charles, D. F. (1990b). Effects of acidic deposition on North American lakes: paleolimnological evidence from diatoms and chrysophytes. Philosophical Transactions of the Royal Society of London, B 327, 403–12.CrossRefGoogle Scholar
Charles, D. F., Battarbee, R. W., Renberg, I.Dam, H., & Smol, J. P. (1989). Paleoecological analysis of lake acidification trends in North America and Europe using diatoms and chrysophytes. In Soils, Aquatic Processes, and Lake Acidification, eds. Norton, S. A., Lindberg, S. E. & A. L. Page, Acid Precipitation, vol. 4, New York: Springer-Verlag, pp. 207--276.Google Scholar
Charles, D. F., Binford, M. W., Furlong, E. T., et al. (1990). Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. Journal of Paleolimnology, 3, 195–241.CrossRefGoogle Scholar
Charles, D. F., Dixit, S. S., Cumming, B. F., & Smol, J. P. (1991). Variability in diatom and chrysophyte assemblages and inferred pH: paleolimnological studies of Big Moose Lake, New York, (USA). Journal of Paleolimnology, 5, 267–84.CrossRefGoogle Scholar
Charles, D. F. & Norton, S. A. (1986). Paleolimnological evidence for trends in atmospheric deposition of acids and metals. In Acid Deposition: Long-Term Trends. Washington: National Academy Press, pp. 335–435.Google Scholar
Charles, D. F. & Smol, J. P. (1988). New methods for using diatoms and chrysophytes to infer past pH of low-alkalinity lakes. Limnology and Oceanography, 33, 1451–62.Google Scholar
Charles, D. F. & Smol, J. P. (1994). Long-term chemical changes in lakes: Quantitative inferences from biotic remains in the sediment record. In Environmental Chemistry of Lakes and Reservoirs, ed. Baker, L., Washington, DC: American Chemical Society, pp. 3–31.CrossRefGoogle Scholar
Charles, D. F., Smol, J. P., & Engstrom, D. R. (1994). Paleolimnological approaches to biological monitoring. In Biological Monitoring of Aquatic Systems, ed. Loeb, L. L. & Spacie, A., Boca Raton, FL: CRC Press, pp. 233–93.Google Scholar
Charles, D. F. & Whitehead, D. R. (1986). The PIRLA project: Paleo-ecological investigation of recent lake acidification. Hydrobiologia, 143, 13–20.CrossRefGoogle Scholar
Clair, T. A., Dennis, I. F., Scruton, D. A., & Gilliss, M. (2007). Freshwater acidification research in Atlantic Canada: a review of results and predictions for the future. Environmental Reviews, 15, 153–67.CrossRefGoogle Scholar
Cleve-Euler, A. (1951–1955). Die Diatomeen von Schweden und Finnland. Kungliga Vetenskapsakademiens Handlingar Series 4, 2(1), 3–163; 4(1), 3–158; 4(5), 3–355; 5(4), 3–231; 3(3), 3–153.
Coring, E. (1996). Use of diatoms for monitoring acidification in small mountain rivers in Germany with special emphasis on “diatom assemblage type analysis” (DATA). In Use of Algae for Monitoring Rivers II, ed. Whitton, B.A. & Rott, E., Innsbruck: Institut für Botanik, Universität Innsbruck, pp. 7–16.Google Scholar
Cosby, B. J., Ferrier, R. C., Jenkins, A., & Wright, R. F. (2001). Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499–517.CrossRefGoogle Scholar
Crabtree, K. (1969). Post-glacial diatom zonation of limnic deposits in north Wales. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, 17, 165–71.Google Scholar
Cumming, B. F., Davey, K. A., Smol, J. P., & Birks, H. J. B. (1994). When did acid-sensitive Adirondack lakes (New York, USA) begin to acidify and are they still acidifying? Canadian Journal of Fisheries and Aquatic Sciences, 51, 1550–68.CrossRefGoogle Scholar
Cumming, B. F., Smol, J. P., Kingston, J. C., et al. (1992). How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times? Canadian Journal of Fisheries and Aquatic Sciences, 49, 128–41.CrossRefGoogle Scholar
Davis, R. B. (1987). Paleolimnological diatom studies of acidification of lakes by acid rain: an application of quaternary science. Quaternary Science Reviews, 6, 147–63.CrossRefGoogle Scholar
Davis, R. B. & Anderson, D. S. (1985). Methods of pH calibration of sedimentary diatom remains for reconstructing history of pH in lakes. Hydrobiologia, 120, 69–87.CrossRefGoogle Scholar
Davis, R. B., Anderson, D. S., Norton, S. A., & Whiting, M. C. (1994). Acidity of twelve northern New England (U.S.A.) lakes in recent centuries. Journal of Paleolimnology, 12, 103–154.CrossRefGoogle Scholar
Davis, R. B., Anderson, D. S., Whiting, M. C., Smol, J. P. & Dixit, S. S. (1990). Alkalinity and pH of three lakes in northern New England, U.S.A. over the past 300 years. Philosophical Transactions of the Royal Society, London, B 327, 413–21.CrossRefGoogle Scholar
Davis, R. B. & Berge, F. (1980). Atmospheric deposition on Norway during the last 300 years as recorded in SNSF lake sediments. II. Diatom stratigraphy and inferred pH. In Ecological Impact of Acid Precipitation; Proceedings of an International Conference, ed. Drablos, D. & Tollan, A., Oslo-Ås: SNSF, pp. 270–1.Google Scholar
Davis, R. B., Norton, S. A., Hess, C. T., & Brakke, D. F. (1983). Paleolimnological reconstruction of the effects of atmospheric deposition of acids and heavy metals on the chemistry and biology of lakes in New England and Norway. Hydrobiologia, 103, 113–23.CrossRefGoogle Scholar
Del Prete, A. & Schofield, C. (1981). The utility of diatom analysis of lake sediments for evaluating acid precipitation effects on dilute lakes. Archiv für Hydrobiologie, 91, 332–40.Google Scholar
DeNicola, D. M. (1986). The representation of living diatom communities in deep-water sedimentary diatom assemblages in two Maine (U.S.A.) lakes. In Diatoms and Lake Acidity, ed. Smol, J. P., Battarbee, R. W., Davis, R. B., & Meriläinen, J.. Dordrecht: Dr. W. Junk, pp. 73–85.Google Scholar
DeNicola, D. M. (2000). A review of diatoms found in highly acidic environments. Hydrobiologia, 433, 111–22.CrossRefGoogle Scholar
Denys, L. (2006). Calibration of littoral diatoms to water chemistry in standing fresh waters (Flanders, lower Belgium): inference models for historical sediment assemblages. Journal of Paleolimnology, 35, 763–87.CrossRefGoogle Scholar
Dixit, A. S., Dixit, S. S., & Smol, J. P. (1989). Lake acidification recovery can be monitored using chrysophycean microfossils. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1309–12.CrossRefGoogle Scholar
Dixit, A. S., Dixit, S. S., & Smol, J. P. (1992a). Algal microfossils provide high temporal resolution of environmental change. Water, Air and Soil Pollution, 62, 75–87.CrossRefGoogle Scholar
Dixit, A. S., Dixit, S. S., & Smol, J. P. (1992b). Long-term trends in lake water pH and metal concentrations inferred from diatoms and chrysophytes in three lakes near Sudbury, Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 49, 17–24.CrossRefGoogle Scholar
Dixit, A. S., Dixit, S. S., & Smol, J. P. (1996). Setting restoration goals for an acid and metal-contaminated lake: a paleolimnological study of Daisy Lake (Sudbury, Canada). Journal of Lake and Reservoir Management, 12, 323–30.CrossRefGoogle Scholar
Dixit, S. S. (1986). Diatom-inferred pH calibration of lakes near Wawa, Ontario. Canadian Journal of Botany, 64, 1129–33.CrossRefGoogle Scholar
Dixit, S. S., Dixit, A. S. & Evans, R. D. (1987). Paleolimnological evidence of recent acidification in two Sudbury (Canada) lakes. Science of the Total Environment, 67, 53–63.CrossRefGoogle Scholar
Dixit, S. S., Dixit, A. S., & Evans, R. D. (1988). Sedimentary diatom assemblages and their utility in computing diatom-inferred pH in Sudbury Ontario lakes. Hydrobiologia, 169, 135–48.CrossRefGoogle Scholar
Dixit, S. S., Dixit, A. S. & Smol, J. P. (1992c). Assessment of changes in lake water chemistry in Sudbury area lakes since preindustrial times. Canadian Journal of Fisheries and Aquatic Sciences, 49, 8–16.CrossRefGoogle Scholar
Dixit, S. S., Dixit, A. S., & Smol, J. P. (2002). Diatom and chrysophyte transfer functions and inferences of post-industrial acidification and recent recovery trends in Killarney lakes (Ontario, Canada). Journal of Paleolimnology, 27, 79–96.CrossRefGoogle Scholar
Dixit, S. S. & Smol, J. P. (1994). Diatoms as indicators in the Environmental Monitoring and Assessment Program – Surface Waters (EMAP – SW). Environmental Monitoring and Assessment, 31, 275–306.Google Scholar
Dixit, S. S., Smol, J. P., Charles, D. F., et al. (1999). Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Canadian Journal of Fisheries and Aquatic Sciences, 56, 131–52.CrossRefGoogle Scholar
Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Mitchell, M. J. (2003). Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition. Environmental Science and Technology, 37, 2036–42.CrossRefGoogle ScholarPubMed
Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Dukett, J. (2007). Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition. Applied Geochemistry, 22, 1181–8.CrossRefGoogle Scholar
Ek, A. S., Grahn, O., Hultberg, H., & Renberg, I. (1995). Recovery from acidification in lake Örvattnet, Sweden. Water, Air and Soil Pollution, 85, 1795–800.CrossRefGoogle Scholar
Ek, A. S. & Korsman, T. (2001). A paleolimnological assessment of the effects of post-1970 reductions of sulfur deposition in Sweden. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1692–700.CrossRefGoogle Scholar
Ek, A. S., Löfgren, S., Bergholm, J., & Qvarfort, U. (2001). Environmental effects of one thousand years of copper production at Falun, central Sweden. Ambio, 30, 96–103.CrossRefGoogle ScholarPubMed
Ek, A. S. & Renberg, I. (2001). Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun, central Sweden. Journal of Paleolimnology, 26, 89–107.CrossRefGoogle Scholar
Emmett, B., Charles, D. F., Feger, & K. H. (1994). Group report: can we differentiate between natural and anthropogenic acidification? In Acidification of Freshwater Ecosystems: Implications for the Future, ed. Steinberg, C. & Wright, R., Dahlem Workshop Environmental Sciences Research Report 14, Chichester: Wiley, pp. 118–40.Google Scholar
Engstrom, D. R., Fritz, S. C., Almendinger, J. E., & Juggins, S. (2000). Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature, 408, 161–6.CrossRefGoogle ScholarPubMed
Erlandsson, M., Bishop, K., Fölster, J., et al. (2008). A comparison of MAGIC and paleolimnological predictions of preindustrial pH for 55 Swedish lakes. Environmental Science and Technology, 42, 43–8.CrossRefGoogle ScholarPubMed
Evans, C., Reynolds, B., Hinton, C., Hughes, , et al. (2008). Effects of decreasing acid deposition and climate change on acid extremes in an upland stream. Hydrology and Earth System Sciences, 12, 337–51.CrossRefGoogle Scholar
Evans, G. H. (1970). Pollen and diatom analysis of late-Quaternary deposits in the Blelham Basin, north Lancashire. New Phytologist, 69, 821–74.CrossRefGoogle Scholar
Evans, G. H. & Walker, R. (1977). The late-Quaternary history of the diatom flora of Llyn Clyd and Llyn Glas, two small oligotrophic high mountain tarns in Snowdonia (Wales). New Phytologist, 78, 221–36.CrossRefGoogle Scholar
Faulkenham, S. E., Hall, R. I., Dillon, P. J., & Karst-Riddoch, T. (2003). Effects of drought-induced acidification on diatom communities in acid-sensitive Ontario lakes. Limnology & Oceanography, 48, 1662–73.CrossRefGoogle Scholar
Flower, R. J. (1986). The relationship between surface sediment diatom assemblages and pH in 33 Galloway lakes: some regression models for reconstructing pH and their application to sediment cores. Hydrobiologia, 143, 93–103.CrossRefGoogle Scholar
Flower, R. J. & Battarbee, R. W. (1983). Diatom evidence for recent acidification of two Scottish lochs. Nature, 20, 130–3.CrossRefGoogle Scholar
Flower, R. J. & Battarbee, R. W. (1985). The morphology and bio-stratigraphy of Tabellaria quadriseptata Knudson (Bacillariophyta) in acid waters and lake sediments in Galloway, south-west Scotland. British Phycological Journal, 20, 69–79.CrossRefGoogle Scholar
Flower, R. J., Battarbee, R. W., & Appleby, P. G. (1987). The recent palaeolimnology of acid lakes in Galloway, south-west Scotland: diatom analysis, pH trends and the role of afforestation. Journal of Ecology, 75, 797–824.CrossRefGoogle Scholar
Foged, N. (1977). Freshwater Diatoms in Ireland. Ruggell: A. R. G. Ganter Ford, M. S. Verlag KG. (1990). A 10,000 year history of natural ecosystem acidification. Ecological Monographs, 60, 57–89.Google Scholar
Fritz, S. C. & Carlson, R. E. (1982). Stratigraphic diatom and chemical evidence for acid strip-mine lake recovery. Water, Air and Soil Pollution, 17, 151–63.CrossRefGoogle Scholar
Fritz, S. C., Juggins, S., Battarbee, R. W., & Engstrom, D. R. (1991). A diatom-based transfer function for salinity, water-level, and climate reconstruction. Nature, 352, 706–8.CrossRefGoogle Scholar
Gensemer, R. W. & Playle, R. C. (1999). The bioavailability and toxicity of aluminum in aquatic environments. Critical Reviews in Environmental Science and Technology, 29, 315–450.CrossRefGoogle Scholar
Genter, R. B. (1995). Benthic algal populations respond to aluminum, acid, and aluminum-acid mixtures in artificial streams. Hydro-biologia, 306, 7–19.CrossRefGoogle Scholar
Gerber, A. M., Ginn, B. K., Whitfield, C. J., et al. (2008). Glasgow Lake: an early-warning sentinel of lake acidification in Cape Breton Highlands National Park (Nova Scotia), Canada. Hydrobiologia, 614, 299–307.CrossRefGoogle Scholar
Ginn, B. K., Cumming, B. F., & Smol, J. P. (2007a). Diatom-based environmental inferences and model comparisons from 494 northeastern North American lakes. Journal of Phycology, 43, 647–61.CrossRefGoogle Scholar
Ginn, B. K., Cumming, B. F., & Smol, J. P. (2007b). Assessing pH changes since preindustrial times in 51 low-alkalinity lakes from Nova Scotia, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 64, 1043–54.CrossRefGoogle Scholar
Ginn, B. K., Cumming, B. F., & Smol, J. P. (2007c). Long-term acidification trends in high- and low-sulphate deposition regions from Nova Scotia, Canada. Hydrobiologia, 586, 261–75.CrossRefGoogle Scholar
Greenaway, C. M. (2009). Diatom responses to water-quality improvements in lakes recovering from acidification and metal-contamination near Wawa, Ontario: a paleolimnological perspective. Unpublished M.Sc. Thesis. Queen's University, Kingston, Ontario.
Guhrén, M., Bigler, C., & Renberg, I. (2007). Liming placed in a long-term perspective: a paleolimnological study of 12 lakes in the Swedish liming program. Journal of Paleolimnology, 37, 247–58.CrossRefGoogle Scholar
Gunn, J. M. & Keller, W. (1992). Biological recovery of an acid lake after reductions in industrial emissions of sulphur. Nature, 345, 431–3.CrossRefGoogle Scholar
Hargreaves, J. W., Lloyd, E. J. H., Whitton, B. A. (1975). Chemistry and vegetation of highly acidic streams. Freshwater Biology, 5, 563–76.CrossRefGoogle Scholar
Harriman, R. & Morrison, B. R. S. (1982). The ecology of streams draining forested and non-forested catchments in an area of central Scotland subject to acid precipitation. Hydrobiologia, 88, 251–63.CrossRefGoogle Scholar
Haworth, E. Y. (1969). The diatoms of a sediment core from Blea Tarn, Langdale. Journal of Ecology, 57, 429–39.CrossRefGoogle Scholar
Hinderer, M., Jüttner, I., Winkler, R., Steinberg, C. E. W., & Kettrup, A. (1998). Comparing trends in lake acidification using hydrochemical modelling and paleolimnology: the case of the Herrenwieser See, Black Forest, Germany. Science of the Total Environment, 218, 113–21.CrossRefGoogle Scholar
Hirst, H., Chaud, F., Delabie, C., Jüttner, I., & Ormerod, S. J. (2004). Assessing the short-term response of stream diatoms to acidity using inter-basin transplantations and chemical diffusing substrates. Freshwater Biology, 49, 1072–88.CrossRefGoogle Scholar
Holmes, R. W., Whiting, M. C. & Stoddard, J. L. (1989). Changes in diatom-inferred pH and acid neutralizing capacity in a dilute, high elevation, Sierra Nevada lake since A.D. 1825. Freshwater Biology, 21, 295–310.CrossRefGoogle Scholar
Howells, G. & Dalziel, T. R. K. (1991). Restoring Acid Waters: Loch Fleet 1984–1990. London: Elsevier.Google Scholar
Hustedt, F. (1937–1939). Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali, Sumatra. Archiv für Hydrobiologie (Suppl.), 15 & 16.Google Scholar
Huttunen, P., Meriläinen, J., & Tolonen, K. (1978). The history of a small dystrophied forest lake, southern Finland. Polskie Archiwum Hydrobiologii, 25, 189–202.Google Scholar
Huvane, J. K. & Whitehead, D. R. (1996). The paleolimnology of North Pond: watershed-lake interactions. Journal of Paleolimnology, 16, 323–54.CrossRefGoogle Scholar
Iversen, J. (1958). The bearing of glacial and interglacial epochs on the formation and extinction of plant taxa I. In Systematics of Today, ed. Hedberg, O., Uppsala Universitets årsskrift 6, Uppsala: University of Uppsala, pp. 210–15.Google Scholar
Jenkins, A., Whitehead, P. G., Cosby, B. J., & Birks, H.J.B. (1990). Modelling long-term acidification: a comparison with diatom reconstructions and the implications for reversibility. Philosophical Transactions of the Royal Society, London, B327, 209–14.Google Scholar
Jensen, K. W. & Snekvik, E. (1972). Low pH levels wipe out salmon and trout populations in southernmost Norway. Ambio, 1, 223–5.Google Scholar
Jones, V. J., Flower, R. J., Appleby, P. G., et al. (1993). Palaeolimnological evidence for the acidification and atmospheric contamination of lochs in the Cairngorms and Lochnagar areas of Scotland. Journal of Ecology, 81, 3–24.CrossRefGoogle Scholar
Jones, V. J., Stevenson, A. C. & Battarbee, R. W. (1986). Lake acidification and the land-use hypothesis: a mid-post-glacial analogue. Nature, 322, 157–8.CrossRefGoogle Scholar
Jones, V. J., Stevenson, A. C., & Battarbee, R. W. (1989). Acidification of lakes in Galloway, south west Scotland: a diatom and pollen study of the post-glacial history of the Round Loch of Glenhead. Journal of Ecology, 77, 1–23.CrossRefGoogle Scholar
Jüttner, I., Lintelmann, J., Michalke, B., et al. (1997). The acidification of the Herrenwieser See, Black Forest, Germany, before and during industrialisation. Water Research, 31, 1194–206.CrossRefGoogle Scholar
Kahlert, M. & Andrén, C. (2005). Benthic diatoms as valuable indicators of acidity. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 29, 635–9.Google Scholar
Kingston, J. C., Cumming, B. F., Uutala, A. J., et al. (1992a). Biological quality control and quality assurance: a case study in paleolimnological biomonitoring. In Ecological Indicators, ed. McKenzie, D. H., Hyatt, D. E., & McDonald, V. J., New York: Elsevier Applied Science, pp. 1542–3.CrossRefGoogle Scholar
Korhola, A. A. & Tikkanen, M. J. (1991). Holocene development and early extreme acidification in a small hilltop lake in southern Finland. Boreas, 20, 333–56.CrossRefGoogle Scholar
Korhola, A., Virkanen, J., Tikkanen, M., & Blom, T. (1996). Fire-induced pH rise in a naturally acid hill-top lake, southern Finland: a palaeoecological survey. Journal of Ecology, 84, 257–65.CrossRefGoogle Scholar
Korsman, T. (1999). Temporal and spatial trends of lake acidity in northern Sweden. Journal of Paleolimnology, 22, 1–15.CrossRefGoogle Scholar
Korsman, T., Renberg, I., & Anderson, N.J. (1994). A palaeolimnological test of the influence of Norway spruce (Picea abies) immigration on lake-water acidity. The Holocene, 4, 132–40.CrossRefGoogle Scholar
Korsman, T. & Segerström, U. (1998). Forest fire and lake water acidity in a northern Swedish boreal area: Holocene changes in lake-water quality at Makkassjön. Journal of Ecology, 86, 113–24.CrossRefGoogle Scholar
Kovacs, C., Kahlert, M., & Padisak, J. (2006). Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams. Journal of Applied Phycology, 18, 105–17.CrossRefGoogle Scholar
Kram, P., Laudon, H., Bishop, K., Rapp, L., & Hruska, J. (2001). MAGIC modeling of long-term lake water and soil chemistry at Abborrträsket, northern Sweden. Water, Air and Soil Pollution, 130, 1301–6.CrossRefGoogle Scholar
Kreiser, A. M., Appleby, P. G., Natkanski, J., Rippey, B., & Battarbee, R.W. (1990). Afforestation and lake acidification: a comparison of four sites in Scotland. Philosophical Transactions of the Royal Society, London, B 327, 377–83.CrossRefGoogle Scholar
Krug, E. C. & Frink, C. R. (1983). Acid rain on acid soil: a new perspective. Science, 221, 520–5.CrossRefGoogle ScholarPubMed
Kwandrans, J. (2007). Diversity and Ecology of Benthic Diatom Communities in Relation to Acidity, Acidification and Recovery of Lakes and Rivers, Diatom Monographs, vol. 9, ed. Witkowski, A., ed., Ruggell: A. R. G. Gantner Verlag.Google Scholar
Lancaster, J., Real, M., Juggins, S., et al. (1996). Monitoring temporal changes in the biology of acid waters. Freshwater Biology, 36, 179–202.CrossRefGoogle Scholar
Larsen, J., Jones, V. J., & Eide, W. (2006). Climatically driven pH changes in two Norwegian alpine lakes. Journal of Paleolimnology, 36, 57–69.CrossRefGoogle Scholar
Locke, A., Sprules, G. W., Keller, W., & Pitblado, R. J. (1994). Zooplankton communities and water chemistry of Sudbury area lakes: changes related to pH recovery. Canadian Journal of Fisheries and Aquatic Sciences, 51, 151–60.CrossRefGoogle Scholar
Luís, A., Teixeira, P., Almeida, S., et al. (2009). Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding streams of Aljustrel mining area (Portugal). Water Air and Soil Pollution, 200, 147–67.CrossRefGoogle Scholar
Lundqvist, G. (1924). Utvecklingshistoriska insjöstudier i Syd-sverige. Sveriges Geologiska Undersökning, C 330, 1–129.Google Scholar
MacDougall, S., Carrick, H. J. & DeWalle, D. R. (2008). Benthic algae in episodically acidified Pennsylvania streams. Northeastern Naturalist, 15, 189–208.CrossRefGoogle Scholar
Majewski, S.P. & Cumming, B. F. (1999). Paleolimnological investigation of the effects of post-1970 reductions of acidic deposition on an acidified Adirondack lake. Journal of Paleolimnology, 21, 207–13.CrossRefGoogle Scholar
Meriläinen, J. (1967). The diatom flora and the hydrogen ion concentration of the water. Annales Botanici Fennici, 4, 51–8.Google Scholar
Michelutti, N., Laing, T. E., & Smol, J. P. (2001). Diatom assessment of past environmental changes in lakes located near the Noril'sk (Siberia) smelters. Water, Air and Soil Pollution, 125, 231–41.CrossRefGoogle Scholar
Miller, U. (1973). Diatoméundersökning av bottenproppar från Stora Skarsjön, Ljungskile. Statens Naturvårdsverk Publikationer, 7, 43–60.Google Scholar
Monteith, D. T., Stoddard, J. L., Evans, C. D., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–40.CrossRefGoogle ScholarPubMed
Mosello, R., Bonacina, C., Carollo, A., Libera, V., & Tartari, G.A. (1986). Acidification due to in-lake ammonia oxidation: an attempt to quantify the proton production in a highly polluted subalpine Italian lake. Memorie dell'Istituto Italiano di Idrobiologia, 44, 47–71.Google Scholar
Niemi, D. (2005). Emissions of pollutants related to acid deposition in North America. In 2004 Canadian Acid Deposition Science Assessment, Ottawa, ON: Environment Canada, pp. 5–14.Google Scholar
Nilsson, I. S., Miller, H. G., & Miller, J. D. (1982). Forest growth as a possible cause of soil and water acidification: an examination of the concepts. Oikos, 39, 40–9.CrossRefGoogle Scholar
Niyogi, D. K., Lewis, W. M., & McKnight, D. M. (2002). Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystem, 5, 554–67.Google Scholar
Norberg, M., Bigler, C., & Renberg, I. (2008). Monitoring compared with paleolimnology: implications for the definition of reference condition in limed lakes in Sweden. Environmental Modelling and Assessment, 146, 295–308.CrossRefGoogle ScholarPubMed
Norberg, M., Bigler, C., & Renberg, I. (2010). Comparing pre-industrial and post-limed diatom communities in Swedish lakes, with implications for defining realistic management targets. Journal of Paleolimnology, 44: 233–42.CrossRefGoogle Scholar
Nygaard, G. (1956). Ancient and recent flora of diatoms and chrysophyceae in Lake Gribsø. Studies on the humic acid lake Gribsø. Folia Limnologica Scandinavica, 8, 32–94.Google Scholar
Odén, S. (1968). The Acidification of Air Precipitation and its Consequences in the Natural Environment, Energy Committee Bulletin, 1, Stockhom: Swedish Natural Sciences Research Council.Google Scholar
Oehlert, G. W. (1988). Interval estimates for diatom inferred lake pH histories. Canadian Journal of Statistics, 16, 51–60.CrossRefGoogle Scholar
Passy, S. I. (2006). Diatom community dynamics in streams of chronic and episodic acidification: the roles of environment and time. Journal of Phycology, 42, 312–23.CrossRefGoogle Scholar
Patrick, S. T., Monteith, D. T., & Jenkins, A. (eds.) (1995). UK Acid Waters Monitoring Network: the First Five Years. Analysis and Interpretation of Results April 1988-March 1993. London: ENSIS.
Patrick, S. T., Battarbee, R. W., & Jenkins, A. (1996). Monitoring acid waters in the U.K.: an overview of the U.K. Acid Waters Monitoring Network and summary of the first interpretative exercise. Freshwater Biology, 36, 131–50.CrossRefGoogle Scholar
Pennington, W. (1984). Long-term natural acidification of upland sites in Cumbria: evidence from post-glacial lake sediments. Freshwater Biological Association Annual Report, 52, 28–46.Google Scholar
Pennington, W., Haworth, E. Y., Bonny, A. P., & Lishman, J. P. (1972). Lake sediments in northern Scotland. Philosophical Transactions of the Royal Society, London, B 264, 191–294.CrossRefGoogle Scholar
Persson, J., Nilsson, M., Bigler, C., Brooks, S. J., & Renberg, I. (2007). Near-infrared spectroscopy (NIRS) of epilithic material in streams has a potential for monitoring impact from mining. Environmental Science and Technology, 41, 2874–80.CrossRefGoogle Scholar
Pither, J. & Aarssen, L. W. (2005). Environmental specialists: their prevalence and their influence on community – similarity analyses. Ecology Letters, 8, 261–71.CrossRefGoogle Scholar
Pither, J. & Aarssen, L. W. (2006). How prevalent are pH-specialist diatoms? A reply to Telford et al. (2006) Ecology Letters, 9, E6–E12.CrossRefGoogle Scholar
Planas, D. (1996). Acidification effects. In Algal ecology: Freshwater benthic ecosystems, (eds. Stevenson, R. J., Bothwell, M. L. and Lowe, R. L.). Academic Press: San Diego, pp. 497–530.CrossRefGoogle Scholar
Planas, D., Lapierre, L., Moreau, G., & Allard, M. (1989). Structural organization and species composition of a lotic periphyton community in response to experimental acidification. Canadian Journal of Fisheries and Aquatic Sciences, 46, 827–35.CrossRefGoogle Scholar
Psenner, R. & Schmidt, R. (1992). Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature, 356, 781–3.CrossRefGoogle Scholar
Renberg, I. (1976). Palaeolimnological investigations in Lake Prästsjön. Early Norrland, 9, 113–60.Google Scholar
Renberg, I. (1978). Palaeolimnology and varve counts of the annually laminated sediment of Lake Rudetjärn, northern Sweden. Early Norrland, 11, 63–92.Google Scholar
Renberg, I. (1986). A sedimentary diatom record of severe acidification in Lake Blåmissusjön, N. Sweden, through natural processes. In Diatoms and Lake Acidity, ed. Smol, J. P., Battarbee, R. W., Davis, R. B., & Meriläinen, J.. Dordrecht: Dr. W. Junk, pp. 213–19.CrossRefGoogle Scholar
Renberg, I. (1990). A 12,600 year perspective of the acidification of Lilla Öresjön, southwest Sweden. Philosophical Transactions of the Royal Society, London, B 327, 357–61.CrossRefGoogle Scholar
Renberg, I., Bigler, C., Bindler, R., et al. (2009). Environmental history: a piece in the puzzle for establishing plans for environmental management. Journal of Environmental Management, 90, 2794– 800.CrossRefGoogle ScholarPubMed
Renberg, I. & Hellberg, T. (1982). The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio, 11, 30–3.Google Scholar
Renberg, I., Korsman, T., & Anderson, N. J. (1990). Spruce and surface water acidification: an extended summary. Philosophical Transactions of the Royal Society, London, B 327, 371–2.CrossRefGoogle Scholar
Renberg, I., Korsman, T., & Anderson, N. J. (1993a). A temporal perspective of lake acidification in Sweden. Ambio, 22, 264–71.Google Scholar
Renberg, I., Korsman, T., & Birks, H. J. B. (1993b). Prehistoric increases in the pH of acid-sensitive Swedish lakes caused by land-use changes. Nature, 362, 824–6.CrossRefGoogle Scholar
Rhodes, T. E. & Davis, R. B. (1995). Effects of late Holocene forest disturbance and vegetation change on acidic Mud Pond, Maine, USA. Ecology, 76, 734–46.CrossRefGoogle Scholar
Rosenqvist, I. T. (1977). Acid Soil – Acid Water. Oslo: Ingeniörforlaget.Google Scholar
Rosenqvist, I. T. (1978). Alternative sources for acidification of river water in Norway. The Science of the Total Environment, 10, 39–49.CrossRefGoogle Scholar
Round, F. E. (1957). The late-glacial and post-glacial diatom succession in the Kentmere Valley deposit: I. Introduction, methods and flora. New Phytologist, 56, 98–126.CrossRefGoogle Scholar
Round, F. E. (1961). Diatoms from Esthwaite. New Phytologist, 60, 98–126.CrossRefGoogle Scholar
Round, F. E. (1991). Epilithic diatoms in acid water streams flowing into the reservoir Llyn Brianne. Diatom Research, 6, 137–45.CrossRefGoogle Scholar
Rowe, J. M. (1999). Heart of a Mountain, Soul of a Town – The Story of Algoma Ore and the Town of Wawa, Altona, Canada: Friesens.Google Scholar
Sabater, S., Buchaca, T., Cambra, J., et al. (2003). Structure and function of benthic algal communities in an extremely acid river. Journal of Phycology, 39, 481–9.CrossRefGoogle Scholar
Salomaa, R. & Alhonen, P. (1983). Biostratigraphy of Lake Spitaalijärvi: an ultraoligotrophic small lake in Lauhanvuori, western Finland. Hydrobiologia, 103, 295–301.CrossRefGoogle Scholar
Sandøy, S. & Langåker, R. M. (2001). Atlantic salmon and acidification in Southern Norway: a disaster in the 20th century, but a hope for the future? Water, Air and Soil Pollution, 130, 1343–8.CrossRefGoogle Scholar
Sarmaja-Korjonen, K., Nyman, M., Kultti, S., & Väliranta, M. (2006). Palaeolimnological development of Lake Njargajavri, northern Finnish Lapland, in a changing Holocene climate and environment. Journal of Paleolimnology, 35, 65–81.CrossRefGoogle Scholar
Sienkiewicz, E., Gasiorowski, M., & Hercman, H. (2006). Is acid rain impacting the Sudetic lakes? Science of the Total Environment, 369, 139–49.CrossRefGoogle ScholarPubMed
Skjelkvåle, B. L., Borg, H., Hindar, A., & Wilander, A. (2007). Large-scale patterns of chemical recovery in lakes in Norway and Sweden: importance of seasalt episodes and changes in dissolved organic carbon. Applied Geochemistry, 22, 1174–80.CrossRefGoogle Scholar
Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., et al. (2005). Regional scale evidence for improvements in surface water chemistry 1990–2001. Environmental Pollution, 137, 165–76.CrossRefGoogle ScholarPubMed
Solovieva, N. & Jones, V. J. (2002). A multiproxy record of Holocene environmental changes in the central Kola Peninsula, northwest Russia. Journal of Quaternary Science, 17, 303–18.CrossRefGoogle Scholar
Somers, K. M. & Harvey, H. H. (1984). Alteration of lake fish communities in response to acid precipitation and heavy metal loading near Wawa, Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 41, 20–9.CrossRefGoogle Scholar
Sommaruga-Wögrath, S., Koinig, K. A., Schmidt, R., et al. (1997). Temperature effects on the acidity of remote alpine lakes. Nature, 387, 64–7.CrossRefGoogle Scholar
Steinberg, C., Hartmann, H., Arzet, K., & Krause-Dellin, D. (1988). Paleoindication of acidification in Kleiner Arbersee (Federal Republic of Germany, Bavarian Forest) by chydorids, chrysophytes, and diatoms. Journal of Paleolimnology, 1, 149–57.CrossRefGoogle Scholar
Steinberg, C. & Putz, R. (1991). Epilithic diatoms as bioindicators of stream acidification. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 24, 1877–80.Google Scholar
Stevenson, A. C., Juggins, S., Birks, H. J. B., et al. (1991). The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-Water Chemistry Data-Set. London: Ensis Ltd.Google Scholar
Stoddard, J., Jeffries, D. S, Lükewille, A., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575–8.CrossRefGoogle Scholar
Stuchlík, D., P. Appleby, P.Bituscaroník, C.et al. (2002). Reconstruction of long-term changes in lake water chemistry, zooplankton and benthos of a small, acidified high-mountain lake: MAGIC modelling and palaeolimnogical analysis. Water, Air and Soil Pollution: Focus, 2, 127–38.CrossRefGoogle Scholar
Sullivan, T. J., Charles, D. F., Smol, J. P, et al. (1990). Quantification of changes in lakewater chemistry in response to acidic deposition. Nature, 345, 54–8.CrossRefGoogle Scholar
Sullivan, T. J., McMartin, B., & Charles, D. F. (1996). Re-examination of the role of landscape change in the acidification of lakes in the Adirondack Mountains, New York. The Science of the Total Environment, 183, 231–48.CrossRefGoogle Scholar
Sweets, P. R., Bienert, R. W., Crisman, T. L. & Binford, M. W. (1990). Paleoecological investigations of recent lake acidification in northern Florida. Journal of Paleolimnology, 4, 103–37.CrossRefGoogle Scholar
Telford, R. J., Vandvik, V. & Birks, H. J. B. (2006). How many freshwater diatoms are pH specialists? A response to Pither & Aarssen (2005). Ecology Letters, 9, E1–E5.CrossRefGoogle Scholar
Braak, C. J. F. & Juggins, S. (1993). Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269/270, 485–502.CrossRefGoogle Scholar
Braak, C. J. F & Dam, H. (1989). Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia, 178, 209–23.CrossRefGoogle Scholar
Tropea, A. E. (2008). Assessing biological recovery from acidification and metal contamination in urban lakes from Sudbury, Canada: a paleolimnological approach. Unpublished M.Sc. thesis, Queen's University, Kingston, Ontario, pp. 232.
Unsworth, M. H. (1984). Evaporation from forests in cloud enhances the effect of acid deposition. Nature, 312, 262–4.CrossRefGoogle Scholar
,USEPA. (2000). National air pollutant emissions trends, 1900–1998. Washington, DC: EPA.
Dam, H. (1988). Acidification of three moorland pools in The Netherlands by acid precipitation and extreme drought periods over seven decades. Freshwater Biology, 20, 157–76.CrossRefGoogle Scholar
Dam, H. & Kooyman-van Blokland, H. (1978). Man-made changes in some Dutch moorland pools, as reflected by historical and recent data about diatoms and macrophytes. Internationale Revue gesamten Hydrobiologie, 63, 587–607.Google Scholar
Dam, H. & Mertens, A. (1990). A comparison of recent epilithic diatom assemblages from the industrially acidified and copper polluted Lake Orta (Northern Italy) with old literature data. Diatom Research, 5, 1–13.Google Scholar
Dam, H. & Mertens, A. (1995). Long-term changes of diatoms and chemistry in headwater streams polluted by atmospheric deposition of sulphur and nitrogen compounds. Freshwater Biology, 34, 579–600.CrossRefGoogle Scholar
Dam, H. & Mertens, A. (2008). Vennen minder zuur maar warmer. H2O, 41, 36–9.Google Scholar
Dam, H., Suurmond, G., & Braak, C. J. F. (1981). Impact of acidification on diatoms and chemistry of Dutch moorland pools. Hydrobiologia, 83, 425–59.Google Scholar
Verb, R. G. & Vis, M. L. (2000). Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. Journal of the North American Benthological Society, 19, 274–88.CrossRefGoogle Scholar
Verb, R. G. & Vis, M. L. (2005). Periphyton assemblages as bioindicators of mine-drainage in unglaciated Western Allegheny Plateau lotic systems. Water, Air and Soil Pollution, 161, 227–65.CrossRefGoogle Scholar
Virkanen, J., Korhola, A., Tikkanen, M., & Blom, T. (1997). Recent environmental changes in a naturally acidic rocky lake in southern Finland, as reflected in its sediment geochemistry and biostratigraphy. Journal of Paleolimnology, 17, 191–213.CrossRefGoogle Scholar
Watanabe, T. & Asai, K. (1999). Diatoms on the pH gradient from 1.0 to 12.5. In Proceedings of the 14th Diatom Symposium 1996, ed. Mayama, S., Idei, M., and Koizumi, I., Königstein: Koeltz Scientific Books, pp. 383–412.Google Scholar
Weckström, J., Snyder, J. A., Korhola, A., Laing, T. E., & MacDonald, G. M. (2003). Diatom inferred acidity history of 32 lakes on the Kola Peninsula, Russia. Water, Air and Soil Pollution, 149, 339–61.CrossRefGoogle Scholar
Whitehead, D. R., Charles, D. F., Jackson, S. T., Smol, J. P., & Engstrom, D. R. (1989). The developmental history of Adirondack (N.Y.) lakes. Journal of Paleolimnology, 2, 185–206.CrossRefGoogle Scholar
Whitehead, D. R., Charles, D. F., Reed, S. E., Jackson, S. T., & Sheehan, M. C. (1986). Late-glacial and holocene acidity changes in Adirondack (NY) lakes. In Diatoms and Lake Acidity, ed. Smol, J. P., Battarbee, R. W., Davis, R. B., & Meriläinen, J., Dordrecht: Dr. W. Junk, pp. 251–74.Google Scholar
Whiting, M. C., Whitehead, D. R., Holmes, R. W., & Norton, S. A. (1989). Paleolimnological reconstruction of recent acidity changes in four Sierra Nevada lakes. Journal of Paleolimnology, 2, 285–304.CrossRefGoogle Scholar
Williams, D. M., Hartley, B., Ross, R., Munro, M. A. R., Juggins, S., & Battarbee, R. W. (1988). A Coded Checklist of British Diatoms. London: ENSIS Publishing.Google Scholar
Winkler, M. G. (1988). Paleolimnology of a Cape Cod Kettle Pond: diatoms and reconstructed pH. Ecological Monographs, 58, 197–214.CrossRefGoogle Scholar
Wolfe, A. P. (2002). Climate modulates the acidity of Arctic lakes on millennial time scale. Geology, 30, 215–18.2.0.CO;2>CrossRefGoogle Scholar
Wright, R. F., Cosby, B. J., Hornberger, G. M., & Galloway, J. N. (1986). Comparison of paleolimnological with MAGIC model reconstructions of water acidification. Water, Air and Soil Pollution, 30, 367–80.CrossRefGoogle Scholar
Yoshitake, S. & Fukushima, H. (1995). Distribution of attached diatoms in inorganic acid lakes in Japan. In Proceedings of the Thirteenth International Diatom Symposium, ed. Marino, D. & Montresor, M., Bristol: Biopress Ltd., pp. 321–33.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×