Skip to main content Accessibility help
Hostname: page-component-684899dbb8-ndjvl Total loading time: 1.036 Render date: 2022-05-22T23:37:43.795Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

14 - The Evolution of Senescence in Annual Plants

The Importance of Phenology and the Potential for Plasticity

from Part III - Senescence in Plants

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
University of Tokyo
Owen R. Jones
University of Southern Denmark
Roberto Salguero-Gómez
University of Sheffield
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ågren, J., Oakley, C. G., McKay, J. K., et al. (2013). Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 110, 21077–82.CrossRefGoogle Scholar
Ågren, J. & Schemske, D. W. (2012). Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range. New Phytologist, 194, 1112–22.CrossRefGoogle ScholarPubMed
Aikawa, S., Kobayashi, M. J., Satake, A., et al. (2010). Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proceedings of the National Academy of Sciences of the United States of America, 107, 11632–7.CrossRefGoogle Scholar
Ainsworth, E. A. & Ort, D. R. (2010). How do we improve crop production in a warming world? Plant Physiology, 154, 526–30.CrossRefGoogle Scholar
Albani, M. C. & Coupland, G. (2010). Comparative analysis of flowering in annual and perennial plants. In Plant Development (San Diego: Elsevier Academic Press).Google Scholar
Andres, F. & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13, 627–39.CrossRefGoogle ScholarPubMed
Aronson, J., Kigel, J., Shmida, A. & Klein, J. (1992). Adaptive phenology of desert and Mediterranean populations of annual plants grown with and without water-stress. Oecologia, 89, 1726.CrossRefGoogle ScholarPubMed
Aschan, G. & Pfanz, H. (2003). Non-foliar photosynthesis: a strategy of additional carbon acquisition. Flora, 198, 8197.CrossRefGoogle Scholar
Balazadeh, S., Parlitz, S., Mueller-Roeber, B. & Meyer, R. C. (2008a). Natural developmental variations in leaf and plant senescence in Arabidopsis thaliana. Plant Biology, 10, 136–47.Google ScholarPubMed
Balazadeh, S., Riano-Pachon, D. M. & Mueller-Roeber, B. (2008b). Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biology, 10, 6375.CrossRefGoogle ScholarPubMed
Bannayan, M., Crout, N. M. J. & Hoogenboom, G. (2003). Application of the CERES-Wheat model for within-season prediction of winter wheat yield in the United Kingdom. Agronomy Journal, 95, 114–25.CrossRefGoogle Scholar
Barth, C., Tullio, M. D. & Conklin, P. L. (2006). The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany, 57, 1657–65.CrossRefGoogle Scholar
Baudisch, A. (2008). Inevitable aging? Contributions to Evolutionary-Demographic Theory (Berlin, Springer).Google Scholar
Baudisch, A., Salguero-Gómez, R., Jones, O. R., et al. (2013). The pace and shape of senescence in angiosperms. Journal of Ecology, 101, 596606.CrossRefGoogle Scholar
Borges, R. M. (2009). Phenotypic plasticity and longevity in plants and animals: cause and effect? Journal of Biosciences, 34, 605–11.CrossRefGoogle ScholarPubMed
Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50, 248–60.CrossRefGoogle Scholar
Brommer, J. E. (2014). Senescence: detecting an evolutionary fingerprint in plants. Current Biology, 24, R267–9.CrossRefGoogle ScholarPubMed
Burghardt, L. T., Metcalf, C. J. E., Wilczek, A. M., et al. (2015). Modeling the influence of genetic and environmental variation on the expression of plant life cycles across landscapes. American Naturalist, 185(2), 212227.CrossRefGoogle ScholarPubMed
Charnov, E. L. & Schaffer, W. M. (1973). Life history consequences of natural selection: Cole’s result revisited. American Naturalist, 107, 791–3.CrossRefGoogle Scholar
Chuine, I. & Beaubien, E.G. (2001). Phenology is a major determinant of tree species range. Ecology Letters, 4, 500–10.CrossRefGoogle Scholar
Cole, L. C. (1954). The population consequences of life history phenomena. Quarterly Review of Biology, 29, 103–36.CrossRefGoogle ScholarPubMed
Crespi, B. J. & Teo, R. (2002). Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes. Evolution, 56, 1008–20.CrossRefGoogle ScholarPubMed
Davies, P. J. & Gan, S. (2012). Towards an integrated view of monocarpic plant senescence. Russian Journal of Plant Physiology, 59, 467–78.CrossRefGoogle Scholar
Donohue, K., Dorn, D., Griffith, C., et al. (2005). The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution, 59, 758–70.CrossRefGoogle ScholarPubMed
Earley, E. J., Ingland, B., Winkler, J. & Tonsor, S. J. (2009). Inflorescences contribute more than rosettes to lifetime carbon gain in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 96, 786–92.CrossRefGoogle Scholar
Evans, M. E. K., Hearn, D. J., Hahn, W. J., et al. (2005). Climate and life history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis. Evolution, 59, 1914–27.CrossRefGoogle ScholarPubMed
Flatt, T. & Schmidt, P. S. (2009). Integrating evolutionary and molecular genetics of aging. Biochimica et Biophysica Acta, 1790, 951–62.Google ScholarPubMed
Foster, T., Johnston, R. & Seleznyova, A. (2003). A morphological and quantitative characterization of early floral development in apple (Malus x domestica Borkh.). Annals of Botany, 92, 199206.CrossRefGoogle Scholar
Gammelvind, L. H., Schjoerring, J. K., Mogensen, V. O., et al. (1996). Photosynthesis in leaves and siliques of winter oilseed rape (Brassica napus L). Plant and Soil, 186, 227–36.CrossRefGoogle Scholar
Gombert, J., Etienne, P., Ourry, A. & Le Dily, F. (2006). The expression patterns of SAG12/CAB genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment. Journal of Experimental Botany, 57, 1949–56.CrossRefGoogle ScholarPubMed
Grbic, V. (2003). SAG2 and SAG12 protein expression in senescing Arabidopsis plants. Physiologia Plantarum, 119, 263–9.CrossRefGoogle Scholar
Guo, Y. F. & Gan, S. S. (2011). AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiology, 156, 1612–19.CrossRefGoogle ScholarPubMed
Hensel, L. L., Grbic, V., Baumgarten, D. A. & Bleecker, A. B. (1993). Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell, 5, 553–64.CrossRefGoogle ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169173.CrossRefGoogle ScholarPubMed
de Jong, T.J., Klinkhamer, P.G.L. & de Heiden, J.L.H. (2000). The evolution of generation time in metapopulations of monocarpic perennial plants: some theoretical considerations and the example of the rare thistle Carlina vulgaris. Evolutionary Ecology, 14, 213231.CrossRefGoogle Scholar
Kim, E. & Donohue, K. (2011). Demographic, developmental and life-history variation across altitude in Erysimum capitatum. Journal of Ecology, 99, 1237–49.CrossRefGoogle Scholar
Klinkhamer, P. G. L., de Jong, T. J. & de Heiden, J. L. H. (1996). An eight-year study of population dynamics and life-history variation of the biennial Carlina vulgaris. Oikos, 75, 259–68.CrossRefGoogle Scholar
Klinkhamer, P. G. L., Meelis, E., de Jong, T. J. & Weiner, J. (1992). On the analysis of size-dependent reproductive output in plants. Functional Ecology, 6, 308–16.CrossRefGoogle Scholar
Lawrence, M. (1976). Variation in natural populations of Arabidopsis thaliana (L.) Heynh. In The Biology and Chemistry of the Cruciferae, ed. Vaghan, J. G., Macleod, A. J. & Jones, B. M. G. (London: Academic Press).Google Scholar
Li, J. H., Dijkstra, P., Hymus, G. J., et al. (2000). Leaf senescence of Quercus myrtifolia as affected by long-term CO2 enrichment in its native environment. Global Change Biology, 6, 727–33.CrossRefGoogle Scholar
Libert, S., Zwiener, J., Chu, X. W., et al. (2007). Regulation of Drosophila life span by olfaction and food-derived odors. Science, 315, 1133–7.CrossRefGoogle ScholarPubMed
Lim, P. O., Kim, H. J. & Nam, H. G. (2007). Leaf senescence. In Annual Review of Plant Biology (Palo Alto, CA: Annual Reviews, 58, 115136).Google Scholar
Mair, W., Goymer, P., Pletcher, S. D. & Partridge, L. (2003). Demography of dietary restriction and death in Drosophila. Science, 301, 1731–3.CrossRefGoogle Scholar
Medawar, P. (1952). The Uniqueness of the Individual (London: Methuen).Google Scholar
Meng, Y. Y., Li, H. Y., Wang, Q., et al. (2013). Blue light–dependent interaction between CRYPTOCHROME2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell, 25, 4405–20.CrossRefGoogle Scholar
Metcalf, C. J. E. & Mitchell-Olds, T. (2009). Life history in a model system: opening the black box with Arabidopsis thaliana. Ecology Letters, 12, 593600.CrossRefGoogle Scholar
Metcalf, J. C., Rose, K. E. & Rees, M. (2003). Evolutionary demography of monocarpic perennials. Trends in Ecology and Evolution, 18, 471–80.CrossRefGoogle Scholar
National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory (NOAA-GFDL) (2004). Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment and US Climate Change Science Program (CCSP) Projects. Princeton, NJ.
Nussey, D. H., Froy, H., Lemaître, J.-F., et al. (2013). Senescence in natural population of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle Scholar
Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. (2007). Environmental conditions in early life influence ageing rates in a wild population of red deer. Current Biology, 17, R1000–1.CrossRefGoogle Scholar
Onishi, K., Sano, Y. & Nakashima, H. (2003). Developmental fates of axillary for the pattern of life buds as a major determinant history in Lolium. Plant Production Science, 6, 179–84.CrossRefGoogle Scholar
Picó, F. X. (2012). Demographic fate of Arabidopsis thaliana cohorts of autumn- and spring-germinated plants along an altitudinal gradient. Journal of Ecology, 100, 1009–18.CrossRefGoogle Scholar
Poggio, S. L., Satorre, E. H., Dethiou, S. & Gonzalo, G. M. (2005). Pod and seed numbers as a function of photothermal quotient during the seed set period of field pea (Pisum sativum) crops. European Journal of Agronomy, 22, 5569.CrossRefGoogle Scholar
Pujol, B., Marrot, P. & Pannell, J. R. (2014). A quantitative genetic signature of senescence in a short-lived perennial plant. Current Biology, 24, 744–7.CrossRefGoogle Scholar
Quirino, B. F., Noh, Y. S., Himelblau, E. & Amasino, R. M. (2000). Molecular aspects of leaf senescence. Trends in Plant Science, 5, 278–82.CrossRefGoogle ScholarPubMed
Rees, M., Childs, D. Z., Metcalf, J. C., et al. (2006). Seed dormancy and delayed flowering in monocarpic plants: selective interactions in a stochastic environment. American Naturalist, 168, e53.CrossRefGoogle Scholar
Reinsdorf, E., Koch, H. J. & Marlander, B. (2013). Phenotype related differences in frost tolerance of winter sugar beet (Beta vulgaris L. ). Field Crops Research, 151, 2734.CrossRefGoogle Scholar
Remington, D. L., Leinonen, P. H., Leppala, J. & Savolainen, O. (2013). Complex genetic effects on early vegetative development shape resource allocation differences between Arabidopsis lyrata populations. Genetics, 195, 10871102.CrossRefGoogle Scholar
Richter, R., Bastakis, E. & Schwechheimer, C. (2013). Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiology, 162, 19922004.CrossRefGoogle ScholarPubMed
Roach, D. A. (2003). Evolutionary and demographic approaches to the study of whole plant senescence. In Plant Cell Death Processes, ed. Nooden, L. D. (New York: Academic Press).Google Scholar
Roff, D. A. (2003). Life History Evolution (Sunderland, MA: Sinauer Associates).Google Scholar
Satake, A., Kawagoe, T., Saburi, Y., et al. (2013). Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nature Communications, 4.CrossRefGoogle ScholarPubMed
Seo, E., Lee, H., Jeon, J., et al. (2009). Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell, 21, 3185–97.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories (New York, Oxford University Press).Google Scholar
Thomas, H. (2013). Senescence, ageing and death of the whole plant. New Phytologist, 197, 696711.CrossRefGoogle ScholarPubMed
Wang, J. Y. (1960). A critique of the heat unit approach to plant-response studies. Ecology, 41, 785–90.CrossRefGoogle Scholar
Wang, R., Farrona, S., Vincent, C., et al. (2009). PEP1 regulates perennial flowering in Arabis alpina. Nature, 459, 423–7.CrossRefGoogle ScholarPubMed
Watanabe, M., Balazadeh, S., Tohge, T., et al. (2013). Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiology, 162, 12901310.CrossRefGoogle ScholarPubMed
Wilczek, A. M., Burghardt, L. T., Cobb, A. R., et al. (2010). Genetic and physiological bases for phenological responses to current and predicted climates. Philosophical Transactions of the Royal Society Series B: Biological Sciences, 365, 3129–47.CrossRefGoogle ScholarPubMed
Wilczek, A. M., Roe, J. L., Knapp, M. C., et al. (2009). Effects of genetic perturbation on seasonal life-history plasticity. Science, 323, 930–4.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural-selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Wingler, A. (2011). Interactions between flowering and senescence regulation and the influence of low temperature in Arabidopsis and crop plants. Annals of Applied Biology, 159, 320–38.CrossRefGoogle Scholar
Woo, H. R., Kim, H. J., Nam, H. G. & Lim, P. O. (2013). Plant leaf senescence and death: regulation by multiple layers of control and implications for aging in general. Journal of Cell Science, 126, 4823–33.CrossRefGoogle ScholarPubMed
Young, T. P. (1990). Evolution of semelparity in Mount Kenya Lobelias. Evolutionary Ecology, 4, 157–71.CrossRefGoogle Scholar
Zentgraf, U., Laun, T. & Miao, Y. (2010). The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. European Journal of Cell Biology, 89, 133–7.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats