Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T15:20:01.463Z Has data issue: false hasContentIssue false

16 - Glires summary

from Part V - Glires

Published online by Cambridge University Press:  07 September 2010

Christine M. Janis
Affiliation:
Brown University, Rhode Island
Gregg F. Gunnell
Affiliation:
University of Michigan, Ann Arbor
Mark D. Uhen
Affiliation:
University of Alabama, Birmingham
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, R. M., Gelke, E. L., Rowe, D., and Honeycutt, R. L. (2001). Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes. Molecular Biology and Evolution, 18, 777–91.CrossRefGoogle ScholarPubMed
Adkins, R. M., Walton, A. H., and Honeycutt, R. L. (2003). Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Molecular Phylogenetics and Evolution, 26, 409–20.CrossRefGoogle ScholarPubMed
Archibald, J. D., Averianov, A. O., and Ekdale, E. G. (2001). Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals. Nature, 414, 62–5.CrossRefGoogle ScholarPubMed
Biewener, A. A. (1989). Scaling body support in mammals: limb posture and muscle mechanics. Science, 245, 45–8.CrossRefGoogle ScholarPubMed
Biewener, A. A. (1998). Muscle–tendon stresses and elastic energy storage during locomotion in the horse. Comparative Biochemistry and Physiology B, 120, 73–87.CrossRefGoogle Scholar
Blainville, H. M. D. (1816). Prodrome d'une nouvelle distribution systématique du règne animal. Bulletin des Sciences, Société Philomathique de Paris, Série 3, 3, 105–24.Google Scholar
Bramble, D. M. (1989). Cranial specialization and locomotor habit in the Lagomorpha. American Zoologist, 29, 303–17.CrossRefGoogle Scholar
Brandt, J. F. (1855). Untersuchungen über die Cranialogischen Entwicklungsufen und Classification der Nager der Jetzwelt. Mémoires de l'Acadamie Impériale de St. Pétersbourg, Série 6, 7, 125–336.Google Scholar
Bugge,, J. (1985). Systematic value of the carotid arterial pattern in rodents. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 355–79. New York: Plenum Press.Google Scholar
Cao, Y., Okada, N., and Hasegawa, M. (1997). Phylogenetic position of guinea pigs revisited. Molecular Biology and Evolution, 14, 461–4.CrossRefGoogle ScholarPubMed
Catzeflis, F. M., Hänni, C., Sourrouille, F., and Douzery, E. (1995). Re: molecular systematics of hystricognath rodents: the contribution of sciurognath mitochondrial 12S rRNA sequences. Molecular Phylogenetics and Evolution, 4, 357–60.CrossRefGoogle ScholarPubMed
Dawson, M. R. and Beard, K. C. (1996). New Late Paleocene rodents (Mammalia) from Big Multi Quarry, Washakie Basin, Wyoming. Palaeovertebrata, 25, 301–21.Google Scholar
Dawson, M. R., Li, C.-K., and Qui, T. (1984). Eocene ctenodactyloid rodents (Mammalia) of Eastern and Central Asia. Carnegie Museum of Natural History Special Publication, 9, 138–50.Google Scholar
DeBry, R. W. and Sagel, R. M. (2001). Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encoded gene IRBP. Molecular Phylogenetics and Evolution, 19, 290–301.CrossRefGoogle ScholarPubMed
Erchia, D' A. M., Gissi, C., Pesole, G., Saccone, C., and Arnason, U. (1996). The guinea-pig is not a rodent. Nature, 381, 597–9.CrossRefGoogle Scholar
Jong, W. W., Dijk, M. A. M., Poux, C., et al. (2003). Indels in protein-coding sequences of Euarchontoglires constrain the rooting of the eutherian tree. Molecular Phylogenetics and Evolution, 28, 328–40.CrossRefGoogle ScholarPubMed
Douady, C., Carels, N., Clay, O., and Bernardi, G. (2000). Diversity and phylogenetic implications of CsCl profiles from rodent DNAs. Molecular Phylogenetics and Evolution, 17, 219–30.CrossRefGoogle ScholarPubMed
Douzery, E. J. P. and Huchon, D. (2004). Rabbits, if anything, are likely Glires. Molecular Phylogenetics and Evolution, 33, 922–35.CrossRefGoogle ScholarPubMed
Eizirik, E., Murphy, W. J., and Brien, O' S. J. (2001). Molecular dating and biogeography of the early placental mammal radiation. Journal of Heredity, 92, 212–19.CrossRefGoogle ScholarPubMed
Elissamburu, A., and Vizcaíno, S. F. (2004). Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). Journal of Zoology, London, 262, 145–59.CrossRefGoogle Scholar
Frye, M. S. and Hedges, S. B. (1995). Monophyly of the order Rodentia inferred from mitochondrial DNA sequences of the genes for 12S rRNA, 16S rRNA, and tRNA-valine. Molecular Biology and Evolution, 12, 168–76,CrossRefGoogle ScholarPubMed
George,, W. (1985). Reproductive and chromosomal characters of ctenodactylids as a key to their evolutionary relationships. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 453–74. New York: Plenum Press.Google Scholar
Gidley, J. W. (1912). The lagomorphs, an independent order. Science, 36, 285–6.CrossRefGoogle ScholarPubMed
Graur, D., Hide, W. A., and Li, W.-H. (1991). Is the guinea pig a rodent?Nature, 351, 649–52.CrossRefGoogle ScholarPubMed
Graur, D., Hide, W. A., Zarkikh, A., and Li, W.-H. (1992). The biochemical phylogeny of guinea pigs and gundis and the paraphyly of the order Rodentia. Comparative Biochemistry and Physiology, B, 101, 495–8.CrossRefGoogle ScholarPubMed
Honeycutt, R. L. and Adkins, R. M. (1993). Higher level systematics of eutherian mammals: An assessment of molecular characters and phylogenetic hypotheses. Annual Review of Ecology and Systematics, 24, 279–305.CrossRefGoogle Scholar
Huchon, D. and Douzery, E. J. P. (2001). From the Old World to the New World: a molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Molecular Phylogenetics and Evolution, 20, 238–51.CrossRefGoogle ScholarPubMed
Huchon, D., Catzeflis, F. M., and Douzery, E. J. P. (1999). Molecular evolution of the nuclear von Willebrand factor gene in mammals and the phylogeny of rodents. Molecular Biology and Evolution, 16, 577–89.CrossRefGoogle ScholarPubMed
Huchon, D., Madsen, O., Sibbald, M. J. J. B., et al. (2002). Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution, 19, 1053–65.CrossRefGoogle Scholar
Hunt,, R. M. Jr. and Tedford,, R. H. (1993). Phylogenetic relationships within the aeluroid Carnivora and implications of their temporal and geographic distribution. In Mammal Phylogeny: Placentals, ed. Szalay, F. S., Novacek, M. J., and McKenna, M. C., pp. 53–73. New York: Springer-Verlag.Google Scholar
Illiger, C. (1811). Prodromus Systematis Mammalium et Avium Additis Terminis Zoographicis Utruisque Classis. Berlin: C. Salfield.CrossRefGoogle Scholar
Jacobs, L. L. (1984). Rodentia. [In Mammals, Notes for a Short Course, ed. Gingerich, P. D. and Badgley, C. E..] University of Tennessee Studies in Geology, 8, 155–66.
Jacobs,, L. L. and Flynn,, L. J. (2005). Of mice – again: the Siwalik rodent record, murine distribution, and molecular clocks. In Interpreting the Past: Essays on Human, Primate, and Mammal Evolution in Honor of David Pilbeam, ed. Lieberman, D. E., Smith, R. J., and Kelley, J., pp. 63–80. Leiden: Brill Academic.Google Scholar
Janis,, C. M. (1988). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. [In Teeth Revisited: Proceedings of the VIIth International Symposium on Dental Morphology, Paris, 1986, ed. Russell, D. E., Santoro, J.-P., and Sigogneau-Russell, D. D.] Mémoirs de Musée d'Histoire Naturelle, Paris, Series C, pp. 367–87.Google Scholar
Janis, C. M. and Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews, 63, 197–230.CrossRefGoogle ScholarPubMed
Janis, C. M. and Wilhelm, P. B. (1993). Were there pursuit predators in the Tertiary? Dances with wolf avatars. Journal of Mammalian Evolution, 1, 103–25.CrossRefGoogle Scholar
Janis, C. M., Damuth, J., and Theodor, J. M. (2000). Miocene ungulates and terrestrial primary productivity: Where have all the browsers gone?Proceedings of the National Academy of Sciences, USA, 97, 7899–904.CrossRefGoogle ScholarPubMed
Janis, C., Theodor, J. M., and Boisvert, B. (2002). Locomotor evolution in camels revisited: a quantitative analysis of pedal anatomy and the acquisition of the pacing gait. Journal of Vertebrate Paleontology, 22, 110–21.CrossRefGoogle Scholar
Janke, A., Xu, X., and Arnason, U. (1997). The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic history among Monotremata, Marsupialia and Eutheria. Proceedings of the National Academy of Sciences, USA, 94, 1276–81.CrossRefGoogle Scholar
Korth, W. W. (1994). The Tertiary Record of Rodents in North America. New York: Plenum Press.CrossRefGoogle Scholar
Kramereov, D., Vassetzky, N., and Serdobova, I. (1999). The evolutionary position of dormice (Gliridae) in Rodentia determined by a novel short retroposon. Molecular Biology and Evolution, 16, 715–17.CrossRefGoogle Scholar
Kumar, S. and Hedges, S. B. (1998). A molecular timescale for vertebrate evolution. Nature, 392, 917–20.CrossRefGoogle ScholarPubMed
Landry, S. O. Jr. (1999). A proposal for a new classification and nomenclature for the Glires (Lagomorpha and Rodentia). Mitteilungen aus dem Museum für Naturkunde in Berlin, Zoologische Reihe, 75, 283–316.Google Scholar
Lavocat,, R. and Parent,, J.-P. (1985). Phylogenetic analysis of middle ear features in fossil and living rodents. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 333–54. New York: Plenum Press.Google Scholar
Li,, C.-K. and Ting,, S.-Y. (1985). Possible phylogenetic relationship of Asiatic eurymylids and rodents, with comments on mimotomids. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 35–58. New York: Plenum Press.Google Scholar
Li, C.-K., Wilson, R. W., Dawson, M. R., and Krishtalka, L. (1987). The origins of rodents and lagomorphs. Current Mammalogy, 1, 97–108.Google Scholar
Li, W.-H., Hide, W. A., Zharkika, A., Ma, D. P., and Graur, D. (1992). The molecular taxonomy and evolution of the guinea pig. Journal of Heredity, 83, 174–81.CrossRefGoogle ScholarPubMed
Lilljeborg, W. (1866). Systematisk Öfveresigt af de Gnagande Däggdjuren, Glires. Uppsala: Kungliga Akademi. Boktryckeribt.Google Scholar
Linnaeus, C. (1735). Systema Naturae, sive Regna Tria Naturae Systematice Proposita Classes, Ordines, Genera, and Species. Leiden: Theodorum Haak.Google Scholar
(1758). Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis. Vol. 1. Regnum Animale. Edito decima, reformata. Stockholm: Laurentii Salvii.
Luckett,, W. P. (1985). Superordinal and intraordinal affinities of rodents: developmental evidence from the dentition and placentation. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 227–76. New York: Plenum Press.CrossRefGoogle Scholar
Luckett,, W. P. and Hartenberger,, J.-P. (1985). Evolutionary relationships among rodents: comments and conclusions. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 685–712. New York: Plenum Press.CrossRefGoogle Scholar
(1993). Monotype or polyphyly of the order Rodentia: possible conflict between morphological and molecular interpretation. Journal of Mammalian Evolution, 1, 127–47
Ma, D.-P., Zharkikh, A., Graur, D., Vanderberg, J. L., and Li, W.-H. (1993). Structure and evolution of opossum, guinea pig, and porcupine cytochrome b genes. Journal of Molecular Evolution, 36, 327–34.Google ScholarPubMed
Marivaux, L., Vianey-Liaud, M., and Jaeger, J.-J. (2004). High-level phylogeny of early Tertiary rodents: dental evidence. Zoological Journal of the Linnean Society, 142, 105–34.CrossRefGoogle Scholar
Martin, T. (1993). Early rodent incisor enamel evolution: phylogenetic implications. Journal of Mammalian Evolution, 1, 227–54.CrossRefGoogle Scholar
(2004). Evolution of incisor enamel microstructure in Lagomorpha. Journal of Vertebrate Paleontology, 24, 411–26.CrossRef
Martinez,, N. L. (1985). Reconstruction of ancestral cranioskeletal features in the order Lagomorpha. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 151–89. New York: Plenum Press.Google Scholar
McKenna,, M. C. (1975). Toward a phylogenetic classification of the Mammalia. In Phylogeny of the Primates, ed. Luckett, W. P. and Szalay, F. S., pp. 221–46. New York: Plenum Press.Google Scholar
McKenna, M. C. and Bell, S. K. (1997). Classification of Mammals Above the Species Level. New York: Columbia University Press.Google Scholar
McNab, B. K. (2002). The Physiological Ecology of Vertebrates: A View from Energetics. Ithaca, NY: Comstock.Google Scholar
Meng,, J. and Wyss,, A. R. (2005). Glires (Lagomorpha, Rodentia). In The Rise of Placental Mammals: Origins and Relationships of the Major Clades, ed. Rose, K. D. and Archibald, J. D., pp. 144–58. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Meng, J., Hu, Y., and Li, C. (2003). The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bulletin of the American Museum of Natural History, 275, 1–247.2.0.CO;2>CrossRefGoogle Scholar
Misawa, K. and Janke, A. (2003). Revising the Glires concept: phylogenetic analysis of molecular sequences. Molecular Phylogenetics and Evolution, 28, 320–7.CrossRefGoogle Scholar
Montgelard, C., Bentz, S., Tirard, C., Verneau, O., and Catzeflis, F. M. (2002). Molecular systematics of Sciurognathi (Rodentia): the mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Molecular Phylogenetics and Evolution, 22, 220–33.CrossRefGoogle Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., et al. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–18.CrossRefGoogle ScholarPubMed
Nedbal, M. A., Honeycutt, R. L., and Schiltter, D. A. (1996). Higher-level systematics of rodents (Mammalia: Rodentia): evidence from the mitochondrial 12S rRNA gene. Journal of Mammalian Evolution, 3, 201–37.CrossRefGoogle Scholar
Noguchi, T., Fujiwara, S., Hayashi, S, and Sakuraha, H. (1994). Is the guinea pig (Cavia porcellus) a rodent?Comparative Biochemistry and Physiology, B, 107, 179–82.Google Scholar
Novacek,, M. J. (1985). Cranial evidence for rodent affinities. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 59–81. New York: Plenum Press.Google Scholar
Novacek, M. J. (1993). Reflection on higher mammalian phylogenetics. Journal of Mammalian Evolution, 1, 3–30.CrossRefGoogle Scholar
Nowak, R. M. (1999). Walker's Mammals of the World, 6th edn. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Phillippe, H. (1997). Rodent phylogeny: pitfalls of molecular phylogenies. Journal of Molecular Evolution, 45, 712–25.Google Scholar
Retallack, G. J. (2001). Cenozoic expansion of grasslands and climatic cooling. Journal of Geology, 109, 407–26.CrossRefGoogle Scholar
Reyes, A., Pesole, G., and Saccone, C. (1998). Complete mitochondrial DNA sequence of the fat dormouse, Glis glis; further evidence of rodent paraphyly. Molecular Biology and Evolution, 15, 499–505.CrossRefGoogle ScholarPubMed
Reyes, A., Gissi, C., Catzefliz, F., et al. (2004). Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Molecular Biology and Evolution, 21, 397–403.CrossRefGoogle ScholarPubMed
Rose, K. D. and Chinnery, B. J. (2004). The postcranial skeleton of early Eocene rodents. [In Fanfare for an Uncommon Paleontologist. Essays in Honor of Malcolm C. McKenna, ed. Dawson, M. R. and Lillegraven, J. A..] Bulletin of the Carnegie Museum of Natural History, 36, 211–44.Google Scholar
Rybczynski, N. (2004). Effect of incisor shape on woodcutting performance in two beavers (Castoridae, Rodentia). Journal of Vertebrate Paleontology, 24(suppl. to no. 3), p. 107A.Google Scholar
Sánchez-Villagra, M. R., Aguillera, O., and Horovitz, I. (2003). The anatomy of the world's largest extinct rodent. Science, 301, 1708–10.CrossRefGoogle ScholarPubMed
Seckel, L. and Janis, C. M. (2008). Convergences in scapula morphology among small cursorial mammals: an osteological correlate for locomotory specialization. Journal of Mammalian Evolution, in press.CrossRefGoogle Scholar
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
Springer, M. S., Stanhope, M. J., Madsen, O., and Jong, W. W. (2004). Molecules consolidate the placental mammal tree. Trends in Ecology and Evolution, 19, 430–8.CrossRefGoogle ScholarPubMed
Springer,, M. S., Murphy,, W. J., Eizirik,, E., and O'Brien,, S. J. (2005). Molecular evidence for major placental clades. In The Rise of Placental Mammals: Origins and Relationships of the Major Clades, ed. Rose, K. D. and Archibald, J. D., pp. 37–49. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Stanhope, M. J., Smith, M. A., Waddell, V. G., et al. (1996). Mammalian evolution and the interphotoreceptor retinoid binding protein (IRPB) gene: convincing evidence for several superordinal clades. Journal of Molecular Evolution, 43, 83–92.CrossRefGoogle Scholar
Storch, G., Engesser, B., and Wuttke, M. (1996). Oldest fossil record of gliding in rodents. Nature, 379, 439–41.CrossRefGoogle Scholar
Strömberg, C. A. E. (2006). Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology, 32, 236–58.CrossRefGoogle Scholar
Sullivan, J. and Swofford, D. L. (1997). Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. Journal of Mammalian Evolution, 4, 77–86.CrossRefGoogle Scholar
Szalay,, F. S. (1985). Rodent and lagomorph morphotype adaptations, origins, and relationships: some postcranial attributes analyzed. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 83–132. New York: Plenum Press.Google Scholar
Tedford, R. H. and Harington, C. R. (2003). An Arctic mammal fauna from the Early Pliocene of North America. Nature, 425, 388–90.CrossRefGoogle ScholarPubMed
Tullberg, T. (1899). Über das System der Nagetiere. Eine phlogenetische Studie. Nova Acta Regiae Societatis Scientiarium Uppsaliensis, Series 3, 18, 1–514.Google Scholar
Turnbull, W. D. (1970). Mammalian masticatory apparatus. Fieldiana, Geology, 18, 149–356.Google Scholar
Van, Valkenburgh B. (1991). Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology, 17, 340–62.Google Scholar
Vaughan, T. A., Ryan, J. M., and Czaplewski, N. J. (2000). Mammalogy, 4th edn. Fort Worth, TX: Saunders College Press.Google Scholar
Vianey-Liaud,, V. (1985). Possible evolutionary relationships among Eocene and Lower Oligocene rodents of Asia, Europe, and North America. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 277–309. New York: Plenum Press.Google Scholar
Wahlert,, J. H. (1985). Cranial foramina of rodents. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 311–32. New York: Plenum Press.Google Scholar
Waterhouse, G. R. (1839). The distribution of Rodentia. Proceedings of the Zoological Society of London, 1839, 172–4.Google Scholar
Webb, S. D. and Opdyke, N. D. (1995). Global climatic influence on Cenozoic land mammal faunas. In Studies in Geophysics: Effects of Past Global Change on Life, pp. 184–208. Washington, D.C.: National Academy Press for the Board on Earth Sciences and Resources Commission on Geosciences, Environment, and Resources National Research Council.Google Scholar
Wible,, J. R., Rougier,, G. W., and Novacek,, M. J. (2005a). Anatomical evidence for supraordinal/ordinal eutherian taxa in the Cretaceous. In The Rise of Placental Mammals: Origins and Relationships of the Major Clades, ed. Rose, K. D. and Archibald, J. D., pp. 15–36. Baltimore. MD: Johns Hopkins University Press.Google Scholar
Wible, J. R., Wang, Y., Chuamkui, L., and Dawson, M. R. (2005b). Cranial anatomy and relationships of a new ctenodactyloid (Mammalia, Rodentia) from the Early Eocene of Hubei Province, China. Annals of the Carnegie Museum, 74, 91–150.CrossRefGoogle Scholar
Wilson, R. W. (1949). Early Tertiary rodents of North America. Carnegie Institution of Washington Publication, 584, 67–164.Google Scholar
Wood, A. E. (1937). The mammalian fauna of the White River Oligocene. Part II. Rodentia. Transactions of the American Philosophical Society, 28, 155–269.Google Scholar
Wood, A. E. (1955). A revised classification of the rodents. Journal of Mammalogy, 36, 165–87.CrossRefGoogle Scholar
Wood, A. E. (1957). What, if anything, is a rabbit?Evolution, 11, 417–25.CrossRefGoogle Scholar
Wood, A. E. (1965). Grades and clades among rodents. Evolution, 19, 115–30.CrossRefGoogle Scholar
Wood, A. E. (1975). The problem of hystricognathous rodents. Papers on Paleontology, University of Michigan, 12, 75–80.Google Scholar
Wood,, A. E. (1985). The relationships, origins, and dispersal of the hystricognathous rodents. In Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, ed. Luckett, W. P. and Hartenberger, J.-L., pp. 475–513. New York: Plenum Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×