Skip to main content Accessibility help
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T08:59:29.204Z Has data issue: false hasContentIssue false

4 - Insectivorous mammals summary

from Part II - Insectivorous mammals

Published online by Cambridge University Press:  07 September 2010

Christine M. Janis
Brown University, Rhode Island
Gregg F. Gunnell
University of Michigan, Ann Arbor
Mark D. Uhen
University of Alabama, Birmingham
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Arnason, U., Adegoke, J. A., Bodin, K., et al. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proceedings of the National Academy of Sciences, USA, 99, 8151–6.CrossRefGoogle ScholarPubMed
Asher,, R. J. (2005). Insectivoran-grade placentals. In The Rise of Placental Mammals, ed. Rose, K. D. and Archibald, J. D., pp. 50–70. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Asher, R. J., McKenna, M. C., Emry, R. J., Tabrum, A. R., and Kron, D. G. (2002). Morphology and relationships of Apternodus and other extinct, zalambdodont, placental mammals. Bulletin of the American Museum of Natural History, 273, 1–117.2.0.CO;2>CrossRefGoogle Scholar
Asher, R. J., Novacek, M. J., and Geisler, J. H. (2003). Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. Journal of Mammalian Evolution, 10, 131–63.CrossRefGoogle Scholar
Barnosky, A. D. (1981). A skeleton of Mesoscalops (Mammalia, Insectivora) from the Miocene Deep River Formation, Montana, and a review of the proscalopid moles: evolutionary, functional, and stratigraphic relationships. Journal of Vertebrate Paleontology, 1 285–339.CrossRefGoogle Scholar
Barnosky, A. D. (1982). A new species of Proscalops (Mammalia, Insectivora) from the Arikareean Deep River Formation, Meagher County, Montana. Journal of Paleontology, 56, 103–11.Google Scholar
Bloch, J. I. and Boyer, D. M. (2001). Taphonomy of small mammals in freshwater limestones from the Paleocene of the Clarks Fork Basin. [In Paleocene–Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming, ed. Gingerich, P. D..] University of Michigan Papers on Paleontology, 33, 185–98.Google Scholar
Bloch,, J. I., Rose,, K. D., and Gingerich,, P. D. (1998). New species of Batodonoides (Lipotyphla, Geolabididae) from the early Eocene of Wyoming: smallest known mammal? Journal of Mammalogy, 79, 804–27.CrossRefGoogle Scholar
Bloch, J. I., Boyer, D. M., and Houde, P. (2004). New skeletons of Paleocene–Eocene Labidolemur kayi (Mammalia, Apatemyidae): ecomorphology and relationship of apatemyids to primates and other mammals. Journal of Vertebrate Paleontology, 24(suppl. to no. 3), p. 40A.Google Scholar
Bloch, J. I., Secord, R., and Gingerich, P. D. (2004). Systematics and phylogeny of late Paleocene and early Eocene Palaeoryctinae (Mammalia, Insectivora) from the Clarks Fork and Bighorn Basins, Wyoming. Contributions from the Museum of Paleontology, University of Michigan, 31, 119–54.Google Scholar
Boyer, D. M. and Bloch, J. I. (2003). Comparative anatomy of the pentacodontid Aphronorus orieli (Mammalia, Pantolesta) from the Paleocene of the western Crazy Mountains Basin, Montana. Journal of Vertebrate Paleontology, 23(suppl. to no. 3), p. 36A.Google Scholar
Butler, P. M. (1956). The skull of Ictops and the classification of the Insectivora. Proceedings of the Zoological Society of London, 126, 453–81.CrossRefGoogle Scholar
Butler,, P. M. (1972). The problem of insectivore classification. In Studies in Vertebrate Evolution, ed. Joysey, K. A. and Kemp, T. S., pp. 253–65. New York: Winchester.Google Scholar
Butler,, P. M. (1988). Phylogeny of the insectivores. In The Phylogeny and Classification of the Tetrapods, Vol. 2: Mammals, ed. Benton, M. J., pp. 117–41. Oxford: Clarendon Press.Google Scholar
Cavigelli, J. P. (1997). A preliminary description of a Leptictis skeleton from the White River Formation of eastern Wyoming. Tate Geological Museum Guidebook, 2, 101–18.Google Scholar
Churchfield, S. (1990). The Natural History of Shrews. Ithaca, NY: Cornell University Press.Google Scholar
Douady, C. J., Chatelier, P. I., Madsen, O., et al. (2002). Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews. Molecular Phylogenetics and Evolution, 25, 200–9.CrossRefGoogle ScholarPubMed
Eisenberg,, J. F. (1980). Biological strategies of living conservative mammals. In Comparative Physiology: Primitive Mammals, ed. Schmidt-Nielsen, K., Bolis, L., and Taylor, C. R., pp. 13–30. Cambridge, UK: Cambridge University Press.Google Scholar
Emerson, G. L., Kilpatrick, C. W., McNiff, B. E., Ottenwalder, J., and Allard, M. W. (1999). Phylogenetic relationships of the order Insectivora based on complete 12S rRNA sequences from mitochondria. Cladistics, 15, 221–30.CrossRefGoogle Scholar
Feldhamer, G. A., Drickamer, L. C., Vessey, S. H., and Merritt, J. F. (2004). Mammalogy: Adaptation, Diversity, Ecology, 2nd edn. New York: McGraw-Hill.Google Scholar
Fleagle, J. G. (1999). Primate Adaptations and Evolution, 2nd edn. London: Academic Press.Google Scholar
Fox, R. C. and Scott, C. S. (2005). First evidence of a venom delivery apparatus in extinct mammals. Nature, 435, 1091–3.CrossRefGoogle ScholarPubMed
Gazin, C. L. (1959). Early Tertiary Apheliscus and Phenacodaptes as pantolestid insectivores. Smithsonian Miscellaneous Collections, 139, 1–7.Google Scholar
Gazin, C. L. (1969). A new occurrence of Paleocene mammals in the Evanston Formation, southwestern Wyoming. Smithsonian Contributions to Paleobiology, 2, 1–16.CrossRefGoogle Scholar
Gingerich, P. D., Houde, P., and Krause, D. W. (1983). A new earliest Tiffanian (Late Paleocene) mammalian fauna from Bangtail Plateau, Western Crazy Mountain Basin, Montana. Journal of Paleontology, 57, 957–70.Google Scholar
Hooker, J. J. (2001). Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zoological Journal of the Linnaean Society, 132, 501–29.CrossRefGoogle Scholar
Jepsen, G. L. (1934). A revision of the American Apatemyidae and the description of a new genus, Sinclairella, from the White River Oligocene of South Dakota. Proceedings of the American Philosophical Society, 74, 287–305.Google Scholar
Kalthoff, D. C., Koenigswald, W., and Kurz, C. (2004). A new specimen of Heterohyus nanus (Apatemyidae, Mammalia) from the Eocene of Messel (Germany) with unusual soft-part preservation. Courier Forschungs-Institut Senckenberg, 252, 1–12.Google Scholar
Koenigswald, W. (1980). Das skelett eines Pantolestiden (Proteutheria, Mamm.) aus dem mittleren Eozan von Messel bei Darmstadt. Palaontologische Zeitschrift, 54, 267–87.CrossRefGoogle Scholar
Koenigswald, W.. (1990). Die Palaobiologie der Apatemyiden (Insectivora s. l.) und die Ausdeutung der Skelettfunde von Heterohyus nanus aus dem Mitteleozan von Messel bei Darmstadt. Palaeontographica Abteilung A Palaeozoologie-Stratigraphie, 210, 41–77.Google Scholar
Koenigswald, W. and Schierning, H.-P. (1987). The ecological niche of an extinct group of mammals, the Early Tertiary apatemyids. Nature, 326, 595–7.CrossRefGoogle Scholar
Koenigswald, W., Rose, K. D., Grande, L., and Martin, R. (2005). First apatemyid skeleton from the Lower Eocene Fossil Butte Member, Wyoming (USA), compared to the European apatemyid from Messel, Germany. Palaeontographica A, 272, 149–69.Google Scholar
MacPhee,, R. D. E. and Novacek,, M. J. (1993). Definition and relationships of Lipotyphla. In Mammal Phylogeny, Vol. 2: Placentals, ed. Szalay, F., Novacek, M. J., and McKenna, M. C., pp. 13–31. New York: Springer.Google Scholar
Matthew, W. D. (1909). The Carnivora and Insectivora of the Bridger Basin, middle Eocene. American Museum of Natural History Memoirs, 9, 289–567.Google Scholar
McDowell, S. B. (1958). The greater Antillean insectivores. Bulletin of the American Museum of Natural History, 115, 113–214.Google Scholar
McKenna, M. C. (1963). Primitive Paleocene and Eocene Apatemyidae (Mammalia, Insectivora) and the primate–insectivore boundary. American Museum Novitates, 2160, 1–39.Google Scholar
Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bulletin of the American Museum of Natural History, 183, 1–112.Google Scholar
Pfretzschner, H. U. (1999). Buxolestes minor n. sp.: ein neuer Pantolestide (Mammalia, Proteutheria) aus der eozänen Messel-Formation. Courier Forschungs-Institut Senckenberg, 216, 19–29.Google Scholar
Richard, P. B. (1973). Capture, transport, and husbandry of the Pyrenian desman Galemys pyrenaicus. International Zoo Yearbook, 13, 175–7.CrossRefGoogle Scholar
Richter, G. (1987). Untersuchungen zur Ernährung eozäner Säuger aus der Fossilfundstätte Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg, 91, 1–33.Google Scholar
Roca, A. L., Bar-Gal, G. K., Eizirik, E., et al. (2004). Mesozoic origin for West Indian insectivores. Nature, 429, 649–51.CrossRefGoogle ScholarPubMed
Rose, K. D. (1999). Postcranial skeleton of Eocene Leptictidae (Mammalia), and its implications for behavior and relationships. Journal of Vertebrate Paleontology, 19, 355–72.CrossRefGoogle Scholar
Rose, K. D. and Lucas, S. G. (2000). An early Paleocene palaeanodont (Mammalia,?Pholidota) from New Mexico, and the origin of Palaeanodonta. Journal of Vertebrate Paleontology, 20, 139–56.CrossRefGoogle Scholar
Rose, K. D. and Koenigswald, W. (2005). An exceptionally complete skeleton of Palaeosinopa (Mammalia, Cimolesta, Pantolestidae) from the Green River Formation, and other postcranial elements of the Pantolestidae from the Eocene of Wyoming (USA). Palaeontographica Abteilung A, 273, 55–96.Google Scholar
Seiffert, E. R. and Simons, E. L. (2001). Widanelfarasia, a diminutive new placental from the late Eocene of Egypt. Proceedings of the National Academy of Sciences, USA, 97, 2646–51.CrossRefGoogle Scholar
Simpson, G. G. (1937a). The Fort Union of the Crazy Mountain Field, Montana, and its mammalian faunas. Bulletin of the United States National Museum, 169, 1–278.CrossRefGoogle Scholar
Simpson, G. G. (1937b). Additions to the upper Paleocene fauna of the Crazy Mountain Field. American Museum Novitates, 940, 1–15.Google Scholar
Springer, M. S., Cleven, G. C., Madsen, O., et al. (1997). Endemic African mammals shake the phylogenetic tree. Nature, 388, 61–4.CrossRefGoogle ScholarPubMed
Springer,, M. S., Murphy,, W. J., Eizirik,, E., and O'Brien,, S. J. (2005). Molecular evidence for major placental clades. In The Rise of Placental Mammals, ed. Rose, K. D. and Archibald, J. D., pp. 37–49. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Stanhope, M. J., Waddell, V. G., Madsen, O., et al. (1998). Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proceedings of the National Academy of Sciences, USA, 95, 9967–72.CrossRefGoogle ScholarPubMed
Symonds, M. R. E. (2005). Phylogeny and life histories of the “Insectivora”: controversies and consequences. Biological Reviews, 80, 93–128.CrossRefGoogle ScholarPubMed
Thewissen, H. and Gingerich, P. D. (1989). Skull and endocranial cast of Eoryctes melanus, a new palaeoryctid (Mammalia: Insectivora) from the early Eocene of western North America. Journal of Vertebrate Paleontology, 9, 459–70.CrossRefGoogle Scholar
Valen, L. (1966). Deltatheridia, a new order of mammals. Bulletin of the American Museum of Natural History, 132, 1–126.Google Scholar
Valen, L. (1967). New Paleocene insectivores and insectivore classification. Bulletin of the American Museum of Natural History, 135, 217–84.Google Scholar
Waddell, P. J. and Shelley, S. (2003). Evaluating placental interordinal phylogenies with novel sequences including RAG1, γ-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Molecular Phylogenetics and Evolution, 28, 197–224.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats