Skip to main content Accessibility help
×
Hostname: page-component-6bf8c574d5-9nwgx Total loading time: 0 Render date: 2025-02-15T14:33:08.382Z Has data issue: false hasContentIssue false

Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 15 - 616
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Allnutt, T.R., Newton, A., Lara, A., et al. 2002. Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Molecular Ecology 8: 975987.CrossRefGoogle Scholar
Armesto, J.J., Villagran, C., Aravena, C., et al. 1995. Conifer forests of the Chilean Coastal Range. Pp 156170 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Barker, P.F. & Burrell, J. 1977. The opening of Drake passage. Marine Geology 25(1–3): 1534.CrossRefGoogle Scholar
Battles, J.J., Armesto, J.J., Vann, D.R., et al. 2002. Vegetation composition, structure and biomass of two unpolluted watersheds in the Cordillera de Piuchue, Chiloé Island, Chile. Plant Ecology 158: 519.CrossRefGoogle Scholar
Berry, E.W. 1928. Tertiary fossil plants from the Argentine Republic. Proceedings of the U.S. National Museum 73: 127.Google Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Bodnar, J. & Escapa, I.H. 2016. Towards a whole plant reconstruction of Austrohamia (Cupressaceae): new fossil wood from the Lower Jurassic of Argentina. Reviews of Palaeobotany and Palynology 234: 181197.CrossRefGoogle Scholar
Boninsegna, J.A. & Holmes, R.L. 1985. Fitzroya cupressoides yields a 1534-year long South American chronology. Tree Ring Research 45: 3742.Google Scholar
Burbidge, N.T. 1960. The phytogeography of the Australian region. Australian Journal of Botany 8: 57212.CrossRefGoogle Scholar
Cunningham, W.D., Dalziel, I.W.D., Lee, T.Y. & Lawver, L.A. 1995. Southernmost South America–Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research – Solid Earth 100: 82578266.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests ? Pp 89105 in Crane, J.A. (ed.) Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: Late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Devall, M.S., Parresol, B.R. & Armesto, J.J. 1998. Dendroecological analysis of a Fitzroya cupressoides and a Nothofagus nitida stand in the Cordillera Pelada, Chile. Forest Ecology and Management 108: 135145.CrossRefGoogle Scholar
DiesterHass, L. & Zahn, R. 1996. Eocene-Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Paleoclimatology, Palaeoecology 141: 215232.CrossRefGoogle Scholar
Dong, C., Wang, Y.-D., Yang, X.-J. & Sun, B.-N. 2018. Whole plant reconstruction and updated phylogeny of Austrohamia acanthobracteata (Cupressaceae) from the Middle Jurassic of northwest China. International Journal of Plant Sciences 179: 640652.CrossRefGoogle Scholar
Donoso, C., Cortes, M. & Soto, L. 1980. Antecedentes sobre semillas y germinacion de Alerce, Ciprés de las Guaitecas, Ciprés de la Cordillera y Tineo. Bosque 3: 96100.CrossRefGoogle Scholar
Donoso, C., Grez, R. & Sandoval, V. 1990. Caracterización del tipo forestal alerce. Bosque 11: 2134.CrossRefGoogle Scholar
Donoso, C., Cortes, M. & Escobar, B. 1993. Efecto del árbol semillero y la época de cosecha de semillas en la capacidad germinativa en vivero de Fitzroya cupressoides. Bosque 14: 6371.CrossRefGoogle Scholar
Doyle, J. & Saxton, W.I. 1933. Contribution ot the life-history of Fitzroya. Proceedings of the Royal Irish Academy B41: 191217.Google Scholar
Escapa, I., Cuneo, N.R. & Axsmith, B. 2008. A new genus of Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151: 110122.CrossRefGoogle Scholar
Exon, N.F., Berry, R.F., Crawford, A.J. & Hill, P.J. 1997. Geological evolution of the east Tasman Plateau, a continental fragment southeast of Tasmania. Australian Journal of Earth Sciences 44: 597608.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Florin, R. 1940. The Tertiary fossil conifers of southern Chile and their phytogeographical significance. K. Svenska Vetenskaps Akademie Handl. 19(2): 1107.Google Scholar
Fraver, S., González, M.E., Silla, F., Lara, A & Gardner, M. 1999. Composition and structure of remnant Fitzroya cupressoides forests of Southern Chile’s central depression. Journal of the Torrey Botanical Society 126: 4957.CrossRefGoogle Scholar
Frenguelli, J. 1949a. Los estratos con ‘Estheria’ en el Chubut. Revista de la Asociación Geológica Argentina 4: 1124.Google Scholar
Frenguelli, J. 1949b. Adenda a la flora del Gondwana Superior en la Argentina.I. ‘Palissya conferta’ Feist. y Palissya Jabalpurensis Feist. En el Jurásico Superior del Chubut, Patagonia. Physis 20: 139146.Google Scholar
Gardner, M.F. & Lara, A. 2003. The conifers of Chile: an overview of their distribution and ecology. Pp 165170 in Mill, R.R. (ed.). Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Gardner, M.F., Thomas, P., Lara, A. & Escobar, B. 1999. Fitzroya cupressoides. Curtis’s Botanical Magazine 16: 229240.CrossRefGoogle Scholar
Godoy, R., Carillo, R., Hildebrand-Vogel, R. & Vogel, A. 1994. The importance of mycorrhizae in the Fitzroya cupressoides forests of southern Chile. Verhandlungen – Gesellschaft fur Ökologie 23: 135141.Google Scholar
Grosfeld, J. & Barthelemy, D. 2001. Dioecy in Fitzroya cupressoides (Molina) I.M.Johnst. and Pilgerodendron uviferum (D.Don) Florin (Cupressaceae). Comptes Rendus de l’Academie des Sciences, ser III Life Science 324: 245250.Google Scholar
Gutiérrez, A.G., Armest, J.J. & Aravena, J.C. 2004. Disturbance and regeneration dynamics of an old-growth North Patagonian rain forest in Chiloé Island, Chile. Journal of Ecology 92: 598608.CrossRefGoogle Scholar
Hair, J.B. 1968. The chromosomes of the Cupressaceae. 1. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand Journal of Botany 6: 277284.CrossRefGoogle Scholar
Heine, C., Muller, R.D. & Steinberger, B. 2010. Integrating deep earth dynamics in paleogeographic reconstructions of Australia. Tectonophysics 483: 135150.CrossRefGoogle Scholar
Heusser, C.J. 1966. Late-Pleistocene pollen diagrams from the Province of Llanquihue, southern Chile. Proceedings of the American Philosophical Society 110: 269305.Google Scholar
Heusser, C.J. 1982. Palynology of cushion bogs of the Cordillera Pelada, Province of Valdivia, Chile. Quaternary Research 17: 7192.CrossRefGoogle Scholar
Heusser, C.J. 1990. Ice age vegetation and climate of sub-topical Chile. Palaeogeography, Palaeoclimatology, Palaeoclimatology 80: 107127.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Paull, R. 2003. Fitzroya (Cupressaceae) macrofossils from Cenozoic sediments in Tasmania, Australia. Review of Palaeobotany and Palynology 126: 145152.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R.S. & Whang, S.S. 1996. A new species of Fitzroya (Cupressaceae) from Oligocene sediments in north-western Tasmania. Australian Systematic Botany 9: 867875.CrossRefGoogle Scholar
Jordan, G.J. & Hill, R.S. 2002. Cenozoic plant macrofossil sites of Tasmania. Papers and Proceedings of the Royal Society of Tasmania 136: 127139.CrossRefGoogle Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: Hothouse icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Konar, R.M. 1962. Investigations on the development of the male cones in Fitzroya cupressoides (Mol.) Johnst. and Pilgerodendron uviferum (Dom.) Flor. Phytomorphology 12: 191195.Google Scholar
Lanyon, R., Varne, R. & Crawford, A.J. 1993. Tasmanian Tertiary basalts, the Balleny Plume, and the opening of the Tasman Sea (southwest Pacific Ocean) Geology 21: 555558.2.3.CO;2>CrossRefGoogle Scholar
Lara, A. 1991a. The dynamics and disturbance regimes of Fitzroya cupressoides forests in the South-Central Andes of Chile. PhD Thesis, University of Colorado, Boulder.Google Scholar
Lara, A. 1991b. A Strategy for the Conservation of Alerce (Fitzroya cupressoides) Forests in Chile. Gland: WWF.Google Scholar
Lara, A. & Villalba, R. 1993. A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260: 11041106.CrossRefGoogle ScholarPubMed
Lara, A., Fraver, S., Aravena, J. & Wolodarsky-Franke, A. 1999. Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile’s Cordillera Pelada. Ecoscience 6: 100109.CrossRefGoogle Scholar
Lara, A., Gardner, M.F. & Vergara, R. 2003. The use and conservation of Fitzroya cupressoides (Alerce) forests in Chile. Acta Horticultura 615: 381386.CrossRefGoogle Scholar
Lawver, L.A. & Gahagan, L.M. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 1137.CrossRefGoogle Scholar
Lusk, C.H. & Matus, F. 2000. Juvenile tree growth rates and species-sorting on fine-scale soil fertility gradients in a Chilean temperate rainforest. Journal of Biogeography 27: 10111020.CrossRefGoogle Scholar
Lusk, C.H., Contreras, O. & Figueroa, J. 1997. Growth, biomass allocation and plant nitrogen concentration in seedlings of Chilean temperate rainforest trees: effects of nutrient availability. Oecologia 109: 4958.CrossRefGoogle Scholar
Mancini, M.V. 1998. Vegetational changes during the Holocene in extra-Andean Patagonia, Santa Cruz province, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 138: 207219.CrossRefGoogle Scholar
Mancini, M.V., Prieto, A.R., Paez, M.M. & Schabitz, F. 2008. Late Quaternary vegetation and climate of Patagonia. Developments in Quaternary Sciences 11: 351367.CrossRefGoogle Scholar
Markgraf, V. 1983. Late and Postglacial vegetation and palaeoclimatic changes in subantarctic, temperate and arid environments in Argentina. Palynology 7: 4370.CrossRefGoogle Scholar
Markgraf, V. 1984. Late Pleistocene and Holocene vegetation history of temperate Argentina: Lago Morenito, Bariloche. Dissertationes Botanicae 72: 235254.Google Scholar
Markgraf, V. 1993. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology 102: 5368.CrossRefGoogle Scholar
Marks, K.M., Stock, J.M. & Quinn, K.J. 1999. Evolution of the Australian–Antarctic discordance since Miocene time. Journal of Geophysical Research – Solid Earth 104: 49674981.CrossRefGoogle Scholar
McGowran, B., Li, Q.Y., Cann, J., et al. 1997. Biogeographic impact of the Leeuwin Current in southern Australia since the late Middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology 136: 1940.CrossRefGoogle Scholar
Molino, J.F. & Sabatier, D. 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547): 17021704.CrossRefGoogle ScholarPubMed
Moore, D.M. 2000. Biogeography: Chile refuges. Nature 408: 532533.CrossRefGoogle ScholarPubMed
Moreno, P.I. 1997. Vegetation and climate near Lago Llanquihue in the Chilean lake district between 200 and 9500, 14Cyr BP. Journal of Quaternary Science 12: 485500.3.0.CO;2-4>CrossRefGoogle Scholar
Moreno, P.I. 2004. Millennial-scale climate variability in northwest Patagonia over the last 15,000 yr. Journal of Quaternary Science 19: 3547.CrossRefGoogle Scholar
Neall, V.E. & Trewick, S.A. 2008. The age and origin of the Pacific Islands: a geological overview. Philosophical Transactions of the Royal Society B 363: 32933308.CrossRefGoogle ScholarPubMed
Neira, E. & Lara, A. 2000. Desarrollo de cronologias de ancho de anolos para alrece (Fitzroya cupressoides) en Contao y Morador (Chile). Revista Chilena de Historia Natural 73: 693703.CrossRefGoogle Scholar
Parker, T. & Donoso, C. 1993. Natural regeneration of Fitzroya cupressoides in Chile and Argentina. Forest Ecology and Management 59: 6385.CrossRefGoogle Scholar
Paull, R. & Hill, R.S. 2010. Early Oligocene Callitris and Fitzroya (Cupressaceae) from Tasmania. American Journal of Botany 97: 809820.CrossRefGoogle ScholarPubMed
Pérez, C.A., Carmona, M.R., Aravena, J.C., Farina, J.M. & Armesto, J.J. 2009. Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rainforests of Chiloé Island, southern Chile. Austral Ecology 34: 259271.CrossRefGoogle Scholar
Porter, S.C. 1981. Pleistocene glaciation in the southern Lake District of Chile. Quaternary Research 16: 263292.CrossRefGoogle Scholar
Premoli, A.C., Kitzberger, T. & Veblen, T.T. 2000. Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. Journal of Biogeography 27: 251260.CrossRefGoogle Scholar
Premoli, A.C., Vergara, R., Souto, C.P., Lara, A. & Newton, A.C. 2003. Lowland valleys shelter the ancient conifer Fitzroya cupressoides in the Central Depression of southern Chile. Journal of the Royal Society of New Zealand 33: 623631.CrossRefGoogle Scholar
Quintanilla-Pérez, V. 2005. Fragilidad del bosque de Fitzroya cupressoides (Mol.) I.M. Johnst., en Andino Patagonico Chileao. Pirineos 160: 6986.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Roig, F.A. 1992. Comparative wood anatomy of southern South American Cupressaceae. IAWA Journal 13(2): 151162.CrossRefGoogle Scholar
Roig, F.A. & Villalba, R. 2008. Understanding climate from Patagonian tree rings. Developments in Quaternary Science 11: 411435.CrossRefGoogle Scholar
Rollet, N., Royer, J.Y., Exon, N.F. & Hill, P.J. 1996. The South Tasmanian rise (South Tasmania); a collage of two fragments of eastern Gondwana ? Comptes Rendus de l’Academie des Sciences Ser. Ii, Fasc. A. – Sciences de la Terre et des Planetes 323: 865872.Google Scholar
Royer, J.Y. & Rollet, N. 1997. Plate-tectonic setting of the Tasmanian region. Australian Journal of Earth Sciences 44: 543560.CrossRefGoogle Scholar
Sanhi, B. & Singh, T.C.N. 1931. Notes on the vegetative anatomy and female cones of Fitzroya patagonica (Hook. fils). Journal of the Indian Botanical Society 10: 120.Google Scholar
Scriven, L.J. & Hill, R.S. 1996. Relationships amongst Tasmanian Tertiary Nothofagus (Nothofagaceae) populations. Botanical Journal of the Linnean Society 121: 345364.Google Scholar
Shi, G., Leslie, A.G., Heredneen, P.S., et al. 2014. Whole-plant reconstruction and phylogenetic relationships of Elatides zhoui sp.nov. (Cupressaceae) from the early Cretaceous of Mongolia. International Journal of Plant Science 175: 911930.CrossRefGoogle Scholar
Silla, F., Fraver, S., Lara, A., Allnutt, T.R. & Newton, A. 2002. Regeneration and stand dynamics of Fitzroya cupressoides (Cupressaceae) forests of southern Chile’s Central Depression. Forest Ecology and Management 165: 213224.CrossRefGoogle Scholar
Smith-Ramírez, C. 2007. Regeneration of Fitzroya cupressoides after indigenous and non-indigenous timber harvesting in southern Chilean forests. Forest Ecology and Management 248: 193201.CrossRefGoogle Scholar
Soto, D.P. 2009. New record of Fitzroya cupressoides (Molina) I.M.Johnst. population in its northern limit in Isla del Rey, Chile. Gayana Botánica 66(1):103106.CrossRefGoogle Scholar
Veblen, T. & Ashton, D. 1982. The regeneration status of Fitzroya cupressoides in the Cordillera Pelada, Chile. Biological Conservation 23: 141161.CrossRefGoogle Scholar
Veblen, T., Delmastro, R. & Schlatter, J. 1976. The conservation of Fitzroya cupressiodes and its environment in southern Chile. Environmental Conservation 3: 291301.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberegeerr, A.L. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Veevers, J.J., Powell, C.M. & Roots, S.R. 1991. Review of sea-floor spreading around Australia. 1. Synthesis of the patterns of spreading. Australian Journal of Earth Sciences 38: 373389.CrossRefGoogle Scholar
Villagran, C. 1988. Expansion of Magellanic moorland during the Late Pleistocene: palynological evidence from northern Isla de Chiloe, Chile. Quaternary Research 29: 294306.CrossRefGoogle Scholar
Villagran, C. 1991. Historia de los bosques templados del sur de Chile durante el Tardiglacial y Postglacial. Revista Chilena de Historia Natural 64: 447460.Google Scholar
Villagran, C. & Armesto, J.J. 1993. Full and late glacial paleoenvironment scenarios for the west coast of southern South America. Pp 195207 in Mooney, H.A., Fuentes, E.R. & Kronberg, B.I. (eds.), Earth System Responses to Global Change: Contrast between North and South America. New York: Academic Press.Google Scholar
Villagran, C. & Hinojosa, L.F. 1997. History of the forests of southern South America. 2. Phytogeographical analysis. Revista Chilena de Historia Natural 70: 241267.Google Scholar
Vuilleumier, F. 1971. Pleistocene changes in the fauna and flora of South America. Science 173: 771780.CrossRefGoogle ScholarPubMed
Waldmann, N., Ariztegui, D., Anselmetti, F.S., Coronato, A. & Austin, J.A. 2010. Geophysical evidence of multiple glacier advances in Lago Fagano (54 degrees S), southernmost Patagonia. Quaternary Science Reviews 29: 11881200.CrossRefGoogle Scholar
Wolodarsky-Franke, A. & Lara, A. 2005. The role of ‘forensic’ dendrochronology in the conservation of alerce (Fitzroya cupressoides (Molina) Johnston) forests in Chile. Dendrochronologia 22: 235240.CrossRefGoogle Scholar
Yang, Z.Y., Ran, J.H. & Wang, X.Q. 2012. Three genome-based phylogeny of Cupressaceae sl: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution 64(3): 452470.CrossRefGoogle ScholarPubMed
Zarin, D.J., Johnson, A.H. & Thomas, S.M. 1998. Soil organic carbon and nutrient status in old-growth montane coniferous watersheds, Isla Chiloé, Chile. Plant and Soil 201: 251258.CrossRefGoogle Scholar
Zhang, J.W., D’Rozario, A., Wang, L.J., Li, Y. & Yao, J.X. 2012. A new species of the extinct genus Austrohamia (Cupressaceae s.l.) in the Daohgou Jurassic flora of China and its phytogeographical implications. Journal of Systematics and Evolution 50: 7282.CrossRefGoogle Scholar

References

Basilici, G., Martinetto, E., Pavia, G. & Violanti, D. 1997. Paleoenvironmental evolution in the Pliocene marine-coastal succession of Val Chiusella (Ivrea, NW Italy). Bollettino della Societa Paleontologica Italiana 36(1–2): 2352.Google Scholar
Boulter, M.C. 1970. Cryptomeria, a significant component of the European Tertiary. Palaeontologische Abhandlingen, Abteilung B; Palaeobotanik 3: 279286.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.J. & Hedin, L.O. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491497.CrossRefGoogle Scholar
Chapin, F.S., Walker, L.R., Fastic, C.L. & Sharman, L.C. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs 36: 149175.CrossRefGoogle Scholar
Chen, Y., Tang, S.Z., Zhao, M.S. Ni, B.Y. & Chen, X.Y. 2008. Demographic genetic structure of Cryptomeria japonica var sinensis in Taimushan Nature Reserve, China. Journal of Integrative Plant Biology 50: 11711177.CrossRefGoogle ScholarPubMed
Cheng, S.S., Chang, H.T., Wu, C.L. & Chang, S.T. 2007. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology 98(2): 456459.CrossRefGoogle ScholarPubMed
Cheng, Y., Nicholson, G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle ScholarPubMed
Chiba, S. 1950. Triploids and tetraploids of Sugi (Cryptomeria japonica D. Don) selected in the forest nursery. Bulletin of the Government Forestry Experimental Station 49: 99108 (seen as abstract only).Google Scholar
Chiba, Y. 1998. Simulation of CO2 budget and ecological implications of sugi (Cryptomeria japonica) man-made forests in Japan. Ecological Modelling 111: 269281.CrossRefGoogle Scholar
Chochieva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Claus, A. & George, E. 2005. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research 35: 16171625.CrossRefGoogle Scholar
Coccolini, G.B.L. Sugi tree stands in ancient Italy. International Geological Congress, Abstracts (2008): 33 (seen as abstract only).Google Scholar
Crews, T. 1995. Changes in soil phosphorous and ecosystem dynamics across a long soil chronosequence in Hawaii. Ecology 111: 407424.Google Scholar
Danjon, F., Barker, D.H., Drexhage, M. & Stokes, A. 2008. Using three-dimensional plant root architecture in models of shallow-slope stability. Annals of Botany 101(8): 12811293.CrossRefGoogle ScholarPubMed
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
deFerre, Y. 1952. Additions et corrections ä l’etude du genre Keteleeria. 1. Keteleeria Roulletii Bull Soc Hist Nat Toulouse 87: 340342.Google Scholar
Denk, T., Grimsson, F. & Kvaček, Z. 2005. The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Botanical Journal of the Linnean Society 149: 369417.CrossRefGoogle Scholar
Dietrich, W.E. & Perron, J.T. 2006. The search for a topographic signature of life. Nature 439: 411418.CrossRefGoogle ScholarPubMed
Earle, C. 2007. Cryptomeria japonica. The Gymnosperm database. www.conifers.org/cu/cr/index.htm.Google Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Fujiki, T. & Ozawa, T. 2008. Vegetation change in the main island of Okinawa, southern Japan from late Pliocene to early Pleistocene. Quaternary International 184(1): 7583.CrossRefGoogle Scholar
Fujimaki, R., Tateno, R. & Tokuchi, N. 2007. Root development across a chronosequence in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Journal of Forest Research 12(2): 96102.CrossRefGoogle Scholar
Fukuda, M., Lehara, T. & Matsumoto, M. 2003. Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184: 116.CrossRefGoogle Scholar
Fukushima, K., Tateno, R. & Tokuchi, N. 2011. Nitrogen dynamics during stand development after clear-cutting of Japanese cedar (Cryptomeria japonica) plantations. Journal of Forest Research 16: 394404.CrossRefGoogle Scholar
Genet, M., Stokes, A., Fourcaud, T., Hu, X. & Lu, Y. 2006. Soil fixation by tree roots: changes in root reinforcement parameters with age in Cryptomeria japonica D. Don. plantations. Pp 535542 in Marui, H., Marutani, T., Watanabe, N., et al. (eds.), Interpraevent 2006, Disaster Mitigation of Debris Flows, Slope Failures and Landslides.Tokyo: Universal Academy Press.Google Scholar
Genet, M., Kokutse, N., Stokes, A., et al. 2008. Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. Forest Ecology and Management 256(8): 15171526.CrossRefGoogle Scholar
Gota, Y., Kondo, T., Hayashi, E., et al. 2004. Influences of genetic and environmental factors on the concentration of the allergen cry j 1 in sugi (Cryptomeria japonica) pollen. Tree Physiology 24: 409414.CrossRefGoogle Scholar
Gray, D.H. & Sotir, R.D. 1996. Biotechnical and Soil Bioengineering Slope Stabilization. New York: Wiley.Google Scholar
Greenway, D.R. 1987. Vegetation and slope stability. Pp 187230 in Anderson, M.G. & Richards, K.S. (eds.), Slope Stability. New York: Wiley.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Hamaoka, T. 1933. Regeneration of Cryptomeria japonica in natural forest of Yakushima Island. Journal of the Society of Forestry 15: 150162 (in Japanese).Google Scholar
Harris, T.M. 1935 The fossil flora of Scoresby Sound, east Greenland. Pt. 4. Ginkgoales, Coniferales, Lycopodiales and isolated fructifications. Meddel. Grønland 112: 1176.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hase, Y. & Hatanaka, K.I. 1984. Pollen stratigraphical study of the Late Cenozoic sediments in Southern Kyushu, Japan. The Quaternary Research (Daiyonki-Kenkyu) 23(1): 120.CrossRefGoogle Scholar
Hayashi, Y. 1960. Taxonomical and Phytogeographical Study of Japanese Conifers. Tokyo: Norin-Shuppan.Google Scholar
Heusser, C.J. 1990. Ice age vegetation and climate of sub-topical Chile. Palaeogeography, Palaeoclimatology and Palaeoecology 80: 107127.CrossRefGoogle Scholar
Hirayama, K. & Sakimoto, M. 2005. Seedling demography and establishment of Cryptomeria japonica in cool-temperate, old-growth, conifer hardwood forest in the snowy region of Japan. Journal of Forest Research 10: 6771.CrossRefGoogle Scholar
Hongo, M. 2009. Middle Pleistocene pollen biostratigraphy in the Osaka sedimentary basin, southwest Japan, with special reference to paleoenvironmental change. Journal of the Geological Society of Japan 115: 6479.Google Scholar
Igarashi, Y. 1994. Quaternary forest and climate history of Hokkaido, Japan, from marine sediments. Quaternary Science Reviews 13(4): 335344.CrossRefGoogle Scholar
Igarashi, Y. & Oba, T. 2006. Fluctuations in the East Asian monsoon over the last 144 ka in the northwest Pacific based on a high-resolution pollen analysis of IMAGES core MD01–2421. Quaternary Science Reviews 25(13–14): 14471459.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Jaehnichen, H. 1998. Erstnachweis von Taiwania, Cryptomeria und Liquidambar aus dem Biterfelder und Baltischen Bernstein. Mitteilungen aus dem Museum fuer Naturkunde in Berlin 1: 167178 (seen as abstract only).Google Scholar
Jenny, H. 1980. Soil Genesis with Ecological Perspectives. New York: Springer.Google Scholar
Kado, T., Yoshimaru, H., Tsumura, Y. & Tachoda, H. 2003. DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics 164: 15471559.CrossRefGoogle Scholar
Kado, T., Ushio, Y., Yoshimaru, H., Tsumura, Y. & Tachida, H. 2006. Contrasting patterns of DNA variation in natural populations of closely related conifers, Cryptomeria japonica and Taxodium distichum (Cupressaceae sensu lato). Genes and Genetic Systems 81: 103113.CrossRefGoogle ScholarPubMed
Kamada, M. 2005. Hierarchically structured approach for restoring natural forest: trial in Tokushima Prefecture, Shikoku, Japan. Landscape and Ecological Engineering 1: 6170.CrossRefGoogle Scholar
Kitayama, K. & Mueller-Dombois, D. 1995. Vegetation changes during long-term soil development in the Hawaiian montane rainforest zone. Vegetatio 111: 120.CrossRefGoogle Scholar
Kiyonaga, J. 1990. Pollen analysis of Holocene sediments from lowland along the Kashio River, southwestern part of Yokohama, Japan. The Quaternary Research (Daiyonki-Kenkyu) 29(4): 351360.CrossRefGoogle Scholar
Kobayashi, T., Nakagawa, Y., Tamaki, M., Hiraki, T. & Aikawa, M. 2001. Cloud water deposition to forest canopies of Cryptomeria japonica at Mt. Rokko, Kobe, Japan. Water Air and Soil Pollution 130: 601606.CrossRefGoogle Scholar
Kondo, T. & Kuramoto, N. 2007. Cryptomeria japonica. Pp 211221 in Kole, C. (ed.), Genome Mapping and Molecular Breeding in Plants. Berlin: Springer.Google Scholar
Kondo, T., Hizume, M. & Kubota, R. 1982. Variation of fluorescent chromosome bands of Cryptomeria japonica. Journal of the Japanese Forestry Society 67: 184189.Google Scholar
Kondo, Y., Ipsen, H., Lowenstein, H., Karpas, A. & Hsieh, L. 1997. Comparison of concentrations of Cry j 1 and Cry j 2 in diploid and triploid Japanese cedar (Cryptomeria japonica) pollen extracts. Allergy 52: 455459.CrossRefGoogle ScholarPubMed
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kurata, S. 1965. Notes of Japanese ferns (35). Journal of Geobotany 13: 75.Google Scholar
Kurata, S. 1971. Illustrated Important Forest Trees of Japan. Tokyo: Chikyu Shuppan.Google Scholar
Kuroda, T. & Ozawa, T. 1996. Paleoclimatic and vegetational changes during the Pleistocene and Holocene in the Ryukyu Islands inferred from pollen assemblages. Journal of Geography (Chigaku Zasshi) 105(3): 328342.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnL–trnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Li, C.-X. & Yang, Q. 2003. [Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences]. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji 25: 177–80.Google ScholarPubMed
Li, L. & Hsu, P. 1984. Karyotype analysis in Platycladus orientalis and Fokienia hodginsii. Acta Botanica Yunnanica 9: 447451.Google Scholar
Li, Z., Saito, Y., Matsumoto, E., et al., 2006. Palynological record of climate change during the last deglaciation from the Song Hong (Red River) delta, Vietnam. Palaeogeography, Palaeoclimatology, Palaeoecology 235(4): 406430.CrossRefGoogle Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
Ma, Q.W., Li, C.S. & Li, F.L. 2007a. Epidermal structures of Cryptomeria japonica and implications to the fossil record. Acta Palaeobotanica 47: 281289.Google Scholar
Ma, Q.W., Li, C.S. & Li, F.L. 2007b. Epidermal structures of giant redwood and comparison with those of coast redwood and dawn redwood. Journal of Beijing Forestry University 29: 711 (in Chinese with English abstract).Google Scholar
Machida, H. & Arai, F. 1983. Extensive ash falls in and around the Sea of Japan from large late Quaternary eruptions. Journal of Volcanology and Geothermal Research 18(1–4): 151164.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Martinetto, E. 2001. The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobotanica 41(2): 299319.Google Scholar
Masui, J. 1951. Relation between the geology and the growth of Cryptomeria in the Kaneyama district, Yamagata prefecture. Japanese Association of Mineralogists 35: 107116.Google Scholar
Matsushita, M. 1990. Holocene vegetation history of the Matsuzaki Lowland of the Izu Peninsula, central Japan. Japanese Journal of Ecology 40(1): 15.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Chromosome counts of selected genera of conifers. Journal of Genetics 54: 181185.CrossRefGoogle Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Miura, M. & Yamamoto, S.I. 2003. Structure and dynamics of a Castanopsis cuspidata var. sieboldii population in an old-growth, evergreen, broad-leaved forest: the importance of sprout regeneration. Ecological Research 18: 115129.CrossRefGoogle Scholar
Miura, S., Hirai, K. & Yamada, T. 2002. Transport rates of surface materials on steep forested slopes induced by raindrop splash erosion. Journal of Forest Research 7(4): 201211.CrossRefGoogle Scholar
Morford, S.L., Houlton, B.Z. & Dahlgren, R.A. 2011. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477: 7881.CrossRefGoogle Scholar
Moriguchi, Y., Matsumoto, A., Saito, M., Tsumura, Y. & Taira, H. 2001. DNA analysis of clonal structure of an old-growth, isolated forest of Cryptomeria japonica in a snowy region. Canadian Journal of Forest Research 31: 377383.CrossRefGoogle Scholar
Morita, Y., Yagi, H., Inokuchi, T. & Yamazaki, T. 2002. Vegetation history of the southern Tohoku district, based on pollen analysis of Aranuma in the Shirataka Lakes, Yamagata prefecture. The Quaternary Research (Daiyonki-Kenkyu) 41(5): 375387.CrossRefGoogle Scholar
Murai, S. 1947. Major forestry tree species in the Tohoku region and their varietal problems. Kokudo Saiken Zourin Gijutsu Kouenshu, 1947: 131151.Google Scholar
Muroyama, Y. & Tamai, S. 1986. The population dynamics of sugi seedlings in the natural forest of Ashu. Bulletin Kyoto University Forestry 58: 95103 (in Japanese with English summary).Google Scholar
Nagakura, J., Kaneko, S., Takahashi, M. & Tange, T. 2008. Nitrogen promotes water consumption in seedlings of Cryptomeria japonica but not in Chamaecyparis obtusa. Forest Ecology and Management 255: 25332541.CrossRefGoogle Scholar
Nevolina, S.I. 1984. Late Cretaceous flora of the Amur Region (the Partizansk flora after AN Kryshtofovich). Ezhegodnik VPO 27: 219235.Google Scholar
Ngee, P.S., Yoshimura, T. & Lee, C.Y. 2004. Foraging populations and control strategies of subterranean termites in the urban environment, with special reference to baiting. Japanese Journal of Environmental Entomology and Zoology 15(3): 197215.Google Scholar
Noguchi, K., Nagakura, J. & Kaneko, S. 2013. Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after three years of nitrogen fertilisation. Frontiers in Plant Science 4: 347.CrossRefGoogle Scholar
Ohba, K. 1993. Clonal forestry with sugi (Cryptomeria japonica). Pp 6689 in Ahuja, M.R. & Libby, W.J. (eds.), Clonal Forestry 2: Conservation and Application. Berlin: Springer.CrossRefGoogle Scholar
Ohte, N., Mitchell, M.J., Shibata, H., et al. 2001. Comparative evaluation on nitrogen saturation of forest catchments in Japan and northeastern United States. Water Air and Soil Pollution 130: 649654.CrossRefGoogle Scholar
Ooi, N., Minaki, M. & Noshiro, S. 1990. Vegetation changes around the Last Glacial Maximum and effects of the Aira-Tn ash, at the Itai-Teragatani site, central Japan. Ecological Research 5: 8191.Google Scholar
Page, C.N. 1999. The Cryptomeria forests of Yakushima Island. International Dendrology Society Bulletin 1999: 4750.Google Scholar
Parker, L.R. & Balsley, J.K. 1989. Coal Mines as Localities for Studying Dinosaur Trace Fossils: Dinosaur Tracks and Traces. Cambridge: Cambridge University Press.Google Scholar
Pilger, E. 1926. Coniferae. Pp 121407 in Engler, A. and Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien, 2nd edn. Leipzig: Wilhelm Engelmann.Google Scholar
Pilger, E. & Melchior, H. 1954. Gymnospermae. Pp 312344 in Engler, A. (ed.), Syllabus der Pflanzenfamilien. Berlin: Gebrunder Borntraeger.Google Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Reubens, B., Poesen, J., Danjon, F., Geudens, G. & Muys, B. 2007. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees: Structure and Function 21: 385402.CrossRefGoogle Scholar
Rose, R. & Ketchum, J.S. 2002. Interaction of vegetation control and fertilization on conifer species across the Pacific Northwest. Canadian Journal of Forest Research 32: 136152.CrossRefGoogle Scholar
Sahashi, N., Ikuse, M., Ohmoto, T., et al. 1990. Relationship between seasonal and annual total pollen counts of Cryptomeria japonica and Cupressaceae and number of outpatients with Sugi pollinosis in central Japan. Review of Palaeobotany and Palynology 64: 7986.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schneider, W. 1986. Phytogenetic silifications in the Miocene brown coal and their importance for stratigraphy, facies and seam genesis. Z Geol Wiss (German Democratic Republic) 14(2).Google Scholar
Seiwa, K., Ando, M., Imaji, A., Tomita, M. & Kanou, K. 2009. Spatio-temporal variation of environmental signals inducing seed germination in temperate conifer plantations and natural hardwood forests in northern Japan. Forest Ecology and Management 257(1): 361369.CrossRefGoogle Scholar
Shibata, E., Waguchi, Y. & Yoneda, Y. 1994. Role of tree diameter in the damage caused by the sugi bark borer (Coleoptera: Carambycidae) to the Japanese cedar, Cryptomeria japonica. Environmental Entomology 23: 7679.CrossRefGoogle Scholar
Shimada, M. 1967. The pollen flora from the Tertiary and Cretaceous of Japan in correlation with the palaeobotanical records. Review of Palaeobotany and Palynology 5: 235241.CrossRefGoogle Scholar
Srinivasen, V. & Friis, E.M. 1989. Taxodiaceous conifers from the Upper Cretaceous of Sweden. Biologiske Skrifter 35: 157.Google Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Stokes, A., Spanos, I., Norris, J., & Cammeraat, E.L.H. 2007. Eco and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability. New York: Springer.CrossRefGoogle Scholar
Suzuki, E. 1997. The dynamics of old Cryptomeria japonica forest on Yakushima Island. Tropics 6: 421428.CrossRefGoogle Scholar
Suzuki, E. & Tsukahara, J. 1987. Age structure and regeneration of old growth Cryptomeria japonica forests on Yakushima Island. Tokyo Botanical Magazine 100: 233241.CrossRefGoogle Scholar
Sveshnikova, I.N. 1967. Late Cretaceous Coniferae from the U.S.S.R., I. Fossil Coniferae of the Viliuyian depression. Trud Bot Inst An SSSR Ser 8 Paleobotanika 6: 177203.Google Scholar
Taira, H., Tsumura, Y., Tomaru, N. & Ohba, K. 1997. Regeneration system and genetic diversity of Cryptomeria japonica growing at different altitudes. Canadian Journal of Forest Research 27: 447452.CrossRefGoogle Scholar
Takahara, H. & Kitagawa, H. 2000. Vegetation and climate history since the last interglacial in Kurota Lowland, western Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 155: 123134.CrossRefGoogle Scholar
Takahara, H. & Takeoka, M. 1992. Postglacial vegetation history around Torihama, Fukui prefecture, Japan. Ecological Research 7: 7985.CrossRefGoogle Scholar
Takahashi, T., Tani, N., Taira, H. & Tsumura, Y. 2005. Microsatellite markers reveal high allelic variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period. Journal of Plant Research 118: 8390.CrossRefGoogle ScholarPubMed
Takahashi, T., Tani, N., Niiyama, K., Yoshida, S. & Tsumura, Y. 2008. Genetic succession and spatial genetic structure in a natural old-growth Cryptomeria japonica forest revealed by nuclear and chloroplast microsatellite markers. Forest Ecology and Management 255: 28202828.CrossRefGoogle Scholar
Takaso, T. & Owens, J.N. 1996. Ovulate cone, pollination drop, and pollen capture in Sequoiadendron (Taxodiaceae). American Journal of Botany 83(9): 11751180.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae–Coniferales). American Journal of Botany 77(9): 12091221.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Tamai, S., Sakai, T., Matsushita, Y. 1985. Studies on tree dynamics in a mixed forest of Cryptomeria japonica and broadleaved trees, with special reference to the current seedlings of Cryptomeria japonica D.Don. Japanese Journal of Ecology 35: 433441.Google Scholar
Tani, N., Tsumura, Y. & Sato, H. 2003. Nuclear gene sequences and DNA variation of Cryptomeria japonica samples from the postglacial period. Molecular Ecology 12: 859868.CrossRefGoogle Scholar
Teranishi, H., Kenda, Y., Katoh, T., Oura, E. & Taira, H. 2000. Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Climate Research 14: 6570.CrossRefGoogle Scholar
Toda, Y. 1979. The karyotype of Cryptomeria japonica D.Don. IV. La Kromosomo 14: 404407 (in Japanese).Google Scholar
Tomaru, N., Tsumura, Y. & Ohba, K. 1994. Genetic variation and population differentiation in natural populations of Cryptomeria japonica. Plant Species Biology 9: 191199.CrossRefGoogle Scholar
Tomizawa, H. & Maruyama, K. 1993. Distribution and survivorship of seedlings of Cryptomeria japonica natural forests on Sado Island. Journal of the Japanese Forestry Society 75: 460462 (in Japanese).Google Scholar
Tsukada, M. 1981. Cryptomeria japonica D.Don I. Pollen dispersal and logistic forest expansion. Journal of Japanese Ecology 31: 310320.Google Scholar
Tsukada, M. 1982. Cryptomeria japonica: glacial refugia and the late-glacial and postglacial migration. Ecology 63: 10911105.CrossRefGoogle Scholar
Tsukada, M. 1985. Map of vegetation during the Last Glacial Maximum in Japan. Quaternary Research 23(3): 369381.CrossRefGoogle Scholar
Tsukada, M. 1986. Altitudinal and latitudinal migration of Cryptomeria japonica for the past 20,000 years in Japan. Quaternary Research 26: 135152.CrossRefGoogle Scholar
Tsukamoto, J. 1991. Downhill movement of litter and its implication for ecological studies in three types of forest in Japan. Ecological Research 6(3): 333345.CrossRefGoogle Scholar
Tsumura, Y. & Ohba, K. 1992. Allozyme variation of five natural populations of Cryptomeria japonica in western Japan. Japanese Journal of Genetics 67: 299308.Google Scholar
Tsumura, Y. & Ohba, K. 1993. Genetic structure of geographical marginal populations of Cryptomeria japonica. Canadian Journal of Forest Research 23: 859863.CrossRefGoogle Scholar
Tsumura, Y. & Tomaru, N. 1999. Genetic diversity of Cryptomeria japonica using co-dominant markers based on sequence-tagged sites. Theoretical and Applied Genetics 98: 396404.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vidal, J. 1960. Les Forets du Laos. Revue Bois et Forets des Tropiques 70: 521.CrossRefGoogle Scholar
Vitousek, P.M. & Farrington, H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 100: 6375.CrossRefGoogle Scholar
Walker, T.W. & Syers, J.K. 1976. The fate of phosphorous during pedogenesis. Geoderma 15: 119.CrossRefGoogle Scholar
Wang, C.-W. 1961. The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation Publication 5: 1313.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Yamashita, T., Kasuya, N., Nishimura, S. & Takeda, H. 2004. Comparison of two coniferous plantations in central Japan with respect to forest productivity, growth phenology and soil nitrogen dynamics. Forest Ecology and Management 200(1–3): 215226.CrossRefGoogle Scholar
Yao, X., Taylor, T.N. & Taylor, E.L. 1997. A taxodiaceous seed cone from the Triassic of Antarctica. American Journal of Botany 84(3): 343354.CrossRefGoogle ScholarPubMed
Yasue, M., Ogiyama, K., Suto, S., et al. 1987. Geographical differentiation of natural Cryptomeria stands analysed by diterpene hydrocarbon constituents of individual trees. Journal of the Japanese Forestry Society 69: 152156.Google Scholar
Yi, T.-M, Li, C.-S. & Xu, J.-X. 2003. Late Miocene woods of Taxodiaceae from Yunnan, China. Acta Botanica Sinica 45: 384389.Google Scholar
Zhu, J., Tadooka, N., Takata, K. & Koizumi, A. 2005. Growth and wood quality of sugi (Cryptomeria japonica) planted in Akita prefecture (II). Juvenile/mature wood determination of aged trees. Journal of Wood Science 51: 95101.CrossRefGoogle Scholar
Zinnani, I. & Chiba, S. 1951. Naturally occurring tetraploids of Cryptomeria japonica. Ikushugaku Zasshi (Japanese Journal of Breeding) 1: 4346 (in Japanese).Google Scholar

References

Aulenback, K.R. & LePage, B.A. 1998. Taxodium wallissii sp. nov.: first occurrence of Taxodium from the Upper Cretaceous. International Journal of Plant Sciences 159(2): 367390.CrossRefGoogle Scholar
Averyanov, L.V., Loc, P.K., Hiep, N.T. & Harder, D.K. 2003. Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina. Komarovia 3: 183.Google Scholar
Averyanov, L.V., Loc, P.K., Hiep, N.T., et al. 2009. Preliminary observation of native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. Taiwania 54: 191212.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Baikovskaya, T.N. 1956. Upper Cretaceous floras of northern Asia. Palaeobotanica 2: 49181.Google Scholar
Baikovskaya, T.N. 1974. Upper Miocene Flora of Southern Primorye. Leningrad: Izdatel’stvo" Nauka", Leningradskoe otdelenie.Google Scholar
Bell, W.A. 1949. Uppermost Cretaceous and Paleocene floras of western Alberta. Canada Department of Mines Research Geology Survey Bulletin 13.Google Scholar
Bo, S., Siegert, M.J., Mud, S. et al. 2009. The Gamburtsev Mountains and the origins and early evolution of the Antarctic Ice Sheet. Nature 459: 690693.CrossRefGoogle ScholarPubMed
Botany Research and Development Group of Vietnam 2010. Preliminary observations on native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. www.botanyvn.com.Google Scholar
Boyd, A. 2009. Relict conifers from the mid-Pleistocene of Rhodes, Greece. Historical Biology 21(1–2): 115.CrossRefGoogle Scholar
Brown, R.W. 1936. Paleobotany of the genus Glyptostrobus in North America. Journal of the Washington Academy of Sciences 26: 353357.Google Scholar
Brown, R.W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. US Geological Survey Professional Paper 375.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Buzek, C. 1971. Tertiary Flora from the Northern Part of the Petipsy Area (Northern Bohemian Basin). Prague: Nakladatelstvi Ceskoslovenske Akademie.Google Scholar
Chelebayeva, A.I. 1978. Miotsenovyye flory Vostochnoy Kamchatki (flory stratotipa korfskoy serii) [Miocene Floras in East Kamchatka: the Floras of the Korf Series Stratotype]. Moscow: Nauka Press.Google Scholar
Chochieva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Creber, G.T. & Chaloner, W.G. 1985. Tree growth in the Mesozoic and early Tertiary and the reconstruction of palaeoclimates. Palaeogeography, Palaeoclimatology and Palaeoecology 52: 3560.CrossRefGoogle Scholar
Dorofeev, P.I. 1962. Megaspory, semena I plody iz tretichnykh otlozheny [Megaspores, seeds and fruits from the Tertiary sediments]. Trudy Sibirsk Nauchno-Issled Inst Geol Geofiz Miner Syr 22: 369415.Google Scholar
Dorofeev, P.I. 1974. On the history of the genus Glyptostrobus Endl. Botanical Zhurnal 59: 313 (in Russian).Google Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Endo, S. 1964. Some older Tertiary plants from northern Thailand: contributions to the geology and palaeontology of southwestern Asia, VI. Pp 113117 in Kobayashi, T. (ed.), Geology and Palaeontology of Southeast Asia.Tokyo: University of Tokyo Press.Google Scholar
Endo, S. 1968. The flora from Eocene Woodwardia Formation, Ishikari coal field, Hokkaido, Japan. Bulletin of the National Science Museum Tokyo 11: 411449.Google Scholar
Erdei, B., Dolezych, M. & Hably, L. 2009. The buried Miocene forest at Bükkábrány, Hungary. Review of Palaeobotany and Palynology 155(1–2): 6979.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam). 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1952. On Metasequoia, living and fossil. Bot Notiser 105: 129.Google Scholar
Florin, R. 1955. The systematics of the Gymnosperms. Pp. 323403 in A Century of Progress in the Natural Sciences. San Francisco, CA: California Academy of Sciences.Google Scholar
Fu, L.K., Yu, Y.F. & Farjon, A. 1999. Cupressaceae. Pp 6277 in Wu, Z.Y. & Raven, P.H. (eds.), Flora of China 4. Beijing: Science Press.Google Scholar
Fyles, J.G., Hills, L.V., Matthews, J.V. Jr, et al. 1994. Ballast Brook and Beaufort Formations (Late Tertiary) on northern Banks Island, Arctic Canada. Quaternary International 22: 141171.CrossRefGoogle Scholar
Greenwood, D.R. & Basinger, J.F. 1994. The paleoecology of high-latitude Eocene swamp forests from Axel Heiberg Island. Canadian High Arctic Review of Palaeobotany and Palynology 81(1): 8397.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Grímsson, F., Denk, T. & Símonarson, L.A. 2007. Middle Miocene floras of Iceland: the early colonization of an island?. Review of Palaeobotany and Palynology 144(3–4): 181219.CrossRefGoogle Scholar
Guo, S.X. 1985. Preliminary interpretation of Tertiary climate by using megafossils in China. Palaeontologia Cathayana 2: 169175.Google Scholar
Guo, S.X. & Li, H.M. 1979. Late Cretaceous flora from Hunchun of Jilin. Acta Palaeontol Sin 18: 547−560.Google Scholar
Han, L.-J., Hu, Y.-X., Lin, J.-X. & Wang, X.P. 1997. The biology and conservation of Glyptostrobus pensilis (a review). Subtropical Plant Research Communication 26: 4347 (in Chinese with English abstract).Google Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heer, O. 1871. Flora fossilis arctica: Die fossile Flora der Polarländer. J Wurster & Co.Google Scholar
Heer, O. 1874. Nachträge zur Miocene Flora Grönlands. Flora Fossilis Arctica. Band III: Heft 2 & 3. Kgl. Svenska Vetenskapsakad. Handlingar 12: 111.Google Scholar
Henry, A. & McIntyre, M. 1926. The swamp cypresses, Glyptostrobus of China and Taxodium of America, with notes on allied genera. Proceedings of the Royal Irish Academy 37: 90116.Google Scholar
Hofmann, C.C. & Zetter, R. 2005. Reconstruction of different wetland plant habitats of the Pannonian Basin System (Neogene, Eastern Austria). Palaios 20(3): 266279.CrossRefGoogle Scholar
Hurník, S. & Kvaček, Z. 1999. Satellite basin of Skyrice near Most and its fossil flora (Miocene). Acta Universitatis Carolinae Geologica 4: 643656.Google Scholar
Jahren, A.H. 2007. The Arctic forest of the Middle Eocene. Annual Reviews of Earth Planetary Science 35: 509540.CrossRefGoogle Scholar
Kalaitzidis, S., Bouzinos, A., Papazisimou, S. & Christanis, K. 2004. A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece. International Journal of Coal Geology 57(3–4): 243263.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kovar-Eder, J. & Meller, B. 2003. The plant assemblages from the main seam parting of the western sub-basin of Oberdorf, N Voitsberg, Styria, Austria (Early Miocene). Courier-Forschungsinstitut Senckenberg 241: 281312.Google Scholar
Kovar-Eder, J., Kvaček, Z. & Meller, B. 2001. Comparing Early to Middle Miocene floras and probable vegetation types of Oberdorf N Voitsberg (Austria), Bohemia (Czech Republic) and Wackersdorf (Germany). Review of Palaeobotany and Palynology 114: 83125.CrossRefGoogle Scholar
Kovar-Eder, J., Kvaček, Z. & Ströbitzer-Hermann, M. 2004. The Miocene flora of Parschlug (Styria, Austria): revision and synthesis. Annalen des Naturhistorischen Museums in Wien 105A: 45159.Google Scholar
Krystofovich, A. N. 1935. A final link between the Tertiary floras of Asia and Europe. New Phytologist 34: 339344.CrossRefGoogle Scholar
Krystofovich, A. N. 1946. Miocene plants from the Suifunskoi Formation, Ussuriskogo Krai. Botanical Journal 31: 734.Google Scholar
Kuan, C.-T. (1981). Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnL–trnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Lebedev, E.L. 1982. Recurrent development of floras of the Okhotsk-Chukotka volcanogenic belt at the boundary between the Early and Late Cretaceous. Paleontological Journal 2: 111.Google Scholar
LePage, B.A. 2007. The taxonomy and biogeographic history of Glyptostrobus. Bulletin of the Peabody Museum of Natural History 48: 359426.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan= Hereditas 25(2): 177180.Google ScholarPubMed
Li, F.-G. & Xia, N.-H. 2005. Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Botanical Bulletin Academica Sinica 46: 155162.Google Scholar
Li, H.-M. & Yang, G.-Y. 1984. Miocene Qiuligou flora in Dunhua county, Jilin Province. Acta Palaeontologica Sinica 23: 204214.Google Scholar
Li, L.-C. 1987. Cytological studies on Glyptostrobus pensilis Koch (Taxodiaceae). Guihaia 7: 101106.Google Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
López-Pujol, J., Zhang, F.M., Sun, H.Q., Ying, T.S. & Ge, S. 2011. Mountains of southern China as ‘plant museums’ and ‘plant cradles’: evolutionary and conservation insights. Mountain Research and Development 31(3): 261269.CrossRefGoogle Scholar
Ma, Q.-W., Li, C.-S., Li, F.-L. & Vickulin, S.V. 2004. Epidermal structures and stomatal parameters of Chinese endemic Glyptostrobus pensilis (Taxodiaceae). Botanical Journal of the Linnean Society 146: 153162.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Magri, D., Di Rita, F., Aranbarri, J., et al. 2017. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews 163: 2355.CrossRefGoogle Scholar
Mai, D.H. 1989. Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution 162: 7991.CrossRefGoogle Scholar
Mai, D.H. & Walther, H. 1988. Die pliozänen Floren von Thüringen Deutsche Demokratische Republik. Quartärpaläont 7: 55297.Google Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoecology 253(1–2): 4155.CrossRefGoogle Scholar
Matsumoto, M., Ohsawa, T.A., Nishida, M. & Nishida, H. 1997. Glyptostrobus rubenosawensis sp. nov., a new permineralised conifer species from the Middle Miocene, Central Hokkaido. Japanese Paleontological Research 1: 8199.Google Scholar
McIntyre, D.J. 1991. Pollen and spore flora of an Eocene forest, eastern Axel Heiberg Island, N.W.T. Bulletin of the Geological Survey of Canada 403: 8398.Google Scholar
McIver, E.E. & Basinger, J.F. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontographica Canadiana 10: 1167.Google Scholar
Momohara, A. 1994. Floral and paleoenvironmental history from the late Pliocene to middle Pleistocene in and around central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108(3–4): 281293.CrossRefGoogle Scholar
Mustoe, G., Dillhoff, R., & Dillhoff, T. 2007. Geology and paleontology of the early Tertiary Chuckanut Formation. Pp 121135 in Stelling, P. & Tucker, D.S. (eds.), Floods, Faults, and Fire: Geological Field Trips in Washington State and British Columbia. Boulder, CO: Geological Society of America.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmoschimica Acta 65: 35053527.CrossRefGoogle Scholar
Otto, A., Simoneit, B.R. & Rember, W.C. 2003. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Review of Palaeobotany and Palynology 126(3–4): 225241.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M. & Spicer, R.A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13: 149159.CrossRefGoogle Scholar
Phuong, V.T. 2007. Forest environment of Vietnam: features of forest vegetation and soils. Pp 189200 in Forest Environments in the Mekong River Basin. Tokyo: Springer.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Ramanujam, C.G.K. & Stewart, W.N. 1969. Fossil woods of Taxodiaceae from the Edmonton Formation (upper Cretaceous) of Alberta. Canadian Journal of Botany 47(1): 115124.CrossRefGoogle Scholar
Sato, S. 1960. Palynological study on the Haboro coal seam of the Haboro coal-bearing formation. Journal of the Faculty of Science, Hokkaido University 4.Google Scholar
Schweitzer, H.J. 1974 Die ‘Tertifiren’ koniferen spitzberg. Paleontographica 149B: 189.Google Scholar
Shimada, M. 1953 . The pollen analyses of sonie lignite beds in the north-eastern provinces of Japan. BZCLL Society of Plant Ecology 3.Google Scholar
Smith, H.V. 1938. Notes on fossil plants from Hog Creek in southwestern Idaho. Michigan Academy of Sciences 23: 223231.Google Scholar
Srinivasan, V. 1995. Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in eastern North America. Review of Palaeobotany and Palynology 89(3–4): 257286.CrossRefGoogle Scholar
Stebbins, G.L. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108: 9598.CrossRefGoogle ScholarPubMed
Stockey, R.A., Rothwell, G.W. & Falder, A.B. 2001. Diversity among taxodioid conifers: Metasequoia foxii sp. Nov from the Paleocene of Central Alberta, Canada. International Journal of Plant Science 162: 221234.CrossRefGoogle Scholar
Sveshnikova, I.N. 1963. Atlas and a key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Paleobotany 4: 207.Google Scholar
Sveshnikova, I.N. 1967. Late Cretaceous conifers in the USSR; 1. Fossil conifers of the Vilyui Syneclise. Tr. Bot Inst Akad Nauk SSSR Ser 8 Paleobot 4: 177204.Google Scholar
Takaso, T. & Tomlinson, P.B. 1989. Cone and ovule development in Callitris (Cupressaceae–Callitroideae). Botanical Gazette 150: 387390.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae – Coniferales). American Journal of Botany 77: 12091221.CrossRefGoogle Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University ser. 4(9): 1112.Google Scholar
Tanai, T. & Suzuki, N. 1972. Additions to the Miocene floras of southwestern Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University. Series 4. Geology and Mineralogy 15(1–2): 281359.Google Scholar
Tanai, T. & Uemura, K. 1991. The Oligocene Noda Flora from the Yuyawan area of the western end of Honshu, Japan. Part 2. Bulletin of the National Science Museum Ser C 17: 8190.Google Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Thomas, P., Yang, Y., Farjon, A., Nguyễn, D. & Liao, W. 2011. Glyptostrobus pensilis. In IUCN 2011: IUCN Red List of Threatened Species. Version 2011.2. www.iucnredlist.org.Google Scholar
Ticleanu, N. & Diaconita, D., 1997. The main coal facies and lithotypes of the Pliocene coal basin, Oltenia, Romania. European Coal Geology and Technology 125: 131139.Google Scholar
Tsukada, M. 1963. Umbrella pine, Sciadopitys verticillata: past and present distribution in Japan. Science 142: 16801681.CrossRefGoogle ScholarPubMed
Uemura, K. 1988. Late Miocene floras in Northeast Honshu, Japan. National Science Museum Tokyo 197.Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vassio, E., Martinetto, E. & Dolezyeh, M. 2008. Wood anatomy of Glyptostrobus europaeus ‘whole plant’ from a Pliocene fossil forest in Italy. Review of Palaeobotany and Palynology 151: 8189.CrossRefGoogle Scholar
Vickulin, S.V., Ma, Q.-W., Zhilim, S.G. & Li, C.-S. 2003. On cuticular compressions of Glyptostrobus europaeus (Taxodiaceae) from Kaydaguui formation (Lower Miocene) of the central Kazakhstan. Acta Botanica Sinica 45: 673680.Google Scholar
Visscher, G.E. & Jagels, R. 2003. Separation of Metasequoia and Glyptostrobus (Cupressaceae) based on wood anatomy. IAWA Journal 24(4): 439450.CrossRefGoogle Scholar
Wang, C.-W. 1961. The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation Publication 5: 1313.Google Scholar
Williams, C.J., Mendell, E., Murphy, J., et al. 2008. Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 261: 160176.CrossRefGoogle Scholar
Wittlake, E.B. 1975. The androstrobilus of Glyptostrobus nordenskioldi (Heer) Brown. American Midland Naturalist 94: 215223.CrossRefGoogle Scholar
Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation of forests to other regions of the Northern Hemisphere and Australasia. US Geological Survey Professional Paper 1106.CrossRefGoogle Scholar
Wolfe, J.A. & Upchurch, G.R. Jr 1987. Leaf assemblages across the Cretaceous–Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proceedings of the National Academy of Sciences 84(15): 50965100.CrossRefGoogle ScholarPubMed
Wolfe, J.A., Hopkins, D.M. & Leopold, E.B. 1966. Tertiary stratigraphy and paleobotany of the Cook Inlet region, Alaska. US Geological Survey Professional Paper 398A.CrossRefGoogle Scholar
Worobiec, E. 2011. Middle Miocene aquatic and wetland vegetation of the paleosinkhole at Tarnów Opolski, SW Poland. Journal of Paleolimnology 45: 311322.CrossRefGoogle Scholar
Worobiec, E. & Szulc, J. 2010. A Middle Miocene palynoflora from sinkhole deposits from Upper Silesia, Poland and its palaeoenvironmental context. Review of Palaeobotany and Palynology 163(1–2): 110.CrossRefGoogle Scholar
Yamakawa, C., Momohara, A., Nunotani, T., Matsumoto, M. & Watano, Y. 2008. Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the late Pliocene Kobiwako Group, central Japan. Paleontological Research 12: 167180.CrossRefGoogle Scholar
Ying, T.-S., Zhang, Y.-L. & Boufford, D.E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Zhilin, S.G. 1989. History of the development of the temperate forest flora in Kazakhstan (USSR) from the Oligocene to the Early Miocene. Botanical Review 55: 205.CrossRefGoogle Scholar

References

Allen, J.A. 1992. Cypress-tupelo swamp restoration in southern Louisiana. Restoration Management 10: 188189.Google Scholar
Arnold, M.A. & Denny, G.C. 2007. Taxonomy and nomenclature of bald cypress, pond cypress and Montezuma Cypress: one, two, three species ? Horticultural Technology 17: 125127.Google Scholar
Aulenback, K. & LePage, B.A. 1998. Taxodium wallsii sp. nov.: first occurrence of Taxodium from the Upper Cretaceous. International Journal of Plant Sciences 159: 367390.CrossRefGoogle Scholar
Axelrod, A.I. 1976. History of the conifer forests, California and Nevada. University of California Publications in Botany 70: 160.Google Scholar
Axelrod, A.I. 1979. Age and origin of Sonoran Desert vegetation. Californian Academy of Sciences Occasional Papers 132.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Beaven, G.F., Oosting, H.J. & Henry, J. 1939. Pocomoke Swamp: a study of a cypress swamp on the eastern shore of Maryland. Bulletin of the Torrey Botanical Club 66: 376389.CrossRefGoogle Scholar
Bertoldi, R. 1977. Studio palinologico della serie di Le Castella (Calabria). Atti della Accademia Nazionale dei Lincei Classe di Scienze Fisiche Matematiche e Naturali Rendiconti 62: 547555.Google Scholar
Boulter, M.C., Hubbard, R.N. & Kvaček, Z. 1993. A comparison of intuitive and objective interpretations of Miocene plant assemblages from north Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology 101(1–2): 8196.CrossRefGoogle Scholar
Brown, C.A. 1984. Morphology and biology of cypress trees. Pp 1624 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Brown, S. 1981. A comparison of the structure, primary productivity and transpiration of a bald cypress ecosystem in Florida. Ecological Monographs 51: 403427.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Buzek, C. 1971. Tertiary Flora from the Northern Part of the Petipsy Area (Northern Bohemian Basin). Prague: Nakladatelstvi Ceskoslovenske Akademie.Google Scholar
Cao, F., Fang, S., Tang, L., et al. 1995. A study on provenance tests of Taxodium distichum seeds. Journal of Nanjing Forestry University 19: 6670.Google Scholar
Chochieva, K.I. 1980. The family Taxodiaceae in the fossil floras of the Georgian-SSR USSR. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya 6(1): 6166.Google Scholar
Conner, W.H. & Toliver, J.R. 1990. Long-term trends in the bald cypress (Taxodium distichum) resource in Louisiana (USA). Forest Ecology and Management 33: 543557.CrossRefGoogle Scholar
Conner, W.H., Toliver, J.R. & Sklar, F.H. 1986. Natural regeneration of bald cypress [Taxodium distichum (L.) Rich] in a Louisiana swamp. Forest Ecology and Management 14: 305317.CrossRefGoogle Scholar
Coultas, C.L. & Duever, M.J. 1984. Soils of cypress swamps. Pp 5159 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Cousens, M.I., Lacey, D.G. & Scheller, J.M. 1988. Safe sites and the ecological life-history of Lorinseria areolata. American Journal of Botany 75: 797807.CrossRefGoogle Scholar
Cypert, E. 1961. The effects of fires in the Okefenokee Swamp in 1954 and 1955. American Midland Naturalist 66: 485503.CrossRefGoogle Scholar
Davis, M.B. 1976. Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13: 1326.Google Scholar
Dean, G.W. 1969. Forests and forestry in the Dismal Swamp. Virginia Journal of Science 20: 166173.Google Scholar
Denny, G., Arnold, M.A. & Bryan, D. 2006. Effect of provenance on alkalinity tolerance in bald cypress. HortScience 41: 10041005.CrossRefGoogle Scholar
Denslow, J.S. & Battagalia, L.L. 2002. Stand composition and structure across a changing hydrologic gradient: Jean Lafitte National Park, Louisiana, USA. Wetlands 22: 738752.CrossRefGoogle Scholar
Díaz, S.C., Therrell, M.D., Stahle, D.W. & Cleaveland, M.K. 2002. Chihuahua (Mexico) winter–spring precipitation reconstructed from tree-rings, 1647–1992. Climate Research 22: 237244.CrossRefGoogle Scholar
Dicke, S.G. & Toliver, J.R. 1990. Growth and development of bald-cypress/water-tupelo stands under continuous versus seasonal flooding. Forest Ecology and Management 33: 523530.CrossRefGoogle Scholar
Dorado, O. 1996. The arbol del Tule (Taxodium muronatum Ten.) is a single genetic individual. Madrõno 43: 445452.Google Scholar
Dorofeev, P.I. 1976. K sistematike tretičnych Taxodium. Bot Žurn 61: 13641373.Google Scholar
Duever, M.J. & Riopelle, L.A. 1983. Successional sequences and rates on tree islands in the Okefenokee Swamp. American Midland Naturalist 110: 186191.CrossRefGoogle Scholar
Duever, M.J., Carlson, J.E., & Riopeue, L.A. 1984. Corkscrew Swamp: a virgin cypress stand. Pp 334348 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Dunn, C.P. & Sharitz, R.R. 1987. Revegetation of a TaxodiumNyssa forested wetland following complete vegetation destruction. Vegetatio 72: 151157.CrossRefGoogle Scholar
Earle, C.J. 2005. The Gymnosperm Database: Taxodium. www.conifers.org/cu/Taxodium_mucronatum.php.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Effler, R.S. & Goyer, R.A. 2006. Baldcypress and water tupelo sapling response to multiple stress agents and reforestation implications for Louisiana swamps. Forest Ecology and Management 226: 330340.CrossRefGoogle Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Enriquez-Peña, E.G., Suzán-Azpiri, H. & Malda-Barrera, G. 2004. Seed viability and germination of Taxodium mucronatum (Ten.) in the states of Querétaro, Mexico. Agrocencia 38: 375381.Google Scholar
Erdei, B., Dolezych, M. & Hably, L. 2009. The buried Miocene forest at Bükkábrány, Hungary. Review of Palaeobotany and Palynology 155(1–2): 6979.CrossRefGoogle Scholar
Ewel, K.C. 1990. Multiple demands on wetlands. Bioscience 40: 660666.CrossRefGoogle Scholar
Ewel, K.C. & Odum, H.T. (eds.) 1984. Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Ewel, K.C. & Wickenheiser, L.P. 1988. Effect of swamp size on growth rates in cypress (Taxodium distichum) trees. American Midland Naturalist 120: 362370.CrossRefGoogle Scholar
Faulkner, S. & Toliver, J. 1983. Genetic variation of cones, seeds, and nursery-grown seedlings of baldcypress (Taxodium distichum (L.) Rich.) provenances. Pp 281288 in Southern Forest Improvement Committee (eds.), Proceedings of the 17th Southern Forest Tree Improvement Conference. Georgia: University of Georgia.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Frank, M.C. & Bend, S.L. 2004. Peat-forming history of the ancestral Souris mire (Palaeocene), Ravenscrag Formation, southern Saskatchewan, Canada. Canadian Journal of Earth Sciences 41: 307322.CrossRefGoogle Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Hall, G.W., Diggs, G.M., Soltis, D.E. & Soltis, P.M. 1990. Genetic uniformity of El Arbol del Tule (the Tule Tree). Madrõno 37: 15.Google Scholar
Hare, R.C. 1965. Contribution of bark to fire resistance of southern trees. Journal of Forestry 63: 248251.Google Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Harris, L.D. & Vickers, C.R. 1984. Some faunal community characteristics of cypress ponds and the changes induced by perturbations. Pp 171185 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heer, O. 1869. Miozäne baltische Flora. – Beitr. Naturk Preuss 2: 1104.Google Scholar
Hesse, I.D., Day, J.W. & Doyle, T.V. 1998. Long-term growth enhancement of baldcypress (Taxodium distichum) from municipal wastewater application. Environmental Management 22: 119127.CrossRefGoogle Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Huenneke, L.F. & Sharitz, R.R. 1986. Microsite abundance and the distribution of woody seedlings in a South Carolina cypress-tupelo swamp. American Midland Naturalist 115: 328335.CrossRefGoogle Scholar
Hurník, S. & Kvaček, Z. 1999. Satellite basin of Skyrice near Most and its fossil flora (Miocene). Acta-Universitatis Carolinae Geologica 4: 643656.Google Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal of the Geological Society of Japan 98: 205221.Google Scholar
Jagels, R. & Equiza, M.A. 2007. Why did Metasequoia disappear from North America but not from China. Bulletin of the Peabody Museum of Natural History 48(2): 281290.CrossRefGoogle Scholar
Jiang, M. & Middleton, B.A. 2011. Soil characteristics of sediment-amended baldcypress (Taxodium distichum) swamps of coastal Louisiana. Wetlands 31: 735744.CrossRefGoogle Scholar
Karlioğlu, N., Akkemik, U. & Caner, H. 2009. Detection of some woody plants in Late Oligocene forests of Istanbul. Turkish Journal of Agriculture and Forestry 33(6): 577584.Google Scholar
Keim, R.F., Chambers, J.L. Hughes, M.S., et al. 2006. Long-term success of stump sprouts in high-graded baldcypress-water tupleo swamps in the Mississippi delta. Forest Ecology and Management 234: 2433.CrossRefGoogle Scholar
Keim, R.F., Izdepski, R.F., Caleb, W. & Day, J.W. Jr. 2012. Growth response of baldcypress to wastewater nutrient addition and changing hydrology regime. Wetlands 32: 95103.CrossRefGoogle Scholar
Knobloch, E. 1961. Die oberoligozäne Flora des Pirskenberges bei Šluknov in Nord-Böhmen. – Sbor. Ústř Úst Geol Odd Paleont 26: 241315.Google Scholar
Knobloch, E., Konzalová, M. & Kvaček, Z. 1996. Die obereozäne Flora der Staré Sedlo-Schichtenfolge in Böhmen (Mitteleuropa). Rozpr Čes geol Úst 49: 1260.Google Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roiron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238(1–4): 321339.CrossRefGoogle Scholar
Krauss, K.W., Chambers, J.L., Allen, J.A., Soileau, D.M. & DeBosier, A.S. 2000. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA. Journal of Coastal Research 16: 153163.Google Scholar
Kunzmann, L., Kvaček, Z., Mai, D.H. & Walther, H. 2009. The genus Taxodium (Cupressaceae) in the Palaeogene and Neogene of Central Europe. Review of Palaeobotany and Palynology 153: 153183.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Kvaček, Z. 1988. The Lauraceae of the European Palaeogene, based on leaf cuticles. Cour Forsch-Inst Senckenberg 107: 345354.Google Scholar
Kvaček, Z. & Bubik, M. 1990. Vestnik Ustr. Ust Geol 65: 8194.Google Scholar
Kvaček, Z. & Hably, L. 1998. New plant elements in the tard clay formation from Eger-Kiseged. Acta Palaeobotanica 38: 523.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Kvaček, Z. & Walther, H. 1998. The Oligocene volcanic flora of Kundratice near Litoměřice, České Středohoří volcanic complex (Czech Republic): a review. Acta Musei Nationalis Pragae, Series B – Historia Naturalis 54: 142.Google Scholar
Kvaček, Z. & Walther, H. 2001. The Oligocene of central Europe and the development of forest vegetation in space and time on the basis of megafossils. Palaeontographica B, 259: 125148.CrossRefGoogle Scholar
Kvaček, Z., Teodoridis, V. & Gregor, H.J. 2008. The Pliocene Leaf Flora of Auenheim, Northern Alsace (France). Verlag Documenta Naturae.Google Scholar
Larsson, L.M., Vaida, V. & Ramussen, E.S. 2006. Early Miocene pollen and spores from western Jylland, Denmark: environmental and climatic implications. GFF 128: 261272.CrossRefGoogle Scholar
Larsson, L.M., Dybkjær, K., Rasmussen, E.S., et al. 2011. Miocene climate evolution of northern Europe: a palynological investigation from Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 309(3–4): 161175.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan= Hereditas 25(2): 177180.Google ScholarPubMed
Li, C.-X. & Zhong, Z.-C. 2008. Effects of different water treatment on the nutrient content in soil of Taxodium ascendens seedlings. Acta Hydrobiologica Sinica 32: 154160.CrossRefGoogle Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Li, L.-C., Jiang, J.-H., Wang, Y.-Q. & Wang, G. 1997. Karyotype analysis of three species in the Cupressaceae. Acta Botanica Yunnanica 19: 391394 (in Chinese, with English summary).Google Scholar
Lickey, E.B. & Walker, G.L. 2002. Population genetic structure of baldcypress (Taxodium distichum [L.] Rich. var distichum) and pondcypress (T. distichum var imbricatum [Nutall] Croom): biogeographic and taxonomic implications. Southeastern Naturalist 1: 131148.CrossRefGoogle Scholar
Ma, Q.W., Li, F.L. & Li, C.S. 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Ongjiang and the Miocene of Yinnan, China. Review of Palaeobotany and Palynology 135: 117129.CrossRefGoogle Scholar
Ma, Q.-W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Mai, D.H. 1989. Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution 162: 7991.CrossRefGoogle Scholar
Mai, D.H. 1995. Tertiäre Vegetationsgeschichte Europas. Jena: G. Fischer.Google Scholar