We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
References
[1]
O’Shea, JJ, Paul, WE. Mechanisms Underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010; 327: 1098–102.Google Scholar
[2]
Billingham, RE, Brent, L, Medawar, PB. Actively acquired tolerance of foreign cells. Nature. 1953; 172: 603–6.Google Scholar
[3]
Adkins, B, Leclerc, C, Marshall-Clarke, S. Neonatal adaptive immunity comes of age. Nat Rev Immunol. 2004; 4: 553–64.Google Scholar
[4]
Sarzotti, M, Robbins, DS, Hoffman, PM. Induction of protective CTL responses in newborn mice by a murine retrovirus. Science. 1996; 271: 1726–8.Google Scholar
[5]
Ridge, JP, Fuchs, EJ, Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science. 1996; 271: 1723–6.Google Scholar
[6]
Forsthuber, T, Yip, HC, Lehmann, PV. Induction of TH1 and TH2 immunity in neonatal mice. Science. 1996; 271: 1728–30.CrossRefGoogle ScholarPubMed
[7]
Marchant, A, Goldman, M. T cell-mediated immune responses in human newborns: ready to learn?Clin Exp Immunol. 2005; 141: 10–18.Google Scholar
[8]
Tavian, M, Péault, B. Embryonic development of the human hematopoietic system. Int J Dev Biol. 2005; 49: 243–50.CrossRefGoogle ScholarPubMed
[9]
Hong, DK, Lewis, DB. Developmental Immunology and Role of Host Defenses in Fetal and Neonatal Susceptibility to Infection. In Remington and Klein’s Infectious Diseases of the Fetus and Newborn Infant, 8th edn. Philadelphia: Elsevier Saunders, 2016, pp. 90–197.Google Scholar
[10]
Willems, F, Vollstedt, S, Suter, M. Phenotype and function of neonatal DC. Eur J Immunol. 2009; 39: 26–35.CrossRefGoogle ScholarPubMed
[11]
Lemoine, S, Jaron, B, Tabka, S, Ettreiki, C, Deriaud, E, Zhivaki, D, et al.Dectin-1 activation unlocks IL12A expression and reveals the TH1 potency of neonatal dendritic cells. J Allergy Clin Immunol. 2015; 136: 1355–1368. e15.CrossRefGoogle ScholarPubMed
[12]
Salio, M, Dulphy, N, Renneson, J, Herbert, M, McMichael, A, Marchant, A, et al.Efficient priming of antigen-specific cytotoxic T lymphocytes by human cord blood dendritic cells. Int Immunol. 2003; 15: 1265–73.Google Scholar
[13]
Rechavi, E, Somech, R. Survival of the fetus: fetal B and T cell receptor repertoire development. Semin Immunopathol. 2017; 39: 577–83.Google Scholar
[14]
White, GP, Watt, PM, Holt, BJ, Holt, PG. Differential patterns of methylation of the IFN-promoter at CpG and non-CpG sites underlie differences in IFN-gene expression between human neonatal and adult CD45RO-T cells. J Immunol. 2002; 168: 2820–7.CrossRefGoogle Scholar
[15]
Zhang, X, Mozeleski, B, Lemoine, S, Deriaud, E, Lim, A, Zhivaki, D, et al.CD4 T Cells with effector memory phenotype and function develop in the sterile environment of the fetus. Sci Transl Med. 2014; 6: 238ra72.CrossRefGoogle ScholarPubMed
[16]
Rechavi, E, Lev, A, Lee, YN, Simon, AJ, Yinon, Y, Lipitz, S, et al.Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci Transl Med. 2015; 7: 276ra25.CrossRefGoogle Scholar
[17]
Suryani, S, Fulcher, DA, Santner-Nanan, B, Nanan, R, Wong, M, Shaw, PJ, et al.Differential expression of CD21 identifies developmentally and functionally distinct subsets of human transitional B cells. Blood. 2010; 115: 519–29.Google Scholar
[18]
Griffin, DO, Holodick, NE, Rothstein, TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70-. J Exp Med. 2011; 208: 67–80.Google Scholar
[19]
Vermijlen, D, Prinz, I. Ontogeny of Innate T lymphocytes – some innate lymphocytes are more innate than others. Front Immunol. 2014; 5: 486.Google Scholar
[20]
Dimova, T, Brouwer, M, Gosselin, F, Tassignon, J, Leo, O, Donner, C, et al.Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci. 2015; 112: E556–65.CrossRefGoogle ScholarPubMed
[21]
Michaëlsson, J, Mold, JE, McCune, JM, Nixon, DF. Regulation of T cell responses in the developing human fetus. J Immunol. 2006; 176: 5741–8.Google Scholar
[22]
Mold, JE, Michaëlsson, J, Burt, TD, Muench, MO, Beckerman, KP, Busch, MP, et al.Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008; 322: 1562–5.CrossRefGoogle ScholarPubMed
[23]
Morand, A, Zandotti, C, Charrel, R, Minodier, P, Fabre, A, Chabrol, B, et al.De TORCH à TORCHZ: fœtopathies infectieuses à virus Zika et autres. Arch Pédiatrie. 2017; 24: 911–13.Google Scholar
[24]
Maldonado, YA, Nizet, V, Klein, JO, Remington, JS, Wilson, CB. Current concepts of infections of the fetus and newborn infant. In Remington and Klein’s Infectious Diseases of the Fetus and Newborn Infant, 8th edn. Philadelphia: Elsevier Saunders, 2016, pp. 3–23.Google Scholar
[25]
Renneson, J, Dutta, B, Goriely, S, Danis, B, Lecomte, S, Laes, J-F, et al.IL-12 and type I IFN response of neonatal myeloid DC to human CMV infection. Eur J Immunol. 2009; 39: 2789–99.Google Scholar
[26]
Marchant, A, Appay, V, van der Sande, M, Dulphy, N, Liesnard, C, Kidd, M, et al.Mature CD8+ T lymphocyte response to viral infection during fetal life. J Clin Invest. 2003; 111: 1747–55.Google Scholar
[27]
Pédron, B, Guérin, V, Jacquemard, F, Munier, A, Daffos, F, Thulliez, P, et al.Comparison of CD8+ T cell responses to cytomegalovirus between human fetuses and their transmitter mothers. J Infect Dis. 2007; 196: 1033–43.CrossRefGoogle ScholarPubMed
[28]
Gibson, L, Piccinini, G, Lilleri, D, Revello, MG, Wang, Z, Markel, S, et al.Human cytomegalovirus proteins pp65 and immediate early protein 1 are common targets for CD8+ T cell responses in children with congenital or postnatal human cytomegalovirus infection. J Immunol. 2004; 172: 2256–64.CrossRefGoogle ScholarPubMed
[29]
Miles, DJC, van der Sande, M, Jeffries, D, Kaye, S, Ismaili, J, Ojuola, O, et al.Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J Virol. 2007; 81: 5766–76.Google Scholar
[30]
Gibson, L, Dooley, S, Trzmielina, S, Somasundaran, M, Fisher, D, Revello, MG, et al.Cytomegalovirus (CMV) IE1‐ and pp65‐specific CD8+ T cell responses broaden over time after primary CMV infection in infants. J Infect Dis. 2007; 195: 1789–98.Google Scholar
[31]
Pass, RF, Stagno, S, Britt, WJ, Alford, CA. Specific cell-mediated immunity and the natural history of congenital infection with cytomegalovirus. J Infect Dis. 1983; 148: 953–61.CrossRefGoogle ScholarPubMed
[32]
Starr, SE, Tolpin, MD, Friedman, HM, Paucker, K, Plotkin, SA. Impaired Cellular immunity to cytomegalovirus in congenitally infected children and their mothers. J Infect Dis. 1979; 140: 500–5.Google Scholar
[33]
Huygens, A, Lecomte, S, Tackoen, M, Olislagers, V, Delmarcelle, Y, Burny, W, et al.Functional exhaustion limits CD4+ and CD8+ T-cell responses to congenital cytomegalovirus infection. J Infect Dis. 2015; 212: 484–94.CrossRefGoogle ScholarPubMed
[34]
Tu, W, Chen, S, Sharp, M, Dekker, C, Manganello, AM, Tongson, EC, et al.Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J Immunol. 2004; 172: 3260–7.Google Scholar
[35]
Vermijlen, D, Brouwer, M, Donner, C, Liesnard, C, Tackoen, M, Van Rysselberge, M, et al.Human cytomegalovirus elicits fetal γδ T cell responses in utero. J Exp Med. 2010; 207: 807–21.Google Scholar
[36]
Brizić, I, Hiršl, L, Britt, WJ, Krmpotić, A, Jonjić, S. Immune responses to congenital cytomegalovirus infection. Microbes Infect. 2017; 20: 543–51.Google Scholar
[37]
Rovito, R, Korndewal, MJ, van Zelm, MC, Ziagkos, D, Wessels, E, van der Burg, M, et al.T and B cell markers in dried blood spots of neonates with congenital cytomegalovirus infection: B cell numbers at birth are associated with long-term outcomes. J Immunol. 2017; 198: 102–9.Google Scholar
[38]
Huygens, A, Dauby, N, Vermijlen, D, Marchant, A. Immunity to cytomegalovirus in early life. Front Immunol. 2014; 5: 552.Google Scholar
[39]
Noyola, DE, Fortuny, C, Muntasell, A, Noguera-Julian, A, Muñoz-Almagro, C, Alarcón, A, et al.Influence of congenital human cytomegalovirus infection and the NKG2C genotype on NK-cell subset distribution in children: immunity to infection. Eur J Immunol. 2012; 42: 3256–66.Google Scholar
[40]
Shetty, A, Maldonado, YA. Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome in the Infant. In Remington and Klein’s Infectious Diseases of the Fetus and Newborn Infant, 8th edn. Philadelphia: Elsevier Saunders, 2016, pp. 623–78.Google Scholar
[41]
Luzuriaga, K, Holmes, D, Hereema, A, Wong, J, Panicali, DL, Sullivan, JL. HIV-1-specific cytotoxic T lymphocyte responses in the first year of life. J Immunol. 1995; 154: 433–43.CrossRefGoogle ScholarPubMed
[42]
Thobakgale, CF, Ramduth, D, Reddy, S, Mkhwanazi, N, de Pierres, C, Moodley, E, et al.Human immunodeficiency virus-specific CD8+ T-cell activity is detectable from birth in the majority of in utero-infected infants. J Virol. 2007; 81: 12775–84.Google Scholar
[43]
Lohman, BL, Slyker, JA, Richardson, BA, Farquhar, C, Mabuka, JM, Crudder, C, et al.Longitudinal assessment of human immunodeficiency virus type 1 (HIV-1)-specific gamma interferon responses during the first year of life in HIV-1-infected infants. J Virol. 2005; 79: 8121–30.Google Scholar
[44]
Streeck, H, Nixon, DF. T cell immunity in acute HIV‐1 infection. J Infect Dis. 2010; 202: S302–8.Google Scholar
[45]
Voelkerding, KV, Sandhaus, LM, Belov, L, Frenkel, L, Ettinger, LJ, Raska, K. Clonal B-cell proliferation in an infant with congenital HIV infection and immune thrombocytopenia. Am J Clin Pathol. 1988; 90: 470–4.Google Scholar
[46]
Pugatch, D, Sullivan, JL, Pikora, CA, Luzuriaga, K. Delayed generation of antibodies mediating human immunodeficiency virus type 1-specific antibody-dependent cellular cytotoxicity in vertically infected infants. WITS Study Group. Women and Infants Transmission Study. J Infect Dis. 1997; 176: 643–8.Google Scholar
[47]
Munoz, M, Liesenfeld, O, Heimesaat, MM. Immunology of Toxoplasma gondii. Immunol Rev. 2011; 240: 269–85.CrossRefGoogle ScholarPubMed
[48]
Fatoohi, AF, Cozon, GJN, Wallon, M, Kahi, S, Gay-Andrieu, F, Greenland, T, et al.Cellular immunity to Toxoplasma gondii in congenitally infected newborns and immunocompetent infected hosts. Eur J Clin Microbiol Infect Dis. 2003; 22: 181–4.Google Scholar
[49]
Ciardelli, L, Meroni, V, Avanzini, MA, Bollani, L, Tinelli, C, Garofoli, F, et al.Early and accurate diagnosis of congenital toxoplasmosis. Pediatr Infect Dis J. 2008; 27: 125–9.Google Scholar
[50]
Chapey, E, Wallon, M, Debize, G, Rabilloud, M, Peyron, F. Diagnosis of congenital toxoplasmosis by using a whole-blood gamma interferon release assay. J Clin Microbiol. 2010; 48: 41–5.Google Scholar
[51]
Guglietta, S, Beghetto, E, Spadoni, A, Buffolano, W, Del Porto, P, Gargano, N. Age-dependent impairment of functional helper T cell responses to immunodominant epitopes of Toxoplasma gondii antigens in congenitally infected individuals. Microbes Infect. 2007; 9: 127–33.Google Scholar
[52]
McLeod, R, Mack, DG, Boyer, K, Mets, M, Roizen, N, Swisher, C, et al.Phenotypes and functions of lymphocytes in congenital toxoplasmosis. J Lab Clin Med. 1990; 116: 623–35.Google Scholar
[53]
Hara, T, Ohashi, S, Yamashita, Y, Abe, T, Hisaeda, H, Himeno, K, et al.Human V delta 2+ gamma delta T-cell tolerance to foreign antigens of Toxoplasma gondii. Proc Natl Acad Sci U S A. 1996; 93: 5136–40.Google Scholar
[54]
Carlier, Y, Truyens, C. Maternal–fetal transmission of Trypanosoma cruzi. In American Trypanosomiasis: Chagas Disease, 2nd edn. Amsterdam: Elsevier, 2017, pp. 517–59.Google Scholar
[55]
Hermann, E, Truyens, C, Alonso-Vega, C, Even, J, Rodriguez, P, Berthe, A, et al.Human fetuses are able to mount an adultlike CD8 T-cell response. Blood. 2002; 100: 2153–8.Google Scholar
[56]
Hermann, E, Alonso-Vega, C, Berthe, A, Truyens, C, Flores, A, Cordova, M, et al.Human congenital infection with Trypanosoma cruzi induces phenotypic and functional modifications of cord blood NK cells. Pediatr Res. 2006; 60: 38–43.Google Scholar
[57]
Rodriguez, P, Truyens, C, Alonso-Vega, C, Flores, A, Cordova, M, Suarez, E, et al.Serum levels for IgM and IgA antibodies to anti-trypanosoma cruzi in samples of blood from newborns from mothers with positive serology for Chagas disease. Rev Soc Bras Med Trop. 2005; 38 (Suppl. 2): 62–4.Google ScholarPubMed
[58]
Baud, D, Gubler, DJ, Schaub, B, Lanteri, MC, Musso, D. An update on Zika virus infection. Lancet. 2017; 390: 2099–109.CrossRefGoogle ScholarPubMed
[59]
Weisblum, Y, Oiknine-Djian, E, Vorontsov, OM, Haimov-Kochman, R, Zakay-Rones, Z, Meir, K, et al.Zika Virus infects early- and midgestation human maternal decidual tissues, inducing distinct innate tissue responses in the maternal-fetal interface. J Virol. 2017; 91: e01905–16.Google Scholar
[60]
Yockey, LJ, Jurado, KA, Arora, N, Millet, A, Rakib, T, Milano, KM, et al.Type I interferons instigate fetal demise after Zika virus infection. Sci Immunol. 2018; 3: eaao1680.Google Scholar
[61]
Nem de Oliveira Souza, I, Frost, PS, França, JV, Nascimento-Viana, JB, Neris, RLS, Freitas, L, et al.Acute and chronic neurological consequences of early-life Zika virus infection in mice. Sci Transl Med. 2018; 10: eaar2749.Google Scholar
[62]
Dauby, N, Goetghebuer, T, Kollmann, TR, Levy, J, Marchant, A. Uninfected but not unaffected: chronic maternal infections during pregnancy, fetal immunity, and susceptibility to postnatal infections. Lancet Infect Dis. 2012; 12: 330–40.CrossRefGoogle Scholar
[63]
Abu Raya, B, Smolen, K, Willems, F, Kollmann, T, Marchant, A. Transfer of maternal anti-microbial immunity to HIV-exposed uninfected newborns. Front Immunol. 2016; 7: 338.Google Scholar
[64]
Slogrove, AL, Goetghebuer, T, Cotton, MF, Singer, J, Bettinger, JA. Pattern of infectious morbidity in HIV-exposed uninfected infants and children. Front Immunol. 2016; 7: 164.Google Scholar
References
[1]
Valeur-Jensen, AK, Pedersen, CB, Westergaard, T, Jensen, IP, Lebech, M, Andersen, PK, et al.Risk factors for parvovirus B19 infection in pregnancy. JAMA. 1999; 281: 1099–105.Google Scholar
[2]
Harger, JH, Adler, SP, Koch, WC, Harger, GF. Prospective evaluation of 618 pregnant women exposed to parvovirus B19: risks and symptoms. Obstet Gynecol. 1998; 91: 413–20.Google Scholar
[3]
Gratacós, E, Torres, PJ, Vidal, J, Antolín, E, Costa, J, Jiménez de Anta, MT, et al.The incidence of human parvovirus B19 infection during pregnancy and its impact on perinatal outcome. J Infect Dis. 1995; 171: 1360–3.Google Scholar
[4]
Enders, M, Weidner, A, Zoellner, I, Searle, K, Enders, G. Fetal morbidity and mortality after acute human parvovirus B19 infection in pregnancy: prospective evaluation of 1018 cases. Prenat Diagn. 2004; 24: 513–18.Google Scholar
[5]
Enders, M, Klingel, K, Weidner, A, Baisch, C, Kandolf, R, Schalasta, G, et al.Risk of fetal hydrops and non-hydropic late intrauterine fetal death after gestational parvovirus B19 infection. J Clin Virol. 2010; 49: 163–8.Google Scholar
[6]
Nyman, M, Tolfvenstam, T, Petersson, K, Krassny, C, Skjöldebrand-Sparre, L, Broliden, K. Detection of human parvovirus B19 infection in first-trimester fetal loss. Obstet Gynecol. 2002; 99: 795–8.Google Scholar
[7]
Lassen, J, Jensen, AKV, Bager, P, Pedersen, CB, Panum, I, Nørgaard-Pedersen, B, et al.Parvovirus B19 infection in the first trimester of pregnancy and risk of fetal loss: a population-based case-control study. Am J Epidemiol. 2012; 176: 803–7.Google Scholar
[8]
Tolfvenstam, T, Papadogiannakis, N, Norbeck, O, Petersson, K, Broliden, K. Frequency of human parvovirus B19 infection in intrauterine fetal death. Lancet. 2001; 357: 1494–7.Google Scholar
[9]
de Haan, TR, van den Akker, ESA, Porcelijn, L, Oepkes, D, Kroes, ACM, Walther, FJ. Thrombocytopenia in hydropic fetuses with parvovirus B19 infection: incidence, treatment and correlation with fetal B19 viral load. BJOG. 2008; 115: 76–81.CrossRefGoogle ScholarPubMed
[10]
Melamed, N, Whittle, W, Kelly, EN, Windrim, R, Seaward, PGR, Keunen, J, et al.Fetal thrombocytopenia in pregnancies with fetal human parvovirus-B19 infection. Am J Obstet Gynecol. 2015; 212: 793. e1–8.Google Scholar
von Kaisenberg, CS, Bender, G, Scheewe, J, Hirt, SW, Lange, M, Stieh, J, et al.A case of fetal parvovirus B19 myocarditis, terminal cardiac heart failure, and perinatal heart transplantation. Fetal Diagn Ther. 2001; 16: 427–32.Google Scholar
[13]
Brochot, C, Collinet, P, Provost, N, Subtil, D. Mirror syndrome due to parvovirus B19 hydrops complicated by severe maternal pulmonary effusion. Prenat Diagn. 2006; 26: 179–80.Google Scholar
[14]
Carbillon, L, Oury, JF, Guerin, JM, Azancot, A, Blot, P. Clinical biological features of Ballantyne syndrome and the role of placental hydrops. Obstet Gynecol Surv. 1997; 52: 310–14.Google Scholar
[15]
Fairley, CK, Smoleniec, JS, Caul, OE, Miller, E. Observational study of effect of intrauterine transfusions on outcome of fetal hydrops after parvovirus B19 infection. Lancet. 1995; 346: 1335–7.Google Scholar
Lindenburg, ITM, van Klink, JM, Smits-Wintjens, VEHJ, van Kamp, IL, Oepkes, D, Lopriore, E. Long-term neurodevelopmental and cardiovascular outcome after intrauterine transfusions for fetal anaemia: a review. Prenat Diagn. 2013; 33: 815–22.CrossRefGoogle ScholarPubMed
[18]
Mari, G, Deter, RL, Carpenter, RL, Rahman, F, Zimmerman, R, Moise, KJ, et al.Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med. 2000; 342: 9–14.CrossRefGoogle Scholar
[19]
Mari, G, Detti, L, Oz, U, Zimmerman, R, Duerig, P, Stefos, T. Accurate prediction of fetal hemoglobin by Doppler ultrasonography. Obstet Gynecol. 2002; 99: 589–93.Google Scholar
[20]
Delle Chiaie, L, Buck, G, Grab, D, Terinde, R. Prediction of fetal anemia with Doppler measurement of the middle cerebral artery peak systolic velocity in pregnancies complicated by maternal blood group alloimmunization or parvovirus B19 infection. Ultrasound Obstet Gynecol. 2001; 18: 232–6.Google Scholar
[21]
Völker, F, Cooper, P, Bader, O, Uy, A, Zimmermann, O, Lugert, R, et al.Prevalence of pregnancy-relevant infections in a rural setting of Ghana. BMC Pregnancy Childbirth. 2017; 17: 172.Google Scholar
[22]
Pembrey, L, Raynor, P, Griffiths, P, Chaytor, S, Wright, J, Hall, AJ. Seroprevalence of cytomegalovirus, Epstein Barr virus and varicella zoster virus among pregnant women in Bradford: a cohort study. PLoS ONE. 2013; 8: e81881.Google Scholar
[23]
Zhang, HJ, Patenaude, V, Abenhaim, HA. Maternal outcomes in pregnancies affected by varicella zoster virus infections: population-based study on 7.7 million pregnancy admissions. J Obstet Gynaecol Res. 2015; 41: 62–8.Google Scholar
[24]
Weber, DM, Pellecchia, JA. Varicella pneumonia: study of prevalence in adult men. JAMA. 1965; 192: 572–3.Google Scholar
[25]
Mirouse, A, Vignon, P, Piron, P, Robert, R, Papazian, L, Géri, G, et al.Severe varicella-zoster virus pneumonia: a multicenter cohort study. Crit Care. 2017; 21:137.Google Scholar
[26]
Ellis, ME, Neal, KR, Webb, AK. Is smoking a risk factor for pneumonia in adults with chickenpox?Br Med J Clin Res Ed. 1987; 294:1002.Google Scholar
[27]
Harris, RE, Rhoades, ER. Varicella pneumonia complicating pregnancy: report of a case and review of the literature. Obstet Gynecol. 1965; 25: 734–40.Google Scholar
[28]
Harger, JH, Ernest, JM, Thurnau, GR, Moawad, A, Momirova, V, Landon, MB, et al.Risk factors and outcome of varicella-zoster virus pneumonia in pregnant women. J Infect Dis. 2002; 185: 422–7.Google Scholar
[29]
Trotta, M, Borchi, B, Niccolai, A, Venturini, E, Giaché, S, Sterrantino, G, et al.Epidemiology, management and outcome of varicella in pregnancy: a 20-year experience at the Tuscany Reference Centre for Infectious Diseases in Pregnancy. Infection. 2018; 46: 693–9.Google Scholar
Field, N, Amirthalingam, G, Waight, P, Andrews, N, Ladhani, SN, van Hoek, AJ, et al.Validity of a reported history of chickenpox in targeting varicella vaccination at susceptible adolescents in England. Vaccine. 2014; 32: 1213–17.Google Scholar
[32]
Chris Maple, PA, Gunn, A, Sellwood, J, Brown, DWG, Gray, JJ. Comparison of fifteen commercial assays for detecting Varicella Zoster virus IgG with reference to a time resolved fluorescence immunoassay (TRFIA) and the performance of two commercial assays for screening sera from immunocompromised individuals. J Virol Methods. 2009; 155: 143–9.Google Scholar
[33]
Chris Maple, PA, Gray, J, Brown, K, Brown, D. Performance characteristics of a quantitative, standardised varicella zoster IgG time resolved fluorescence immunoassay (VZV TRFIA) for measuring antibody following natural infection. J Virol Methods. 2009; 157: 90–2.Google Scholar
[34]
Maple, PA, Rathod, P, Smit, E, Gray, J, Brown, D, Boxall, EH. Comparison of the performance of the LIAISON VZV-IgG and VIDAS automated enzyme linked fluorescent immunoassays with reference to a VZV-IgG time-resolved fluorescence immunoassay and implications of choice of cut-off for LIAISON assay. J Clin Virol. 2009; 44: 9–14.CrossRefGoogle ScholarPubMed
[35]
Boxall, EH, Maple, PA, Rathod, P, Smit, E. Follow-up of pregnant women exposed to chicken pox: an audit of relationship between level of antibody and development of chicken pox. Eur J Clin Microbiol Infect Dis. 2011; 30: 1193–200.Google Scholar
[36]
Enders, G, Miller, E, Cradock-Watson, J, Bolley, I, Ridehalgh, M. Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet. 1994; 343: 1548–51.Google Scholar
[37]
Pastuszak, AL, Levy, M, Schick, B, Zuber, C, Feldkamp, M, Gladstone, J, et al.Outcome after maternal varicella infection in the first 20 weeks of pregnancy. N Engl J Med. 1994; 330: 901–5.Google Scholar
[38]
Mouly, F, Mirlesse, V, Méritet, JF, Rozenberg, F, Poissonier, MH, Lebon, P, et al.Prenatal diagnosis of fetal varicella-zoster virus infection with polymerase chain reaction of amniotic fluid in 107 cases. Am J Obstet Gynecol. 1997; 177: 894–8.Google Scholar
Meyers, JD. Congenital varicella in term infants: risk reconsidered. J Infect Dis. 1974; 129: 215–17.Google Scholar
[41]
Miller, E, Cradock-Watson, JE, Ridehalgh, MK. Outcome in newborn babies given anti-varicella-zoster immunoglobulin after perinatal maternal infection with varicella-zoster virus. Lancet. 1989; 2: 371–3.Google ScholarPubMed
[42]
Pretorius, DH, Hayward, I, Jones, KL, Stamm, E. Sonographic evaluation of pregnancies with maternal varicella infection. J Ultrasound Med. 1992; 11: 459–63.Google Scholar
Lamont, RF, Sobel, JD, Carrington, D, Mazaki-Tovi, S, Kusanovic, JP, Vaisbuch, E, et al.Varicella-zoster virus (chickenpox) infection in pregnancy. BJOG Int J Obstet Gynaecol. 2011; 118: 1155–62.Google Scholar
[45]
Koren, G, Money, D, Boucher, M, Aoki, F, Petric, M, Innocencion, G, et al.Serum concentrations, efficacy, and safety of a new, intravenously administered varicella zoster immune globulin in pregnant women. J Clin Pharmacol. 2002; 42: 267–74.Google Scholar
[46]
Winsnes, R.Efficacy of zoster immunoglobulin in prophylaxis of varicella in high-risk patients. Acta Paediatr Scand. 1978; 67: 77–82.Google Scholar
[47]
Pasternak, B, Hviid, A. Use of acyclovir, valacyclovir, and famciclovir in the first trimester of pregnancy and the risk of birth defects. JAMA. 2010; 304: 859–66.Google Scholar
[48]
Marin, M, Willis, ED, Marko, A, Rasmussen, SA, Bialek, SR, Dana, A, et al.Closure of varicella-zoster virus-containing vaccines pregnancy registry - United States, 2013. MMWR Morb Mortal Wkly Rep. 2014; 63: 732–3.Google Scholar
[49]
Bohlke, K, Galil, K, Jackson, LA, Schmid, DS, Starkovich, P, Loparev, VN, et al.Postpartum varicella vaccination: is the vaccine virus excreted in breast milk?Obstet Gynecol. 2003; 102: 970–7.Google Scholar
[50]
Boppana, SB, Ross, SA, Fowler, KB. Congenital cytomegalovirus infection: clinical outcome. Clin Infect Dis. 2013; 57 (Suppl. 4): S178–181.Google Scholar
[51]
Goderis, J, De Leenheer, E, Smets, K, Van Hoecke, H, Keymeulen, A, Dhooge, I. Hearing loss and congenital CMV infection: a systematic review. Pediatrics. 2014; 134: 972–82.Google Scholar
[52]
Smithers-Sheedy, H, Raynes-Greenow, C, Badawi, N, Fernandez, MA, Kesson, A, McIntyre, S, et al.Congenital Cytomegalovirus among children with cerebral palsy. J Pediatr. 2017; 181: 267–71. e1.Google Scholar
[53]
Kenneson, A, Cannon, MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol. 2007; 17: 253–76.Google Scholar
[54]
Dollard, SC, Grosse, SD, Ross, DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol. 2007; 17: 355–63.Google Scholar
[55]
Townsend, CL, Forsgren, M, Ahlfors, K, Ivarsson, S-A, Tookey, PA, Peckham, CS. Long-term outcomes of congenital cytomegalovirus infection in Sweden and the United Kingdom. Clin Infect Dis. 2013; 56: 1232–9.Google Scholar
[56]
Gratacap-Cavallier, B, Bosson, JL, Morand, P, Dutertre, N, Chanzy, B, Jouk, PS, et al.Cytomegalovirus seroprevalence in French pregnant women: parity and place of birth as major predictive factors. Eur J Epidemiol. 1998; 14: 147–52.Google Scholar
[57]
Colugnati, FAB, Staras, SAS, Dollard, SC, Cannon, MJ. Incidence of cytomegalovirus infection among the general population and pregnant women in the United States. BMC Infect Dis. 2007; 7: 71.Google Scholar
[58]
Ross, SA, Arora, N, Novak, Z, Fowler, KB, Britt, WJ, Boppana, SB. Cytomegalovirus reinfections in healthy seroimmune women. J Infect Dis. 2010; 201: 386–9.Google Scholar
[59]
Leruez-Ville, M, Magny, J-F, Couderc, S, Pichon, C, Parodi, M, Bussières, L, et al.Risk factors for congenital cytomegalovirus infection following primary and nonprimary maternal infection: a prospective neonatal screening study using polymerase chain reaction in saliva. Clin Infect Dis. 2017; 65: 398–404.Google Scholar
[60]
Mussi-Pinhata, MM, Yamamoto, AY, Moura Brito, RM, de Lima, IM, de Carvalho e Oliveira, PF, Boppana, S, et al.Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin Infect Dis. 2009; 49: 522–8.Google Scholar
[61]
Ross, SA, Fowler, KB, Ashrith, G, Stagno, S, Britt, WJ, Pass, RF, et al.Hearing loss in children with congenital cytomegalovirus infection born to mothers with preexisting immunity. J Pediatr. 2006; 148: 332–6.Google Scholar
[62]
Picone, O, Vauloup-Fellous, C, Cordier, A-G, Parent Du Châtelet, I, Senat, M-V, Frydman, R, et al.A 2-year study on cytomegalovirus infection during pregnancy in a French hospital. BJOG. 2009; 116: 818–23.Google Scholar
[63]
Leruez-Ville, M, Sellier, Y, Salomon, LJ, Stirnemann, JJ, Jacquemard, F, Ville, Y. Prediction of fetal infection in cases with cytomegalovirus immunoglobulin M in the first trimester of pregnancy: a retrospective cohort. Clin Infect Dis. 2013; 56: 1428–35.Google Scholar
[64]
Delforge, ML, Desomberg, L, Montesinos, I. Evaluation of the new LIAISON(®) CMV IgG, IgM and IgG Avidity II assays. J Clin Virol. 2015; 72: 42–5.Google Scholar
[65]
Sellier, Y, Guilleminot, T, Ville, Y, Leruez-Ville, M. Comparison of the LIAISON(®) CMV IgG Avidity II and the VIDAS(®) CMV IgG Avidity II assays for the diagnosis of primary infection in pregnant women. J Clin Virol. 2015; 72: 46–8.Google Scholar
[66]
Chiereghin, A, Pavia, C, Gabrielli, L, Piccirilli, G, Squarzoni, D, Turello, G, et al.Clinical evaluation of the new Roche platform of serological and molecular cytomegalovirus-specific assays in the diagnosis and prognosis of congenital cytomegalovirus infection. J Virol Methods. 2017; 248: 250–4.Google Scholar
[67]
Bodéus, M, Hubinont, C, Bernard, P, Bouckaert, A, Thomas, K, Goubau, P. Prenatal diagnosis of human cytomegalovirus by culture and polymerase chain reaction: 98 pregnancies leading to congenital infection. Prenat Diagn. 1999; 19: 314–17.Google Scholar
[68]
Enders, M, Daiminger, A, Exler, S, Ertan, K, Enders, G, Bald, R. Prenatal diagnosis of congenital cytomegalovirus infection in 115 cases: a 5 years’ single center experience. Prenat Diagn. 2017; 37: 389–98.CrossRefGoogle Scholar
[69]
Revello, MG, Furione, M, Rognoni, V, Arossa, A, Gerna, G. Cytomegalovirus DNAemia in pregnant women. J Clin Virol. 2014; 61: 590–2.Google Scholar
[70]
Bilavsky, E, Pardo, J, Attias, J, Levy, I, Magny, J-F, Ville, Y, et al.Clinical Implications for children born with congenital cytomegalovirus infection following a negative amniocentesis. Clin Infect Dis. 2016; 63: 33–8.Google Scholar
[71]
Revello, MG, Furione, M, Zavattoni, M, Tassis, B, Nicolini, U, Fabbri, E, et al.Human cytomegalovirus (HCMV) DNAemia in the mother at amniocentesis as a risk factor for iatrogenic HCMV infection of the fetus. J Infect Dis. 2008; 197: 593–6.Google Scholar
[72]
Boppana, SB, Pass, RF, Britt, WJ, Stagno, S, Alford, CA. Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J. 1992; 11: 93–9.Google Scholar
[73]
Anderson, KS, Amos, CS, Boppana, S, Pass, R. Ocular abnormalities in congenital cytomegalovirus infection. J Am Optom Assoc. 1996; 67: 273–8.Google Scholar
[74]
Fowler, KB, Boppana, SB. Congenital cytomegalovirus (CMV) infection and hearing deficit. J Clin Virol. 2006; 35: 226–31.Google Scholar
[75]
Barbi, M, Binda, S, Caroppo, S, Ambrosetti, U, Corbetta, C, Sergi, P. A wider role for congenital cytomegalovirus infection in sensorineural hearing loss. Pediatr Infect Dis J. 2003; 22: 39–42.CrossRefGoogle ScholarPubMed
[76]
Avettand-Fenoël, V, Marlin, S, Vauloup-Fellous, C, Loundon, N, François, M, Couloigner, V, et al.Congenital cytomegalovirus is the second most frequent cause of bilateral hearing loss in young French children. J Pediatr. 2013; 162: 593–9.Google Scholar
[77]
Binda, S, Caroppo, S, Didò, P, Primache, V, Veronesi, L, Calvario, A, et al.Modification of CMV DNA detection from dried blood spots for diagnosing congenital CMV infection. J Clin Virol. 2004; 30: 276–9.CrossRefGoogle ScholarPubMed
[78]
Leruez-Ville, M, Vauloup-Fellous, C, Couderc, S, Parat, S, Castel, C, Avettand-Fenoel, V, et al.Prospective identification of congenital cytomegalovirus infection in newborns using real-time polymerase chain reaction assays in dried blood spots. Clin Infect Dis. 2011; 52: 575–81.Google Scholar
[79]
Pass, RF, Fowler, KB, Boppana, SB, Britt, WJ, Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome. J Clin Virol. 2006; 35: 216–20.Google Scholar
[80]
Foulon, I, Naessens, A, Foulon, W, Casteels, A, Gordts, F. A 10-year prospective study of sensorineural hearing loss in children with congenital cytomegalovirus infection. J Pediatr. 2008; 153: 84–8.Google Scholar
[81]
Lipitz, S, Yinon, Y, Malinger, G, Yagel, S, Levit, L, Hoffman, C, et al.Risk of cytomegalovirus-associated sequelae in relation to time of infection and findings on prenatal imaging. Ultrasound Obstet Gynecol. 2013; 41: 508–14.Google Scholar
[82]
Enders, G, Daiminger, A, Bäder, U, Exler, S, Enders, M. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J Clin Virol. 2011; 52: 244–6.Google Scholar
[83]
Picone, O, Vauloup-Fellous, C, Cordier, AG, Guitton, S, Senat, MV, Fuchs, F, et al.A series of 238 cytomegalovirus primary infections during pregnancy: description and outcome. Prenat Diagn. 2013; 33: 751–8.Google Scholar
[84]
Bodéus, M, Hubinont, C, Goubau, P. Increased risk of cytomegalovirus transmission in utero during late gestation. Obstet Gynecol. 1999; 93: 658–60.Google ScholarPubMed
[85]
Feldman, B, Yinon, Y, Tepperberg Oikawa, M, Yoeli, R, Schiff, E, Lipitz, S. Pregestational, periconceptional, and gestational primary maternal cytomegalovirus infection: prenatal diagnosis in 508 pregnancies. Am J Obstet Gynecol. 2011; 205: 342. e1–6.Google Scholar
[86]
Revello, MG, Zavattoni, M, Furione, M, Lilleri, D, Gorini, G, Gerna, G. Diagnosis and outcome of preconceptional and periconceptional primary human cytomegalovirus infections. J Infect Dis. 2002; 186: 553–7.Google Scholar
[87]
Guerra, B, Simonazzi, G, Puccetti, C, Lanari, M, Farina, A, Lazzarotto, T, et al.Ultrasound prediction of symptomatic congenital cytomegalovirus infection. Am J Obstet Gynecol. 2008; 198: 380. e1–7.Google Scholar
[88]
Malinger, G, Lev, D, Lerman-Sagie, T. Imaging of fetal cytomegalovirus infection. Fetal Diagn Ther. 2011; 29: 117–26.Google Scholar
[89]
Nigro, G, La Torre, R, Sali, E, Auteri, M, Mazzocco, M, Maranghi, L, et al.Intraventricular haemorrhage in a fetus with cerebral cytomegalovirus infection. Prenat Diagn. 2002; 22: 558–61.Google Scholar
[90]
Enders, G, Bäder, U, Lindemann, L, Schalasta, G, Daiminger, A. Prenatal diagnosis of congenital cytomegalovirus infection in 189 pregnancies with known outcome. Prenat Diagn. 2001; 21: 362–77.Google Scholar
[91]
Picone, O, Vauloup-Fellous, C, Cordier, AG, Grangeot-Keros, L, Frydman, R, Senat, MV. Late onset of ultrasound abnormalities in a case of periconceptional congenital cytomegalovirus infection. Ultrasound Obstet Gynecol. 2008; 31: 481–3.Google Scholar
[92]
Garel, C, Chantrel, E, Brisse, H, Elmaleh, M, Luton, D, Oury, JF, et al.Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol. 2001; 22: 184–9.Google Scholar
[93]
Barkovich, AJ, Lindan, CE. Congenital cytomegalovirus infection of the brain: imaging analysis and embryologic considerations. AJNR Am J Neuroradiol. 1994; 15: 703–15.Google Scholar
[94]
Benoist, G, Salomon, LJ, Mohlo, M, Suarez, B, Jacquemard, F, Ville, Y. Cytomegalovirus-related fetal brain lesions: comparison between targeted ultrasound examination and magnetic resonance imaging. Ultrasound Obstet Gynecol. 2008; 32: 900–5.Google Scholar
[95]
Picone, O, Simon, I, Benachi, A, Brunelle, F, Sonigo, P. Comparison between ultrasound and magnetic resonance imaging in assessment of fetal cytomegalovirus infection. Prenat Diagn. 2008; 28: 753–8.Google Scholar
[96]
Benoist, G, Salomon, LJ, Jacquemard, F, Daffos, F, Ville, Y. The prognostic value of ultrasound abnormalities and biological parameters in blood of fetuses infected with cytomegalovirus. BJOG. 2008; 115: 823–9.Google Scholar
[97]
Farkas, N, Hoffmann, C, Ben-Sira, L, Lev, D, Schweiger, A, Kidron, D, et al.Does normal fetal brain ultrasound predict normal neurodevelopmental outcome in congenital cytomegalovirus infection?Prenat Diagn. 2011; 31: 360–6.Google Scholar
[98]
Leruez-Ville, M, Stirnemann, J, Sellier, Y, Guilleminot, T, Dejean, A, Magny, J-F, et al.Feasibility of predicting the outcome of fetal infection with cytomegalovirus at the time of prenatal diagnosis. Am J Obstet Gynecol. 2016; 215: 342. e1–9.CrossRefGoogle ScholarPubMed
[99]
Lipitz, S, Hoffmann, C, Feldman, B, Tepperberg-Dikawa, M, Schiff, E, Weisz, B. Value of prenatal ultrasound and magnetic resonance imaging in assessment of congenital primary cytomegalovirus infection. Ultrasound Obstet Gynecol. 2010; 36: 709–17.Google Scholar
[100]
Gouarin, S, Gault, E, Vabret, A, Cointe, D, Rozenberg, F, Grangeot-Keros, L, et al.Real-time PCR quantification of human cytomegalovirus DNA in amniotic fluid samples from mothers with primary infection. J Clin Microbiol. 2002; 40: 1767–72.Google Scholar
[101]
Fabbri, E, Revello, MG, Furione, M, Zavattoni, M, Lilleri, D, Tassis, B, et al.Prognostic markers of symptomatic congenital human cytomegalovirus infection in fetal blood. BJOG. 2011; 118: 448–56.Google Scholar
[102]
Nigro, G, Adler, SP, La Torre, R, Best, AM, Congenital Cytomegalovirus Collaborating Group. Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med. 2005; 353: 1350–62.Google Scholar
[103]
Revello, MG, Lazzarotto, T, Guerra, B, Spinillo, A, Ferrazzi, E, Kustermann, A, et al.A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N Engl J Med. 2014; 370: 1316–26.Google Scholar
[104]
Lowance, D, Neumayer, HH, Legendre, CM, Squifflet, JP, Kovarik, J, Brennan, PJ, et al.Valacyclovir for the prevention of cytomegalovirus disease after renal transplantation. International Valacyclovir Cytomegalovirus Prophylaxis Transplantation Study Group. N Engl J Med. 1999; 340: 1462–70.Google Scholar
[105]
Jacquemard, F, Yamamoto, M, Costa, J-M, Romand, S, Jaqz-Aigrain, E, Dejean, A, et al.Maternal administration of valaciclovir in symptomatic intrauterine cytomegalovirus infection. BJOG. 2007; 114: 1113–21.CrossRefGoogle ScholarPubMed
[106]
Leruez-Ville, M, Ghout, I, Bussières, L, Stirnemann, J, Magny, J-F, Couderc, S, et al.In utero treatment of congenital cytomegalovirus infection with valacyclovir in a multicenter, open-label, phase II study. Am J Obstet Gynecol. 2016; 215: 462. e1–462. e10.Google Scholar
[107]
Pappas, G, Roussos, N, Falagas, ME. Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol. 2009; 39: 1385–94.Google Scholar
[108]
Rudin, C, Hirsch, HH, Spaelti, R, Schaedelin, S, Klimkait, T. Decline of Seroprevalence and incidence of congenital toxoplasmosis despite changing prevention policy – three decades of cord-blood screening in North-Western Switzerland. Pediatr Infect Dis J. 2018; 37: 1087–92.Google Scholar
[109]
Robert-Gangneux, F, Dardé, M-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012; 25: 264–96.Google Scholar
[110]
Villard, O, Breit, L, Cimon, B, Franck, J, Fricker-Hidalgo, H, Godineau, N, et al.Comparison of four commercially available avidity tests for Toxoplasma gondii-specific IgG antibodies. Clin Vaccine Immunol. 2013; 20: 197–204.CrossRefGoogle ScholarPubMed
[111]
Desmonts, G, Couvreur, J. Congenital toxoplasmosis. A prospective study of 378 pregnancies. N Engl J Med. 1974; 290: 1110–16.Google Scholar
[112]
Daffos, F, Forestier, F, Capella-Pavlovsky, M, Thulliez, P, Aufrant, C, Valenti, D, et al.Prenatal management of 746 pregnancies at risk for congenital toxoplasmosis. N Engl J Med. 1988; 318: 271–5.Google Scholar
[113]
Elbez-Rubinstein, A, Ajzenberg, D, Dardé, M-L, Cohen, R, Dumètre, A, Yera, H, et al.Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection, and review. J Infect Dis. 2009; 199: 280–5.Google Scholar
[114]
SYROCOT (Systematic Review on Congenital Toxoplasmosis) study group, Thiébaut, R, Leproust, S, Chêne, G, Gilbert, R. Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients’ data. Lancet. 2007; 369: 115–22.Google Scholar
[115]
de Oliveira Azevedo, CT, do Brasil, PEAA, Guida, L, Lopes Moreira, ME. Performance of Polymerase Chain Reaction Analysis of the Amniotic Fluid of Pregnant Women for Diagnosis of Congenital Toxoplasmosis: A Systematic Review and Meta-Analysis. PLoS ONE. 2016; 11: e0149938.Google Scholar
[116]
Filisetti, D, Sterkers, Y, Brenier-Pinchart, M-P, Cassaing, S, Dalle, F, Delhaes, L, et al.Multicentric comparative assessment of the bio-evolution Toxoplasma gondii detection kit with eight laboratory-developed PCR assays for molecular diagnosis of congenital toxoplasmosis. J Clin Microbiol. 2015; 53: 29–34.CrossRefGoogle ScholarPubMed
[117]
Costa, JM, Ernault, P, Gautier, E, Bretagne, S. Prenatal diagnosis of congenital toxoplasmosis by duplex real-time PCR using fluorescence resonance energy transfer hybridization probes. Prenat Diagn. 2001; 21: 85–8.Google Scholar
[118]
Yamamoto, L, Targa, LS, Sumita, LM, Shimokawa, PT, Rodrigues, JC, Kanunfre, KA, et al.Association of parasite load levels in amniotic fluid with clinical outcome in congenital toxoplasmosis. Obstet Gynecol. 2017; 130: 335–45.Google Scholar
[119]
Pratlong, F, Boulot, P, Issert, E, Msika, M, Dupont, F, Bachelard, B, et al.Fetal diagnosis of toxoplasmosis in 190 women infected during pregnancy. Prenat Diagn. 1994; 14: 191–8.Google Scholar
[120]
Berrebi, A, Bardou, M, Bessieres, M-H, Nowakowska, D, Castagno, R, Rolland, M, et al.Outcome for children infected with congenital toxoplasmosis in the first trimester and with normal ultrasound findings: a study of 36 cases. Eur J Obstet Gynecol Reprod Biol. 2007; 135: 53–7.Google Scholar
[121]
Hohlfeld, P, Daffos, F, Thulliez, P, Aufrant, C, Couvreur, J, MacAleese, J, et al.Fetal toxoplasmosis: outcome of pregnancy and infant follow-up after in utero treatment. J Pediatr. 1989; 115: 765–9.Google Scholar
[122]
Mombrò, M, Perathoner, C, Leone, A, Nicocia, M, Moiraghi Ruggenini, A, Zotti, C, et al.Congenital toxoplasmosis: 10-year follow up. Eur J Pediatr. 1995; 154: 635–9.Google Scholar
[123]
Wilson, CB, Remington, JS, Stagno, S, Reynolds, DW. Development of adverse sequelae in children born with subclinical congenital Toxoplasma infection. Pediatrics. 1980; 66: 767–74.Google Scholar
[124]
McAuley, J, Boyer, KM, Patel, D, Mets, M, Swisher, C, Roizen, N, et al.Early and longitudinal evaluations of treated infants and children and untreated historical patients with congenital toxoplasmosis: the Chicago Collaborative Treatment Trial. Clin Infect Dis. 1994; 18: 38–72.Google Scholar
[125]
Roizen, N, Swisher, CN, Stein, MA, Hopkins, J, Boyer, KM, Holfels, E, et al.Neurologic and developmental outcome in treated congenital toxoplasmosis. Pediatrics. 1995; 95: 11–20.Google Scholar
[126]
Patel, DV, Holfels, EM, Vogel, NP, Boyer, KM, Mets, MB, Swisher, CN, et al.Resolution of intracranial calcifications in infants with treated congenital toxoplasmosis. Radiology. 1996; 199: 433–40.Google Scholar
[127]
Peyron, F, Wallon, M, Bernardoux, C. Long-term follow-up of patients with congenital ocular toxoplasmosis. N Engl J Med. 1996; 334: 993–4.Google Scholar
[128]
Guerina, NG, Hsu, HW, Meissner, HC, Maguire, JH, Lynfield, R, Stechenberg, B, et al.Neonatal serologic screening and early treatment for congenital Toxoplasma gondii infection. The New England Regional Toxoplasma Working Group. N Engl J Med. 1994; 330: 1858–63.Google Scholar
[129]
Koppe, JG, Loewer-Sieger, DH, de Roever-Bonnet, H. Results of 20-year follow-up of congenital toxoplasmosis. Lancet. 1986; 1: 254–6.Google Scholar
[130]
Montazeri, M, Sharif, M, Sarvi, S, Mehrzadi, S, Ahmadpour, E, Daryani, A. A systematic review of in vitro and in vivo activities of anti-toxoplasma drugs and compounds (2006-2016). Front Microbiol. 2017; 8: 25.Google Scholar
[131]
van der Ven, AJ, Schoondermark-van de Ven, EM, Camps, W, Melchers, WJ, Koopmans, PP, van der Meer, JW, et al.Anti-toxoplasma effect of pyrimethamine, trimethoprim and sulphonamides alone and in combination: implications for therapy. J Antimicrob Chemother. 1996; 38: 75–80.Google Scholar
[132]
Hotop, A, Hlobil, H, Gross, U. Efficacy of rapid treatment initiation following primary Toxoplasma gondii infection during pregnancy. Clin Infect Dis. 2012; 54: 1545–52.Google Scholar
[133]
Prusa, A-R, Kasper, DC, Sawers, L, Walter, E, Hayde, M, Stillwaggon, E. Congenital toxoplasmosis in Austria: Prenatal screening for prevention is cost-saving. PLoS Negl Trop Dis. 2017; 11: e0005648.Google Scholar
[134]
Mandelbrot, L, Kieffer, F, Sitta, R, Laurichesse-Delmas, H, Winer, N, Mesnard, L, et al.Prenatal therapy with pyrimethamine + sulfadiazine vs spiramycin to reduce placental transmission of toxoplasmosis: a multicenter, randomized trial. Am J Obstet Gynecol. 2018; 219: 386. e1–386.Google Scholar
[135]
Rothova, A, Meenken, C, Buitenhuis, HJ, Brinkman, CJ, Baarsma, GS, Boen-Tan, TN, et al.Therapy for ocular toxoplasmosis. Am J Ophthalmol. 1993; 115: 517–23.Google Scholar
[136]
McCabe, R, Remington, JS. Toxoplasmosis: the time has come. N Engl J Med. 1988; 318: 313–15.Google Scholar
[137]
Foulon, W, Naessens, A, Lauwers, S, De Meuter, F, Amy, JJ. Impact of primary prevention on the incidence of toxoplasmosis during pregnancy. Obstet Gynecol. 1988; 72: 363–6.Google Scholar
[138]
Bouthry, E, Picone, O, Hamdi, G, Grangeot-Keros, L, Ayoubi, J-M, Vauloup-Fellous, C. Rubella and pregnancy: diagnosis, management and outcomes. Prenat Diagn. 2014; 34: 1246–53.Google Scholar
[139]
Dimech, W, Grangeot-Keros, L, Vauloup-Fellous, C. Standardization of assays that detect anti-rubella virus IgG antibodies. Clin Microbiol Rev. 2016; 29: 163–74.Google Scholar
[140]
Miller, E, Cradock-Watson, JE, Pollock, TM. Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet. 1982; 2: 781–4.Google Scholar
[141]
Daffos, F, Forestier, F, Grangeot-Keros, L, Capella Pavlovsky, M, Lebon, P, Chartier, M, et al.Prenatal diagnosis of congenital rubella. Lancet. 1984; 2: 1–3.Google Scholar
[142]
Enders, G, Nickerl-Pacher, U, Miller, E, Cradock-Watson, JE. Outcome of confirmed periconceptional maternal rubella. Lancet. 1988; 1: 1445–7.Google Scholar
Forrest, JM, Turnbull, FM, Sholler, GF, Hawker, RE, Martin, FJ, Doran, TT, et al.Gregg’s congenital rubella patients 60 years later. Med J Aust. 2002; 177: 664–7.Google Scholar
[145]
O’Neill, JF. The ocular manifestations of congenital infection: a study of the early effect and long-term outcome of maternally transmitted rubella and toxoplasmosis. Trans Am Ophthalmol Soc. 1998; 96: 813–79.Google Scholar
[146]
Macé, M, Cointe, D, Six, C, Levy-Bruhl, D, Parent du Chatelet, I, Ingrand, D, et al.Diagnostic value of reverse transcription PCR of amniotic fluid for prenatal diagnosis of congenital rubella infection in pregnant women with confirmed primary rubella infection. J Clin Microbiol; 2004; 42: 4818–20.Google Scholar