Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-23T00:49:40.880Z Has data issue: false hasContentIssue false

2 - Uncovering Key Neurons for Manipulation in Mammals

from Part I - Optogenetics in Model Organisms

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 18 - 36
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamantidis, A., Arber, S., Jaideep, S., et al. (2015). Optogenetics: 10 years after ChR2 in neurons – views from the community. Nature Neuroscience, 18, 12021212.CrossRefGoogle ScholarPubMed
Arenkiel, R., Marguerita, E. K., Davison, I. G., et al. (2008). Genetic control of neuronal activity in mice conditionally expressing TRPV1. Nature Methods, 5, 299302.CrossRefGoogle ScholarPubMed
Bading, H., Ginty, D. D. and Greenberg, M. E. (1993). Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science, 260, 181186.CrossRefGoogle ScholarPubMed
Barnes, C. A., McNaughton, B. L., Mizumori, S. J., et al. (1990). Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Progress in Brain Research, 83, 287300.CrossRefGoogle ScholarPubMed
Barth, A. L., Gerkin, R. C. and Dean, K. L. (2004). Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. The Journal of Neuroscience, 24, 64666475.CrossRefGoogle Scholar
Blanco, E., Messeguer, X., Smith, T. F., et al. (2006). Transcription factor map alignment of promoter regions. PLoS Computational Biology, 2, e49.CrossRefGoogle ScholarPubMed
Bonni, A., Ginty, D. D., Dudek, H., et al. (1995). Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Molecular and Cellular Neurosciences, 6, 168183.CrossRefGoogle Scholar
Borghuis, B. G., Tian, L., Xu, Y., et al. (2011). Imaging light responses of targeted neuron populations in the rodent retina. The Journal of Neuroscience, 31, 28552867.CrossRefGoogle ScholarPubMed
Bossert, J. M., Stern, A. L., Theberge, F. R. M., et al. (2011). Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nature Neuroscience, 14, 420422.CrossRefGoogle ScholarPubMed
Boyden, E. S., Zhang, F., Bamberg, E., et al. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8, 12631268.CrossRefGoogle ScholarPubMed
Brake, A. J., Wagenbach, M. J. and Julius, D. (1994). New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature, 371, 519523.CrossRefGoogle ScholarPubMed
Cambridge, S. B., Geissler, D., Calegari, F., et al. (2009). Doxycycline-dependent photoactivated gene expression in eukaryotic systems. Nature Methods, 6, 527531.CrossRefGoogle ScholarPubMed
Caterina, M. J., Schumacher, M. A., Tominaga, M., et al. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816824.CrossRefGoogle ScholarPubMed
Ceccatelli, S., Villar, M. J., Goldstein, M., et al. (1989). Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proceedings of the National Academy of Sciences USA, 86, 95699573.CrossRefGoogle ScholarPubMed
Chen, T.-W., Wardill, T. J., Sun, Y., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295300.CrossRefGoogle ScholarPubMed
Cowansage, K. K., Shuman, T., Dillingham, B. C., et al. (2014). Direct reactivation of a coherent neocortical memory of context. Neuron, 84, 432441.CrossRefGoogle ScholarPubMed
Crick, F. (1999). The impact of molecular biology on neuroscience. Philosophical Transactions of the Royal Society of London, 354, 20212025.CrossRefGoogle ScholarPubMed
Delgado, J. M. R. (1964). Free behavior and brain stimulation. International Review of Neurobiology, 6, 349449.CrossRefGoogle ScholarPubMed
Delgado, J. M. R. (1969). Physical Control of the Mind: Toward a Psychocivilized Society. New York, NY: Harper & Row.Google Scholar
Denny, C. A., Kheirbek, M. A., Alba, E. L., et al. (2014). Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron, 83, 189201.CrossRefGoogle ScholarPubMed
Diester, I., Kaufman, M. T., Mogri, M., et al. (2011). An optogenetic toolbox designed for primates. Nature Neuroscience, 14, 387397.CrossRefGoogle ScholarPubMed
Dittgen, T., Nimmerjahn, A., Komai, S., et al. (2004). Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proceedings of the National Academy of Sciences USA, 101, 1820618211.CrossRefGoogle ScholarPubMed
Edwards, J. G. (2014). TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications. Progress in Drug Research, 68, 77104.Google ScholarPubMed
Feil, R., Wagner, J., Metzger, D., et al. (1997). Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochemical and Biophysical Research Communications, 237, 752757.CrossRefGoogle ScholarPubMed
Freundlieb, S., Schirra-Müller, C. and Bujard, H. (1999). A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. The Journal of Gene Medicine, 1, 412.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Galvan, A., Hu, X., Smith, Y., et al. (2012). In vivo optogenetic control of striatal and thalamic neurons in non-human primates. PLoS ONE, 7, e50808.CrossRefGoogle ScholarPubMed
Garner, A. R., Rowland, D. C., Hwang, S. Y., et al. (2012). Generation of a synthetic memory trace. Science, 335, 15131516.CrossRefGoogle ScholarPubMed
Gerits, A., Farivar, R., Rosen, B. R., et al. (2012). Optogenetically induced behavioral and functional network changes in primates. Current Biology, 22, 17221726.CrossRefGoogle ScholarPubMed
Gonzalez, G. A. and Montminy, M. R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell, 59, 675680.CrossRefGoogle ScholarPubMed
Gossen, M. and Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proceedings of the National Academy of Sciences USA, 89, 55475551.CrossRefGoogle ScholarPubMed
Guenthner, C. J., Miyamichi, K., Yang, H. H., et al. (2013). Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron, 78, 773784.CrossRefGoogle ScholarPubMed
Güler, A. D., Rainwater, A., Parker, J. G., et al. (2012). Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nature Communications, 3, 746756.CrossRefGoogle ScholarPubMed
Han, X., Qian, X., Bernstein, J. G., et al. (2009). Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron, 62, 191198.CrossRefGoogle ScholarPubMed
Heath, R. G., Monroe, R. R. and Mickle, W. A. (1955). Stimulation of the amygdaloid nucleus in a schizophrenic patient. American Journal of Psychiatry, 111, 862863.CrossRefGoogle Scholar
Hunt, S. P., Pini, A. and Evan, G. (1987). Induction of c-Fos-like protein in spinal cord neurons following sensory stimulation. Nature, 328, 632634.CrossRefGoogle ScholarPubMed
Impey, S., McCorkle, S. R., Cha-Molstad, H., et al. (2004). Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell, 119, 10411054.Google ScholarPubMed
Jazayeri, M., Lindbloom-Brown, Z. and Horwitz, G. D. (2012). Saccadic eye movements evoked by optogenetic activation of primate V1. Nature Neuroscience, 15, 13681370.CrossRefGoogle ScholarPubMed
Kawashima, T., Okuno, H., Nonaka, M., et al. (2009). Synaptic activity–responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proceedings of the National Academy of Sciences USA, 106, 316321.CrossRefGoogle ScholarPubMed
Kawashima, T., Kitamura, K., Suzuki, K., et al. (2013). Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nature Methods, 10, 889895.CrossRefGoogle ScholarPubMed
Kee, N., Teixeira, C. M., Wang, A. H., et al. (2007). Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nature Neuroscience, 10, 355362.CrossRefGoogle ScholarPubMed
Khorana, H. G., Knox, B. E., Nasi, E., et al. (1988). Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. Proceedings of the National Academy of Sciences USA, 85, 79177921.CrossRefGoogle ScholarPubMed
King, H. E. (1961). Psychological effects of excitation in the limbic system. In: Electrical Stimulation of the Brain: An Interdisciplinary Survey of Neurobehavioral Integrative Systems. Sheer, D. E. (ed.), pp. 477486. Austin, TX: University of Texas Press.Google Scholar
Kiselev, A. and Subramaniam, S. (1997). Studies of Rh1 metarhodopsin stabilization in wild-type Drosophila and in mutants lacking one or both arrestins. Biochemistry, 36, 21882196.CrossRefGoogle ScholarPubMed
Koya, E., Golden, S. A., Harvey, B. K., et al. (2009). Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nature Neuroscience, 12, 10691073.CrossRefGoogle ScholarPubMed
Kwok, R. P., Lundblad, J. R., Chrivia, J. C., et al. (1994). Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature, 370, 223226.CrossRefGoogle ScholarPubMed
Kyung, T., Lee, S., Kim, J. E., et al. (2015). Optogenetic control of endogenous Ca2+ channels in vivo. Nature Biotechnology, 33, 10921096.CrossRefGoogle ScholarPubMed
Lee, M.-H., Appleton, K. M., Strungs, E. G., et al. (2016). The conformational signature of Β-arrestin2 predicts its trafficking and signalling functions. Nature, 531, 665668.CrossRefGoogle ScholarPubMed
Lima, S. Q. and Miesenböck, G. (2005). Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 121, 141152.CrossRefGoogle ScholarPubMed
Liu, X., Ramirez, S., Pang, P. T., et al. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381385.CrossRefGoogle ScholarPubMed
Loebrich, S., and Nedivi, E., (2009). The function of activity-regulated genes in the nervous system. Physiological Reviews, 89 (4), 10791103. doi:10.1152/physrev.00013.2009.CrossRefGoogle ScholarPubMed
Losonczy, A. and Zemelman, B. V. (2016). Illuminating memory circuit dynamics. Learning & Memory (In preparation).Google Scholar
MacLean, P. D. (1990). The Triune Brain in Evolution: Role in Paleocerebral Functions. New York, NY: Plenum Press.Google Scholar
Madisen, L., Zwingman, T. A., Sunkin, S. M., et al. (2009). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience, 13, 133140.CrossRefGoogle ScholarPubMed
Melyan, Z., Tarttelin, E. E., Bellingham, J., et al. (2005). Addition of human melanopsin renders mammalian cells photoresponsive. Nature, 433, 741745.CrossRefGoogle ScholarPubMed
Minatohara, K., Akiyoshi, M. and Okuno, H. (2016). Role of immediate–early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Frontiers in Molecular Neuroscience, 8, 78.CrossRefGoogle ScholarPubMed
Morgan, J. I. and Curran, T. (1991). Stimulus–transcription coupling in the nervous system: involvement of the inducible proto-oncogenes Fos and Jun. Annual Review of Neuroscience, 14, 421451.CrossRefGoogle ScholarPubMed
Nagel, G., Szellas, T., Huhn, W., et al. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences USA, 100, 1394013945.CrossRefGoogle ScholarPubMed
Nathanson, J. L., Jappelli, R., Scheeff, E. D., et al., (2009). Short promoters in viral vectors drive selective expression in mammalian inhibitory neurons, but do not restrict activity to specific inhibitory cell-types. Frontiers in Neural Circuits, 3, 19.CrossRefGoogle Scholar
Nuber, S., Zabel, U., Lorenz, K., et al. (2016). Β-arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature, 531, 661664.CrossRefGoogle ScholarPubMed
Ovcharenko, I., Nobrega, M. A., Loots, G. G., et al. (2004). ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Research, 32, W280W286.CrossRefGoogle ScholarPubMed
Panksepp, J. (2004). Affective Neuroscience: the Foundations of Human and Animal Emotions. Oxford: Oxford University Press.Google Scholar
Peier, A. M., Moqrich, A., Hergarden, A. C., et al. (2002). A TRP channel that senses cold stimuli and menthol. Cell, 108, 705715.CrossRefGoogle ScholarPubMed
Pinal, C. S., Cortessis, V. and Tobin, A. J. (1997). Multiple elements regulate GAD65 transcription. Developmental Neuroscience, 19, 465475.CrossRefGoogle ScholarPubMed
Qiu, X., Kumbalasiri, T., Carlson, S. M., et al. (2005). Induction of photosensitivity by heterologous expression of melanopsin. Nature, 433, 745749.CrossRefGoogle ScholarPubMed
Ramirez, S., Liu, X., Lin, P.-A., et al. (2013). Creating a false memory in the hippocampus. Science, 341, 387391.CrossRefGoogle ScholarPubMed
Redondo, R. L., Kim, J., Arons, A. L., et al. (2014). Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature, 513, 426430.CrossRefGoogle ScholarPubMed
Reijmers, L. G., Perkins, B. L., Matsuo, N., et al. (2007). Localization of a stable neural correlate of associative memory. Science, 317, 12301233.CrossRefGoogle ScholarPubMed
Root, C. M., Denny, C. A., Hen, R., et al. (2014). The participation of cortical amygdala in innate, odour-driven behaviour. Nature, 515, 269273.CrossRefGoogle ScholarPubMed
Rossier, J., Bernard, A., Cabungcal, J.-H., et al. (2014). Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and neprilysin. Molecular Psychiatry, 20, 154161.CrossRefGoogle ScholarPubMed
Rost, B. R., Schneider, F., Grauel, M. K., et al. (2015). Optogenetic acidification of synaptic vesicles and lysosomes. Nature Neuroscience, 18, 18451852.CrossRefGoogle ScholarPubMed
Ruiz, O., Lustig, B. R., Nassi, J. J., et al. (2013). Optogenetics through windows on the brain in the nonhuman primate. Journal of Neurophysiology, 110, 14551467.CrossRefGoogle ScholarPubMed
Sagar, S. M., Sharp, F. R. and Curran, T. (1988). Expression of c-Fos protein in brain: metabolic mapping at the cellular level. Science, 240, 13281331.CrossRefGoogle ScholarPubMed
Schoch, S., Cibelli, G. and Thiel., G. (1996). Neuron-specific gene expression of synapsin I: major role of a negative regulatory mechanism. The Journal of Biological Chemistry, 271, 33173323.CrossRefGoogle ScholarPubMed
Seidemann, E., Chen, Y., Bai, Y., et al. (2016). Calcium imaging with genetically encoded indicators in behaving primates. eLife, 5, 3771.CrossRefGoogle ScholarPubMed
Sharma, K., Schmitt, S., Bergner, C. G., et al. (2015). Cell type- and brain region-resolved mouse brain proteome. Nature Neuroscience, 18, 18191831.CrossRefGoogle ScholarPubMed
Sheng, M, McFadden, G. and Greenberg, M. E. (1990). Membrane depolarization and calcium induce c-Fos transcription via phosphorylation of transcription factor CREB. Neuron, 4, 571582.CrossRefGoogle ScholarPubMed
Sheng, M., Thompson, M. A. and Greenberg, M. E. (1991). CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science, 252, 14271430.CrossRefGoogle Scholar
Stein, M., Breit, A., Fehrentz, T., et al. (2013). Optical control of TRPV1 channels. Angewandte Chemie, 52, 98459848.CrossRefGoogle ScholarPubMed
Stierl, M., Stumpf, P., Udwari, D., et al. (2011). Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. The Journal of Biological Chemistry, 286, 11811188.CrossRefGoogle ScholarPubMed
Stone, S. S., Teixeira, C. M., Zaslavsky, K., et al. (2011). Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus, 21, 13481362.CrossRefGoogle ScholarPubMed
Sugino, K., Hempel, C. M., Miller, M. N., et al. (2006). Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neuroscience, 9, 99107.CrossRefGoogle ScholarPubMed
Sweet, W. H., Ervin, F. and Mark, V. H. (1969). The relationship of violent behaviour to focal cerebral disease. In: Aggressive Behaviour. Garattini, S. and Sigg, E. B. (Eds.), pp. 336352. Amsterdam: Excerpta Medica Foundation.Google Scholar
Tasic, B., Menon, V., Nguyen, T. N., et al., (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience, 19, 335346.CrossRefGoogle ScholarPubMed
Wang, K. H., Majewska, A., Schummers, J., et al. (2006). In vivo two-photon imaging reveals a role of Arc in enhancing orientation specificity in visual cortex. Cell, 126, 389402.CrossRefGoogle ScholarPubMed
Wang, M., Perova, Z., Benjamin, R. A., et al. (2014). Synaptic modifications in the medial prefrontal cortex in susceptibility and resilience to stress. The Journal of Neuroscience, 34, 74857492.CrossRefGoogle ScholarPubMed
Wend, S., Wagner, H. J., Konrad Müller, K., et al. (2014). Optogenetic control of protein kinase activity in mammalian cells. ACS Synthetic Biology, 3, 280285.CrossRefGoogle ScholarPubMed
Yaguchi, M., Ohashi, Y., Tsubota, T., et al. (2013). Characterization of the properties of seven promoters in the motor cortex of rats and monkeys after lentiviral vector-mediated gene transfer. Human Gene Therapy Methods, 24, 333344.CrossRefGoogle ScholarPubMed
Yao, F. and Eriksson, E. (1999). A novel tetracycline-inducible viral replication switch. Human Gene Therapy, 10, 419427.CrossRefGoogle ScholarPubMed
Yassin, L., Benedetti, B. L., Jouhanneau, J.-S., et al. (2010). An embedded subnetwork of highly active neurons in the neocortex. Neuron, 68, 10431050.CrossRefGoogle ScholarPubMed
Zemelman, B. V. and Miesenböck, G. (2001). Genetic schemes and schemata in neurophysiology. Current Opinion in Neurobiology, 11, 409414.CrossRefGoogle ScholarPubMed
Zemelman, B. V., Lee, G. A., Ng, M., et al. (2002). Selective photostimulation of Genetically chARGed neurons. Neuron, 33, 1522.CrossRefGoogle ScholarPubMed
Zemelman, B. V., Nesnas, N., Lee, G. A., et al. (2003). Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proceedings of the National Academy of Sciences USA, 100, 13521357.CrossRefGoogle ScholarPubMed
Zhang, X., Odom, D. T., Koo, S.-H., et al. (2005). Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proceedings of the National Academy of Sciences USA, 102, 44594464.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×