Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T13:56:40.673Z Has data issue: false hasContentIssue false

10 - Physical exercise for brain health in later life: how does it work?

Published online by Cambridge University Press:  05 February 2016

Linda C. W. Lam
Affiliation:
The Chinese University of Hong Kong
Michelle Riba
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, D. E. & Yaffe, K. 2011. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurology, 10, 819–28.CrossRefGoogle ScholarPubMed
Begley, C. G. 2013. Six red flags for suspect work. Nature, 497, 433–4.CrossRefGoogle ScholarPubMed
Bennett, D. A., Arnold, S. E., Valenzuela, M. J., Brayne, C. & Schneider, J. A. 2014. Cognitive and social lifestyle: links with neuropathology and cognition in late life. Acta Neuropathologica, 127, 137–50.CrossRefGoogle ScholarPubMed
Bloor, C. M. 2005. Angiogenesis during exercise and training. Angiogenesis, 8, 263–71.CrossRefGoogle ScholarPubMed
Bugg, J. M. & Head, D. 2011. Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of Aging, 32, 506–14.CrossRefGoogle ScholarPubMed
Bullitt, E., Ewend, M., Vredenburgh, J., Friedman, A., Lin, W., Wilber, K., Zeng, D., Aylward, S. R. & Reardon, D. 2009. Computerized assessment of vessel morphological changes during treatment of glioblastoma multiforme: report of a case imaged serially by MRA over four years. Neuroimage, 47 Suppl 2, T14351.CrossRefGoogle ScholarPubMed
Burdette, J. H., Laurienti, P. J., Espeland, M. A., Morgan, A., Telesford, Q., Vechlekar, C. D., Hayasaka, S., Jennings, J. M., Katula, J. A., Kraft, R. A. & Rejeski, W. J. 2010. Using network science to evaluate exercise-associated brain changes in older adults. Frontiers in Aging Neuroscience, 2, 23.Google ScholarPubMed
Cassilhas, R. C., Lee, K. S., Fernandes, J., Oliveira, M. G., Tufik, S., Meeusen, R. & De Mello, M. T. 2012. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience, 202, 309–17.CrossRefGoogle ScholarPubMed
Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D. Jr., Fragniere, A., Tyers, P., Jessberger, S., Saksida, L. M., Barker, R. A., Gage, F. H. & Bussey, T. J. 2009. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325, 210–3.CrossRefGoogle ScholarPubMed
Coen, R. F., Lawlor, B. A. & Kenny, R. 2011. Failure to demonstrate that memory improvement is due either to aerobic exercise or increased hippocampal volume. Proceedings of the National Academy of Sciences of the United States of America, 108, E89; author reply E90.Google ScholarPubMed
Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E. & Kramer, A. F. 2003. Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology Series a: Biological Sciences and Medical Sciences, 58, 176–80.CrossRefGoogle ScholarPubMed
Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D. X., Hu, L. & Kramer, A. F. 2006. Aerobic exercise training increases brain volume in aging humans. Journals of Gerontology Series a: Biological Sciences and Medical Sciences, 61, 1166–70.CrossRefGoogle ScholarPubMed
Colcombe, S. & Kramer, A. F. 2003. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci, 14, 125–30.CrossRefGoogle ScholarPubMed
Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., Webb, A., Jerome, G. J., Marquez, D. X. & Elavsky, S. 2004. Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 3316–21.Google ScholarPubMed
Cracchiolo, J., Mori, T., Nazian, S., Tan, J., Potter, H. & Arendash, G. 2007. Enhanced cognitive activity – over and above social or physical activity – is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβ deposition, and increase synaptic immunostaining 2331. Neurobiology of Learning & Memory, 88, 277–94.CrossRefGoogle ScholarPubMed
Debette, S. & Markus, H. S. 2010. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ, 341, c3666.CrossRefGoogle ScholarPubMed
Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., White, S. M., Wojcicki, T. R., McAuley, E. & Kramer, A. F. 2009. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 1030–9.CrossRefGoogle ScholarPubMed
Erickson, K. I., Raji, C. A., Lopez, O. L., Becker, J. T., Rosano, C., Newman, A. B., Gach, H. M., Thompson, P. M., Ho, A. J. & Kuller, L. H. 2010. Physical activity predicts gray matter volume in late adulthood: The Cardiovascular Health Study. Neurology, 75, 1415–22.CrossRefGoogle ScholarPubMed
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E. & Kramer, A. F. 2011. Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017–22.Google ScholarPubMed
Erickson, K. I., Weinstein, A. M. & Lopez, O. L. 2012a. Physical activity, brain plasticity, and Alzheimer’s disease. Archives of Medical Research, 43, 615–21.CrossRefGoogle ScholarPubMed
Erickson, K. I., Weinstein, A. M., Sutton, B. P., Prakash, R. S., Voss, M. W., Chaddock, L., Szabo, A. N., Mailey, E. L., White, S. M., Wojcicki, T. R., McAuley, E. & Kramer, A. F. 2012b. Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory. Brain and Behavior, 2, 3241.CrossRefGoogle ScholarPubMed
Etnier, J. L., Nowell, P. M., Landers, D. M. & Sibley, B. A. 2006. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52, 119–30.CrossRefGoogle ScholarPubMed
Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J. & Palmer, T. D. 2003. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18, 2803–12.CrossRefGoogle ScholarPubMed
Fiatarone Singh, M. A., Gates, N., Saigal, N., Wilson, G. C., Meiklejohn, J., Brodaty, H., Wen, W., Singh, N., Baune, B. T., Suo, C., Baker, M. K., Foroughi, N., Wang, Y., Sachdev, P. S. & Valenzuela, M. 2014. The Study of Mental and Resistance Training (SMART) Study-Resistance Training and/or Cognitive Training in Mild Cognitive Impairment: A Randomized, Double-Blind, Double-Sham Controlled Trial. Journal of the American Medical Directors Association, 15, 873–80.CrossRefGoogle ScholarPubMed
Groves, J. O., Leslie, I., Huang, G. J., McHugh, S. B., Taylor, A., Mott, R., Munafo, M., Bannerman, D. M. & Flint, J. 2013. Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model. PLoS Genetics, 9, e1003718.CrossRefGoogle ScholarPubMed
Holden, H. M., Hoebel, C., Loftis, K. & Gilbert, P. E. 2012. Spatial pattern separation in cognitively normal young and older adults. Hippocampus, 22, 1826–32.CrossRefGoogle ScholarPubMed
Honea, R. A., Thomas, G. P., Harsha, A., Anderson, H. S., Donnelly, J. E., Brooks, W. M. & Burns, J. M. 2009. Cardiorespiratory Fitness and Preserved Medial Temporal Lobe Volume in Alzheimer Disease. Alzheimer Disease & Associated Disorders, 23, 188–97.CrossRefGoogle ScholarPubMed
Kirk-Sanchez, N. J. & McGough, E. L. 2014. Physical exercise and cognitive performance in the elderly: current perspectives. Clinical Interventions in Aging, 9.Google Scholar
Landis, S. C., Amara, S. G., Asadullah, K., Austin, C. P., Blumenstein, R., Bradley, E. W., Crystal, R. G., Darnell, R. B., Ferrante, R. J., Fillit, H., Finkelstein, R., Fisher, M., Gendelman, H. E., Golub, R. M., Goudreau, J. L., Gross, R. A., Gubitz, A. K., Hesterlee, S. E., Howells, D. W., Huguenard, J., Kelner, K., Koroshetz, W., Krainc, D., Lazic, S. E., Levine, M. S., Macleod, M. R., McCall, J. M., Moxley, R. T., 3rd, Narasimhan, K., Noble, L. J., Perrin, S., Porter, J. D., Steward, O., Unger, E., Utz, U. & Silberberg, S. D. 2012. A call for transparent reporting to optimize the predictive value of preclinical research. Nature, 490, 187–91.CrossRefGoogle Scholar
Lautenschlager, N. T., Cox, K. L., Flicker, L., Foster, J. K., Van Bockxmeer, F. M., Xiao, J., Greenop, K. R. & Almeida, O. P. 2008. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA, 300, 1027–37.CrossRefGoogle ScholarPubMed
Lazarov, O., Robinson, J., Tang, Y., Hairston, I., Korade-Mirnics, Z., Lee, V., Hersh, L., Sapolsky, R., Mirnics, K. & Sisodia, S. 2005. Environmental Enrichment Reduces Aá Levels and Amyloid Deposition in Transgenic Mice. Cell, 120, 701–13.CrossRefGoogle Scholar
Liu-Ambrose, T., Nagamatsu, L. S., Voss, M. W., Khan, K. M. & Handy, T. C. 2012. Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiology of Aging, 33, 1690–8.CrossRefGoogle Scholar
Lopez-Lopez, C., Leroith, D. & Torres-Aleman, I. 2004. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 101, 9833–8.Google Scholar
Macrae, P. G., Spirduso, W. W., Walters, T. J., Farrar, R. P. & Wilcox, R. E. 1987. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology (Berl), 92, 236–40.CrossRefGoogle Scholar
Meeusen, R., Smolders, I., Sarre, S., De Meirleir, K., Keizer, H., Serneels, M., Ebinger, G. & Michotte, Y. 1997. Endurance training effects on neurotransmitter release in rat striatum: an in vivo microdialysis study. Acta Physiologica Scandinavica, 159, 335–41.CrossRefGoogle Scholar
Molnar, F. J., Hutton, B. & Fergusson, D. 2008. Does analysis using “last observation carried forward” introduce bias in dementia research? CMAJ, 179, 751–3.CrossRefGoogle Scholar
Nature. 2014. Nature Special: Challenges in irreproducible research [Online]. http://www.nature.com/nature/focus/reproducibility/.Google Scholar
Nithianantharajah, J. & Hannan, A. 2006. Enriched environments, experience-dependent plasticity and disorders of the nervous system 2248. Nature Reviews Neuroscience, 7, 697709.CrossRefGoogle Scholar
Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K. & Brayne, C. 2014. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurology, 13, 788–94.CrossRefGoogle Scholar
Pantoni, L. 2010. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurology, 9, 689701.CrossRefGoogle Scholar
Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R. & Small, S. A. 2007. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–43.Google Scholar
Podewils, L. J., Guallar, E., Kuller, L. H., Fried, L. P., Lopez, O. L., Carlson, M. & Lyketsos, C. G. 2005. Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study. American Journal of Epidemiology, 161, 639–51.CrossRefGoogle Scholar
Prakash, R. S., Voss, M. W., Erickson, K. I. & Kramer, A. F. 2015. Physical activity and cognitive vitality. Annual Review of Psychology, 66, 769–97.CrossRefGoogle Scholar
Prakash, R. S., Voss, M. W., Erickson, K. I., Lewis, J. M., Chaddock, L., Malkowski, E., Alves, H., Kim, J., Szabo, A., White, S. M., Wojcicki, T. R., Klamm, E. L., McAuley, E. & Kramer, A. F. 2011. Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 4.Google Scholar
Prinz, F., Schlange, T. & Asadullah, K. 2011. Believe it or not: how much can we rely on published data on potential drug targets? Nature Reviews Drug Discovery, 10, 712.CrossRefGoogle Scholar
Richard, E., Gouw, A. A., Scheltens, P. & Van Gool, W. A. 2010. Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of white matter lesions on MRI: the evaluation of vascular care in Alzheimer’s disease (EVA) study. Stroke, 41, 554–6.CrossRefGoogle Scholar
Robinson, A. M., Eggleston, R. L. & Bucci, D. J. 2012. Physical exercise and catecholamine reuptake inhibitors affect orienting behavior and social interaction in a rat model of attention-deficit/hyperactivity disorder. Behavioral Neuroscience, 126, 762–71.CrossRefGoogle Scholar
Roig, M., Nordbrandt, S., Geertsen, S. S. & Nielsen, J. B. 2013. The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neuroscience & Biobehavioral Reviews, 37, 1645–66.CrossRefGoogle Scholar
Rovio, S., Spulber, G., Nieminen, L. J., Niskanen, E., Winblad, B., Tuomilehto, J., Nissinen, A., Soininen, H. & Kivipelto, M. 2010. The effect of midlife physical activity on structural brain changes in the elderly. Neurobiology of Aging, 31, 192736.CrossRefGoogle Scholar
Ruscheweyh, R., Willemer, C., Krueger, K., Duning, T., Warnecke, T., Sommer, J., Voelker, K., Ho, H. V., Mooren, F., Knecht, S. & Floeel, A. 2011. Physical activity and memory functions: an interventional study. Neurobiology of Aging, 32, 1304–19.CrossRefGoogle Scholar
Sahay, A., Scobie, K. N., Hill, A. S., O’Carroll, C. M., Kheirbek, M. A., Burghardt, N. S., Fenton, A. A., Dranovsky, A. & Hen, R. 2011. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472, 466–70.CrossRefGoogle Scholar
Salthouse, T. 2012. Consequences of age-related cognitive declines. Annual Review of Psychology, 63, 201–26.CrossRefGoogle Scholar
Scarmeas, N., Luchsinger, J. A., Schupf, N., Brickman, A. M., Cosentino, S., Tang, M. X. & Stern, Y. 2009. Physical activity, diet, and risk of Alzheimer disease. JAMA, 302, 627–37.Google Scholar
Siette, J., Westbrook, R. F., Cotman, C., Sidhu, K., Zhu, W., Sachdev, P. & Valenzuela, M. J. 2013. Age-specific effects of voluntary exercise on memory and the older brain. Biological Psychiatry, 73, 435–42.CrossRefGoogle Scholar
Smith, A. M., Spiegler, K. M., Sauce, B., Wass, C. D., Sturzoiu, T. & Matzel, L. D. 2013. Voluntary aerobic exercise increases the cognitive enhancing effects of working memory training. Behavioural Brain Research, 256, 626–35.CrossRefGoogle Scholar
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., Browndyke, J. N. & Sherwood, A. 2010. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72, 239–52.CrossRefGoogle Scholar
Sofi, F., Valecchi, D., Bacci, D., Abbate, R., Gensini, G. F., Casini, A. & Macchi, C. 2011. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. Journal of Internal Medicine, 269, 107–17.CrossRefGoogle Scholar
Sparling, P. B., Howard, B. J., Dunstan, D. W. & Owen, N. 2015. Recommendations for physical activity in older adults. BMJ, 350, h100.CrossRefGoogle Scholar
Stark, S. M., Yassa, M. A. & Stark, C. E. 2010. Individual differences in spatial pattern separation performance associated with healthy aging in humans. Learning & Memory, 17, 284–8.Google Scholar
Steiner, J. L., Murphy, E. A., McClellan, J. L., Carmichael, M. D. & Davis, J. M. 2011. Exercise training increases mitochondrial biogenesis in the brain. Journal of Applied Physiology (1985), 111, 1066–71.CrossRefGoogle Scholar
Strasser, B. & Pesta, D. 2013. Resistance training for diabetes prevention and therapy: experimental findings and molecular mechanisms. BioMed Research International, 2013, 805217.CrossRefGoogle Scholar
Valenzuela, M., Bartres-Faz, D., Beg, F., Fornito, A., Merlo-Pich, E., Muller, U., Ongur, D., Toga, A. W. & Yucel, M. 2011. Neuroimaging as endpoints in clinical trials: are we there yet? Perspective from the first Provence workshop. Molecular Psychiatry, 16, 1064–6.CrossRefGoogle Scholar
Valenzuela, M., Esler, M., Ritchie, K. & Brodaty, H. 2012. Antihypertensives for combating dementia? A perspective on candidate molecular mechanisms and population-based prevention. Translational Psychiatry, 2, e107.CrossRefGoogle Scholar
Van Praag, H., Shubert, T., Zhao, C. & Gage, F. H. 2005. Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25, 8680–5.CrossRefGoogle Scholar
Voss, M. W., Heo, S., Prakash, R. S., Erickson, K. I., Alves, H., Chaddock, L., Szabo, A. N., Mailey, E. L., Wojcicki, T. R., White, S. M., Gothe, N., McAuley, E., Sutton, B. P. & Kramer, A. F. 2013a. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Human Brain Mapping, 34, 2972–85.CrossRefGoogle Scholar
Voss, M. W., Prakash, R. S., Erickson, K. I., Basak, C., Chaddock, L., Kim, J. S., Alves, H., Heo, S., Szabo, A. N., White, S. M., Wojcicki, T. R., Mailey, E. L., Gothe, N., Olson, E. A., McAuley, E. & Kramer, A. F. 2010. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2.Google Scholar
Voss, M. W., Vivar, C., Kramer, A. F. & Van Praag, H. 2013b. Bridging animal and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17, 525–44.CrossRefGoogle Scholar
Waters, R. P., Pringle, R. B., Forster, G. L., Renner, K. J., Malisch, J. L., Garland, T. Jr. & Swallow, J. G. 2013. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice. Brain Research, 1508, 922.CrossRefGoogle Scholar
Weinstein, A. M., Voss, M. W., Prakash, R. S., Chaddock, L., Szabo, A., White, S. M., Wojcicki, T. R., Mailey, E., McAuley, E., Kramer, A. F. & Erickson, K. I. 2012. The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behavior and Immunity, 26, 811–9.CrossRefGoogle Scholar
Yaffe, K., Fiocco, A. J., Lindquist, K., Vittinghoff, E., Simonsick, E. M., Newman, A. B., Satterfield, S., Rosano, C., Rubin, S. M., Ayonayon, H. N., Harris, T. B. & Health, A. B. C. S. 2009. Predictors of maintaining cognitive function in older adults: the Health ABC study. Neurology, 72, 2029–35.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×