Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Abstracts of chapters
- 1 Overview of sputter-deposited TiNi based thin films
- 2 Martensitic transformation in TiNi alloys
- 3 Deposition techniques for TiNi thin film
- 4 TiNi multilayer thin films
- 5 Crystallization and microstructural development
- 6 Mechanical properties of TiNi thin films
- 7 Stress and surface morphology evolution
- 8 Ion implantation processing and associated irradiation effects
- 9 Laser post-annealing and theory
- 10 Overview of thin film shape memory alloy applications
- 11 Theory of SMA thin films for microactuators and micropumps
- 12 Binary and ternary alloy film diaphragm microactuators
- 13 TiNi thin film devices
- 14 Shape memory microvalves
- 15 Superelastic thin films and applications for medical devices
- 16 Fabrication and characterization of sputter-deposited TiNi superelastic microtubes
- 17 Thin film shape memory microcage for biological applications
- 18 Shape memory thin film composite microactuators
- 19 TiNi thin film shape memory alloys for optical sensing applications
- Index
Preface
Published online by Cambridge University Press: 23 February 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Abstracts of chapters
- 1 Overview of sputter-deposited TiNi based thin films
- 2 Martensitic transformation in TiNi alloys
- 3 Deposition techniques for TiNi thin film
- 4 TiNi multilayer thin films
- 5 Crystallization and microstructural development
- 6 Mechanical properties of TiNi thin films
- 7 Stress and surface morphology evolution
- 8 Ion implantation processing and associated irradiation effects
- 9 Laser post-annealing and theory
- 10 Overview of thin film shape memory alloy applications
- 11 Theory of SMA thin films for microactuators and micropumps
- 12 Binary and ternary alloy film diaphragm microactuators
- 13 TiNi thin film devices
- 14 Shape memory microvalves
- 15 Superelastic thin films and applications for medical devices
- 16 Fabrication and characterization of sputter-deposited TiNi superelastic microtubes
- 17 Thin film shape memory microcage for biological applications
- 18 Shape memory thin film composite microactuators
- 19 TiNi thin film shape memory alloys for optical sensing applications
- Index
Summary
Shape memory alloys (SMAs) are materials that, after being severely deformed, can return to their original shape upon heating. These materials possess a number of desirable properties, namely, high power to weight (or force to volume) ratio, thus the ability to induce large transformation stress and strain upon heating/cooling, pseudoelasticity (or superelasticity), high damping capacity, good chemical resistance and biocompatibility, etc. These unique features have attracted much attention to the potential applications of SMAs as smart (or intelligent) and functional materials. More recently, thin film SMAs have been recognized as a new type of promising and high-performance material for microelectromechanical system (MEMS) and biological applications.
Among these SMA films, TiNi based films are the most promising ones. They are typically prepared by a sputtering method. Other technologies, e.g., laser ablation, ion beam deposition, arc plasma ion plating, plasma spray and flash evaporation, have also been reported in the literature, but with some intrinsic problems. It is well known that the transformation temperatures, shape memory behaviors and superelasticity of the sputtered TiNi films are sensitive to metallurgical factors (alloy composition, contamination, thermomechanical treatment, annealing and aging processes, etc.), sputtering conditions (co-sputtering with multi-targets, target power, gas pressure, target-to-substrate distance, deposition temperature, substrate bias, etc.), and the application conditions (loading conditions, ambient temperature and environment, heat dissipation, heating/cooling rate, strain rate, etc.).
The main advantages for MEMS applications of TiNi thin film include high power density, large displacement and actuation force, low operation voltage, etc. The work output per unit volume of thin film SMA exceeds that of all other microactuation materials and mechanisms.
- Type
- Chapter
- Information
- Thin Film Shape Memory AlloysFundamentals and Device Applications, pp. xv - xviiPublisher: Cambridge University PressPrint publication year: 2009