References
Aguiar, M., Dosi, G., Knopoff, D. A., & Virgillito, M. E. (2021). A multiscale network-based model of contagion dynamics: Heterogeneity, spatial distancing and vaccination. Mathematical Models and Methods in Applied Sciences, 31, 2425–2454.
Ajmone Marsan, G., Bellomo, N., & Gibelli, L. (2016). Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics. Mathematical Models and Methods in Applied Sciences, 26(06), 1051–1093.
Anderson, P. W. (1972). More is different. Science, 177(4047), 393–396.
Aristov, V. (2019). Biological systems as nonequilibrium structures described by kinetic methods. Results in Physics, 13, 102232.
Bae, H.-O., Cho, S.-Y., Kim, J., & Yun, S.-B. (2019). A kinetic description for the herding behavior in financial market. Journal of Statistical Physics, 176, 398–424.
Bae, H.-O., Cho, S.-Y., Lee, S.-H., Yoo, J., & Yun, S.-B. (2019). A particle model for the herding phenomena induced by dynamic market signals. Journal of Statistical Physics, 177, 365–398.
Ball, P. (2012). Why society is a complex matter. Springer Science & Business Media.
Bandura, A. (1989). Human agency in social cognitive theory. American Psychologist, 44(9), 1175–1184.
Bellomo, N. (2008). Living systems. Birkhäuser-Springer.
Bellomo, N., Bellouquid, A., Gibelli, L., & Outada, N. (2017). A quest towards a mathematical theory of living systems. Birkhäuser-Springer.
Bellomo, N., Burini, D., Dosi, G., Gibelli, L., Knopoff, D., Outada, N., Terna, P., and Virgillito, M. E. (2021). What is life? A perspective of the mathematical kinetic theory of active particles. Mathematical Models and Methods in Applied Sciences, 31(09), 1821–1866.
Bellomo, N., & Carbonaro, B. (2011). Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives. Physics of Life Reviews, 8(1), 1–18.
Bellomo, N., Colasuonno, F., Knopoff, D., & Soler, J. (2015). From a systems theory of sociology to modeling the onset and evolution of criminality. Networks and Heterogeneous Media, 10, 421–441.
Bellomo, N., De Nigris, S., Knopoff, D., Morini, M., & Terna, P. (2020). Swarms dynamics towards a systems approach to social sciences and behavioral economy. Networks and Heterogeneous Media, 15, 353–368.
Bellomo, N., Dosi, G., Knopoff, D. A., & Virgillito, M. E. (2020). From particles to firms: On the kinetic theory of climbing up evolutionary landscapes. Mathematical Models and Methods in Applied Sciences, 30(07), 1441–1460.
Bellomo, N., & Egidi, M. (2024). From Herbert A. Simon’s legacy to the evolutionary artificial world with heterogeneous collective behaviorss. Mathematical Models and Methods in Applied Sciences, 34(1), 145–180. https://doi.org/10.1142/S0218202524400049. Bellomo, N., Esfahanian, M., Secchini, V., & Terna, P. (2022). What is life? Active particles tools towards behavioral dynamics in social-biology and economics. Physics of Life Reviews, 43, 189–207.
Bellomo, N., & Forni, G. (1994). Dynamics of tumor interaction with the host immune system. Mathematical and Computer Modelling, 20(1), 107–122.
Bellomo, N., Ha, S.-Y., & Outada, N. (2020). Towards a mathematical theory of behavioral swarms. ESAIM: Control, Optimisation and Calculus of Variations, 26, 125.
Bellomo, N., Herrero, M. A., & Tosin, A. (2013). On the dynamics of social conflicts looking for the Black Swan. Kinetic Related Models, 6(3), 459–479.
Bellouquid, A., & Delitala, M. (2006). Modelling complex biological systems: A kinetic theory approach. Birkhäuser-Springer.
Bertotti, M. L. (2010). Modelling taxation and redistribution: A discrete active particle kinetic approach. Applied Mathematics and Computation, 217(2), 752–762.
Bertotti, M. L., & Delitala, M. (2004). From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences. Mathematical Models and Methods in Applied Sciences, 14(07), 1061–1084.
Bertotti, M. L., & Delitala, M. (2010). Cluster formation in opinion dynamics: A qualitative analysis. Zeitschrift für angewandte Mathematik und Physik, 61, 583–602.
Bertotti, M. L., & Modanese, G. (2011). From microscopic taxation and redistribution models to macroscopic income distributions. Physica A: Statistical Mechanics and Its Applications, 390(21–22), 3782–3793.
Black, F., & Scholes, M. (1972). The valuation of option contracts and a test of market efficiency. The Journal of Finance, 27(2), 399–417.
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.
Bonacich, P., & Lu, P. (2012). Introduction to mathematical sociology. Princeton University Press.
Burini, D., & Chouhad, N. (2022). Virus models in complex frameworks: Towards modeling space patterns of SARS-CoV-2 epidemics. Mathematical Models and Methods in Applied Sciences, 32(10), 2017–2036.
Burini, D., & Chouhad, N. (2023). Cross diffusion models in complex frameworks from microscopic to macroscopic. Mathematical Models and Methods in Applied Sciences, 33(9), 158–162.
Burini, D., Chouhad, N., & Bellomo, N. (2023). Waiting for a mathematical theory of living systems from a critical review to research perspectives. Symmetry, 15(2), 351.
Burini, D., & De Lillo, S. (2019). On the complex interaction between collective learning and social dynamics. Symmetry, 11(8), 967.
Burini, D., De Lillo, S., & Gibelli, L. (2016). Collective learning modeling based on the kinetic theory of active particles. Physics of Life Reviews, 16, 123–139.
Burini, D., Gibelli, L., & Outada, N. (2017). A kinetic theory approach to the modeling of complex living systems. Active Particles, 1, 229–258.
Burini, D., & Knopoff, D. A. (2024). Epidemics and society: A multiscale vision from the Small World to the Globally Interconnected World. Mathematical Models and Methods in Applied Sciences, 34(08), 1567–1596.
Compte, A. (2012, 1839). Cours de philosophie positive. Hermann.
Coscia, V., Delitala, M., & Frasca, P. (2007). On the mathematical theory of vehicular traffic flow models II. Discrete velocity kinetic models. International Journal of Non-Linear Mechanics, 42(3), 411–421.
Cucker, F., & Smale, S. (2007). Emergent behavior in flocks. IEEE Transactions on Automatic Control, 52(5), 852–862.
Diamond, J. (1987). Soft sciences are often harder than hard sciences. Discover, 8(8), 34–39.
Dolfin, M., Knopoff, D., Leonida, L., & Patti, D. M. A. (2017). Escaping the trap of “blocking”: A kinetic model linking economic development and political competition. Kinetic and Related Models, 24, 2361–2381.
Dolfin, M., & Lachowicz, M. (2014). Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions. Mathematical Models and Methods in Applied Sciences, 24(12), 2361–2381.
Dolfin, M., & Lachowicz, M. (2015). Modeling opinion dynamics: How the network enhances consensus. Networks and Heterogeneous Media, 10(4), 877–896.
Dolfin, M., Leonida, L., & Outada, N. (2017). Modeling human behavior in economics and social science. Physics of Life Reviews, 22, 1–21.
Dosi, G. (1984). Technology and conditions of macroeconomic development. In Freeman, C. (Ed.), Design, innovation and long cycles in economic development (pp. 99–125). Design Research Publications.
Dosi, G. (2023). The foundations of complex evolving economies: Part one: Innovation, organization, and industrial dynamics. Oxford University Press.
Dosi, G., Fanti, L., & Virgillito, M. E. (2020). Unequal societies in usual times, unjust societies in pandemic ones. Journal of Industrial and Business Economics, 47, 371–389.
Dosi, G., Pereira, M. C., & Virgillito, M. E. (2017). The footprint of evolutionary processes of learning and selection upon the statistical properties of industrial dynamics. Industrial and Corporate Change, 26(2), 187–210.
Dosi, G., & Virgillito, M. E. (2021). In order to stand up you must keep cycling: Change and coordination in complex evolving economies. Structural Change and Economic Dynamics, 56, 353–364.
Furioli, G., Pulvirenti, A., Terraneo, E., & Toscani, G. (2017). Fokker–Planck equations in the modeling of socio-economic phenomena. Mathematical Models and Methods in Applied Sciences, 27(01), 115–158.
Galam, S. (2012). Sociophysics: A physicist’s modeling of psycho-political phenomena (understanding complex systems). Berlin: Springer.
Ha, S.-Y., Kim, J., Park, J., & Zhang, X. (2019). Complete cluster predictability of the Cucker–Smale flocking model on the real line. Archive for Rational Mechanics and Analysis, 231, 319–365.
Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402(Suppl 6761), C47–C52.
Helbing, D. (2010). Quantitative sociodynamics: Stochastic methods and models of social interaction processes. Springer Science & Business Media.
Hilbert, D. (1902). Mathematical problems. Bulletin American Mathematical Society, 8, 437–479.
Jager, E., & Segel, L. A. (1992). On the distribution of dominance in populations of social organisms. SIAM Journal on Applied Mathematics, 52(5), 1442–1468.
Jovanovic, F., & Le Gall, P. (2021). Mathematical analogies: An engine for understanding the transfers between economics and physics. History of Economics Review, 79(1), 18–38.
Kant, I. (2000). Critique of the power of judgment. Cambridge University Press.
Knopoff, D. (2014). On a mathematical theory of complex systems on networks with application to opinion formation. Mathematical Models and Methods Applied Sciences, 24(405–426).
Knopoff, D., Secchini, V., & Terna, P. (2020). Cherry picking: Consumer choices in swarm dynamics, considering price and quality of goods. Symmetry, 12(11), 1912.
Lachowicz, M., Matusik, M., & Topolski, K. A. (2024). Population of entities with three individual states and asymmetric interactions. Applied Mathematics and Computation, 464.
May, R. M. (2004). Uses and abuses of mathematics in biology. Science, 303(5659), 790–793.
Mayr, E. (1981). La biologie de l’évolution. Paris: Hermann.
Mazzoli, M., Morini, M., & Terna, P. (2019). Rethinking macroeconomics with endogenous market structure. Cambridge University Press.
Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 286–295.
Nash, J. (1996). Essays on game theory. Cheltenham, UK: Elgar.
Pareschi, L., & Toscani, G. (2013). Interacting multiagent systems: Kinetic equations and Monte Carlo methods. Oxford: Oxford University Press.
Paveri-Fontana, S. L. (1975). On Boltzmann-like treatments for traffic flow. Transportation Research, 9(4), 225–235.
Perlovsky, L., & Schoeller, F. (2019). Unconscious emotions of human learning. Physics of Life Reviews, 31, 257–262.
Prigogine, I., & Herman, R. (1971). Kinetic theory of vehicular traffic. New York: Elsevier.
Reed, M. C. (2004). Why is mathematical biology so hard. Notices of the AMS, 51(3), 338–342.
Salomon, G., & Perkins, D. N. (1998). Individual and social aspects of learning. Review of Research in Education, 23(1), 1–24.
Schoeller, F., Perlovsky, L., & Arseniev, D. (2018). Physics of mind: Experimental confirmations of theoretical predictions. Physics of Life Reviews, 25, 45–68.
Schumpeter, J. A. (1947). Capitalism, socialism and democracy. Taylor and Francis.
Simon, H. A. (2019). The sciences of the artificial, third edition. Massachusetts Institute of Technology Press.
Stiglitz, J. E. (2010). Freefall: America, free markets, and the sinking of the world economy. W. W. Norton & Company.
Taleb, N. N. (2007). The black swan: The impact of the highly improbable. Random house.
Thaler, R. H. (2016). Behavioral economics: Past, present, and future. American Economic Review, 106(7), 1577–1600.
Thaler, R. H., & Sunstein, C. R. (2009). Nudge: Improving decisions about health, wealth, and happiness. Penguin.
Zhang, W.-B. (1991). Synergetic economics. Heidelberg: Springer.
Zhang, W.-B. (2023). Chaos, complexity, and nonlinear economic theory. Singapore, London: World Scientific.