Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T11:16:59.599Z Has data issue: false hasContentIssue false

6 - Quantitative models of body size

Published online by Cambridge University Press:  02 December 2009

Michael J. Reiss
Affiliation:
University of Cambridge
Get access

Summary

In this chapter existing quantitative models of body size are critically reviewed. Special attention is paid to Belovsky's (1978) model for moose, as this is the only attempt yet to predict numerically how males and females should differ in weight. The criticisms here of nearly all the other quantitative models of body size may appear rather negative. The purpose of this chapter is not, however, solely to condemn most previous work. Evidence is presented that the energy assimilated per unit time scales at about body weight to the two-thirds power in ruminants, and it is pointed out why quantitative predictions of optimal female adult body weight from the model of Chapter 3 are not yet feasible either.

A review of existing models

Pearson (1948)

Pearson (1948) argued that in a plot of metabolic rate (measured as cubic centimetres of O2 per hour per gram of body weight) on body weight for mammals, the extrapolated curve for shrews becomes asymptotic at about 2.5 g. Consequently, he maintained, no (adult) mammals are lighter than this, because such lighter animals would be unable to gather enough food to support their ‘infinitely rapid metabolism’. This argument is unconvincing. Smaller animals also eat more, relative to their body weight (Chapter 2).

If Pearson's theory was valid, it might be predicted that smaller species should spend more time feeding. Smaller birds do feed for longer (Hinde, 1952; Gibb, 1954; Pearson, 1968). However, the interspecific dependence of feeding time on size differs between taxa. Larger primates, for example, feed for longer (Clutton-Brock & Harvey, 1977), and the same may be true for ungulates (Eltringham, 1979).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×