Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-15T09:59:45.366Z Has data issue: false hasContentIssue false

8 - Alternative reproductive tactics in insects

Published online by Cambridge University Press:  10 August 2009

H. Jane Brockmann
Affiliation:
Department of Zoology University of Florida Gainesville, FL 32611 USA
Rui F. Oliveira
Affiliation:
Instituto Superior Psicologia Aplicada, Lisbon
Michael Taborsky
Affiliation:
Universität Bern, Switzerland
H. Jane Brockmann
Affiliation:
University of Florida
Get access

Summary

CHAPTER SUMMARY

Discrete, alternative reproductive tactics (ARTs) occur in most orders of insects, across a wide array of mating systems, and during all steps in the reproductive process (locating a mate, gaining access to him/her, copulating, and post-copulatory behavior). ARTs for mate searching are particularly common and often involve a division between high-investment or high-risk but sedentary, nondispersing tactics and low-investment or low-risk but active, dispersing, searching tactics with longer-range movements. ARTs in insects are often associated with intense sexual selection and include individuals that avoid costly or high-risk intrasexual interactions, parasitizing the costly investment of others, or circumventing intersexual interactions and mate conflict. Two or more tactics can arise in a population when opportunities for success are discrete and require different and mutually exclusive behavior or morphology. Suites of distinctive, correlated traits arise through condition-dependent, developmental switches and when there is selection against individuals with intermediate traits (disruptive selection). ARTs are maintained in populations by frequency dependence and equality of fitness among tactics or as condition- or environment-dependent alternatives that maximize individual fitness.

THE PROBLEM

Discrete, alternative reproductive tactics (ARTs) within one sex and one population occur in most groups of insects (Table 8.1). For example, nonflying, large-headed, fighting males live in the nests of some female halictid (Kukuk and Schwarz 1988) and andrenid bees (Danforth 1991b) and mate with females inside the nest just prior to oviposition; while smaller, flying males with normal-looking heads and mandibles mate with females outside the nest as they forage on flowers (Danforth 1991b) (Figure 8.1).

Type
Chapter
Information
Alternative Reproductive Tactics
An Integrative Approach
, pp. 177 - 223
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosti, D. and Hauschteck-Jungen, E. 1987. Polymorphism of males in Formica exsecta Nyl (Hym.: Formicidae). Insectes Sociaux 34, 280–290.CrossRefGoogle Scholar
Alcock, J. 1979a. The behavioural consequences of size variation among males of the territorial wasp Hemipepsis ustulata (Hymenoptera: Pompilidae). Behaviour 71, 322–335.CrossRefGoogle Scholar
Alcock, J. 1979b. The evolution of intraspecific diversity in male reproductive strategies in some bees and wasps. In Blum, M. S. and Blum, N. A. (eds.) Sexual Selection and Reproductive Competition in Insects, pp. 381–402. New York: Academic Press.Google Scholar
Alcock, J. 1979c. The relation between female body size and provisioning behavior in the bee Centris pallida Fox (Hymenoptera: Anthophoridae). Journal of the Kansas Entomological Society 52, 623–632.Google Scholar
Alcock, J. 1984. Long-term maintenance of size variation in populations of Centris pallida (Hymenoptera: Anthophoridae). Evolution 38, 220–223.CrossRefGoogle Scholar
Alcock, J. 1989. Size variation in the anthophorid bee Centris pallida: new evidence on its long-term maintenance. Journal of the Kansas Entomological Society 62, 484–489.Google Scholar
Alcock, J. 1994. Alternative mate-locating tactics in Chlosyne californica (Lepidoptera, Nymphalidae). Ethology 97, 103–118.CrossRefGoogle Scholar
Alcock, J. 1995. Persistent size variation in the anthophorine bee Centris pallida (Apidae) despite a large male mating advantage. Ecological Entomology 20, 1–4.CrossRefGoogle Scholar
Alcock, J. 1996a. Male size and survival: the effects of male combat and bird predation in Dawson's burrowing bees, Amegilla dawsoni. Ecological Entomology 21, 309–316.CrossRefGoogle Scholar
Alcock, J. 1996b. Provisional rejection of three alternative hypotheses on the maintenance of a size dichotomy in males of Dawson's burrowing bee, Amegilla dawsoni (Apidae, Apinae, Anthophorini). Behavioral Ecology and Sociobiology 39, 181–188.CrossRefGoogle Scholar
Alcock, J. 1996c. The relation between male body size, fighting, and mating success in Dawson's burrowing bee, Amegilla dawsoni (Apidae, Apinae, Anthophorini). Journal of Zoology (London) 239, 663–674.CrossRefGoogle Scholar
Alcock, J. 1997a. Competition from large males and the alternative mating tactics of small males of Dawson's burrowing bees (Amegilla dawsoni) (Apidae, Apinae, Anthophorini). Journal of Insect Behavior 10, 99–114.CrossRefGoogle Scholar
Alcock, J. 1997b. Small males emerge earlier than large males in Dawson's burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini). Journal of Zoology (London) 242, 453–462.CrossRefGoogle Scholar
Alcock, J. 1999. The nesting behavior of Dawson's burrowing bee, Amegilla dawsoni (Hymenoptera: Anthophorini), and the production of offspring of different sizes. Journal of Insect Behavior 12, 363–384.CrossRefGoogle Scholar
Alcock, J. and Houston, T. F. 1987. Resource defence and alternative mating tactics in the Banksia bee Hylaeus alcynoneus (Erichson). Ethology 76, 177–188.CrossRefGoogle Scholar
Alcock, J. and Houston, T. F. 1996. Mating systems and male size in Australian hylaeine bees (Hymenoptera: Colletidae). Ethology 102, 591–610.CrossRefGoogle Scholar
Alcock, J., Eickwort, G. C., and Eickwort, K. R. 1977a. The reproductive behavior of Anthidium maculosum (Hymenoptera: Megachilidae) and the evolutionary significance of multiple copulations by females. Behavioral Ecology and Sociobiology 2, 385–396.CrossRefGoogle Scholar
Alcock, J., Jones, C. E., and Buchmann, S. L. 1977b. Male mating strategies in the bee Centris pallida Fox (Anthophoridae: Hymenoptera). American Naturalist 111, 145–155.CrossRefGoogle Scholar
Alcock, J., Barrows, E. M., Gordh, G., et al. 1978. The ecology and evolution of male reproductive behaviour in bees and wasps. Zoological Journal of the Linnean Society 64, 293–326.CrossRefGoogle Scholar
Alcock, J., Simmons, L. W., and Beveridge, M. 2005. Seasonal change in offspring sex and size in Dawson's burrowing bees (Amegilla dawsoni) (Hymenoptera: Anthophorini). Ecological Entomology 30, 247–254.CrossRefGoogle Scholar
Alexander, A. J. and van Staaden, M. J. 1989. Alternative sexual tactics in male bladder grasshoppers (Orthoptera, Pneumoridae). In Bruton, M. N. (ed.) Alternative Life-History Styles of Animals, pp. 261–277. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Alexander, B. 1986. Alternative methods of nest provisioning in the digger wasp Clypeadon laticinctus (Hymenoptera: Sphecidae). Journal of the Kansas Entomological Society 59, 59–63.Google Scholar
Alonzo, S. H. and Warner, R. R. 2000. Female choice, conflict between the sexes and the evolution of male alternative reproductive behaviours. Evolutionary Ecology Research 2, 149–170.Google Scholar
Andersen, N. M. 1993. The evolution of wing polymorphism in water striders (Gerridae): a phylogenetic approach. Oikos 67, 433–443.CrossRefGoogle Scholar
Andersen, N. M. 1996. Ecological phylogenetics of mating systems and sexual dimorphism in water striders (Heteroptera: Gerridae). Vie et Milieu 46, 103–114.Google Scholar
Anderson, C., Cremer, S., and Heinze, J. 2003. Live and let die: why fighter males of the ant Cardiocondyla kill each other but tolerate their winged rivals. Behavioral Ecology 14, 54–62.CrossRefGoogle Scholar
Andres, J. A. and Cordero, A. 1999. The inheritance of female colour morphs in the damselfly Ceriagrion tenellum (Odonata: Coenagrionidae). Heredity 82, 328–335.CrossRefGoogle Scholar
Arnqvist, G. 1989. Multiple mating in a water strider: mutual benefits or intersexual conflict?Animal Behaviour 38, 749–756.CrossRefGoogle Scholar
Arnqvist, G. 1992a. The effects of operational sex ratio on the relative mating success of extreme male phenotypes in the water strider Gerris odontogaster (Zett.) (Heteroptera: Gerridae). Animal Behaviour 43, 681–683.CrossRefGoogle Scholar
Arnqvist, G. 1992b. Pre-copulatory fighting in a water strider: inter-sexual conflict or mate assessment?Animal Behaviour 43, 559–567.CrossRefGoogle Scholar
Arnqvist, G. 1992c. Spatial variation in selective regimes: sexual selection in the water strider, Gerris odontogaster. Evolution 46, 914–929.CrossRefGoogle Scholar
Arnqvist, G. 1997. The evolution of water strider mating systems: causes and consequences of sexual conflicts. In Choe, J. and Crespi, B. J. (eds.) Mating Systems in Insects and Arachnids, pp. 146–163. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Arnqvist, G. and Rowe, L. 1995. Sexual conflict and arms races between the sexes: a morphological adaptation for control of mating in a female insect. Proceedings of the Royal Society of London B 261, 123–127.CrossRefGoogle Scholar
Austad, S. N. 1984. A classification of alternative reproductive behaviors and methods for field-testing ESS models. American Zoologist 24, 309–319.CrossRefGoogle Scholar
Bailey, W. J. and Field, G. 2000. Acoustic satellite behaviour in the Australian bushcricket Elephantodeta nobilis (Phaneropterinae, Tettigoniidae, Orthoptera). Animal Behaviour 59, 361–369.CrossRefGoogle Scholar
Banks, M. J. and Thompson, D. J. 1985. Lifetime mating success of females in the damselfly Coenagrion puella. Animal Behaviour 33, 1175–1183.CrossRefGoogle Scholar
Bean, D. and Cook, J. M. 2001. Male mating tactics and lethal combat in the nonpollinating fig wasp Sycoscapter australis. Animal Behaviour 62, 535–542.CrossRefGoogle Scholar
Beani, L. and Turillazzi, S. 1988. Alternative mating tactics in males of Polistes dominulus (Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology 22, 257–264.CrossRefGoogle Scholar
Beeler, A. E., Rauter, C. M., and Moore, A. J. 1999. Pheromonally mediated mate attraction by males of the burying beetle Nicrophorus orbicollis: alternative calling tactics conditional on both intrinsic and extrinsic factors. Behavioral Ecology 10, 578–584.CrossRefGoogle Scholar
Bego, L. R. and Camargo, C. A. 1984. On the occurrence of giant males in Nannotrigona (Scaptotrigona) postica Latreille (Hymenoptera, Apidae, Meliponinae). Boletim de Zoologia, Universidade de São Paulo 8, 11–16.Google Scholar
Belovsky, G. E., Slade, J. B., and Chase, J. M. 1996. Mating strategies based on foraging ability: an experiment with grasshoppers. Behavioral Ecology 7, 438–444.CrossRefGoogle Scholar
Bertram, S. M. 2002. Temporally fluctuating selection of sex-limited signaling traits in the Texas field cricket, Gryllus texensis. Evolution 56, 1831–1839.CrossRefGoogle ScholarPubMed
Bockwinkel, G. and Sauer, K. P. 1994. Resource dependence of male mating tactics in the scorpionfly, Panorpa vulgaris (Mecoptera, Panorpidae). Animal Behaviour 94, 203–209.CrossRefGoogle Scholar
Borgia, G. 1980. Sexual competition in Scatophaga stercoraria: size- and density-related changes in male ability to capture females. Behaviour 75, 185–206.CrossRefGoogle Scholar
Borgia, G. 1982. Experimental changes in resource structure and male density: size-related differences in mating success among male Scatophaga stercoraria. Evolution 36, 307–315.CrossRefGoogle ScholarPubMed
Brakefield, P. M., French, V., and Zwaan, B. J. 2003. Development and the genetics of evolutionary change within insect species. Annual Review of Ecology, Evolution and Systematics 34, 633–660.CrossRefGoogle Scholar
Briceño, R. D. and Eberhard, W. G. 1987. Genetic and environmental effects on wing polymorphisms in two tropical earwigs (Dermaptera: Labiidae). Oecologia 74, 253–255.CrossRefGoogle Scholar
Brockmann, H. J. 1980. Diversity in the nesting behavior of mud-dauber (Trypoxylon politum Say; Sphecidae). Florida Entomologist 63, 53–64.CrossRefGoogle Scholar
Brockmann, H. J. 1985. Provisioning behavior of the great golden digger wasp, Sphex ichneumoneus (L.) (Sphecidae). Journal of the Kansas Entomological Society 58, 631–655.Google Scholar
Brockmann, H. J. 2001. The evolution of alternative strategies and tactics. Advances in the Study of Behavior 30, 1–51.CrossRefGoogle Scholar
Brockmann, H. J. 2002. An experimental approach to altering mating tactics in male horseshoe crabs (Limulus polyphemus). Behavioral Ecology 13, 232–238.CrossRefGoogle Scholar
Brockmann, H. J. and Dawkins, R. 1979. Joint nesting in a digger wasp as an evolutionarily stable preadaptation to social life. Behaviour 71, 203–245.CrossRefGoogle Scholar
Brown, L. and Bartalon, J. 1986. Behavioral correlates of male morphology in a horned beetle. American Naturalist 127, 565–570.CrossRefGoogle Scholar
Brown, W. D. 1997. Female remating and the intensity of female choice in black-horned tree crickets, Oecanthus nigricornis. Behavioral Ecology 8, 66–74.CrossRefGoogle Scholar
Burk, T. 1982. Evolutionary significance of predation on sexually signaling males. Florida Entomologist 65, 90–104.CrossRefGoogle Scholar
Butlin, R. K. and Day, T. H. 1985. Adult size, longevity and fecundity in the seaweed fly, Coelopa frigida. Heredity 54, 107–110.CrossRefGoogle Scholar
Cade, W. H. 1975. Acoustically orienting parasitoids: fly phonotaxis to cricket song. Science 190, 1212.CrossRefGoogle Scholar
Cade, W. H. 1979a. Effect of male deprivation on female phonotaxis in field crickets (Orthoptera: Gryllidae: Gryllus). Canadian Entomologist 111, 741–744.CrossRefGoogle Scholar
Cade, W. 1979b. The evolution of alternative male reproductive strategies in field crickets. In Blum, M. and Blum, N. A. (eds.) Sexual Selection and Reproductive Competition in Insects, pp. 343–379. New York: Academic Press.Google Scholar
Cade, W. H. 1980. Alternative male reproductive strategies. Florida Entomologist 63, 30–44.CrossRefGoogle Scholar
Cade, W. H. 1981. Alternative male strategies: genetic differences in crickets. Science 212, 563–564.CrossRefGoogle ScholarPubMed
Cade, W. H. and Cade, E. S. 1992. Male mating success, calling and searching behaviour at high and low densities in the field cricket Gryllus integer. Animal Behaviour 43, 49–56.CrossRefGoogle Scholar
Cade, W. H. and Wyatt, D. R. 1984. Factors affecting calling behaviour in field crickets, Teleogryllus and Gryllus (age, weight, density, and parasites). Behaviour 88, 61–75.CrossRefGoogle Scholar
Campanella, P. J. and Wolf, L. L. 1974. Temporal leks as a mating system in a temperate zone dragonfly (Odonata: Libellulidae). 1. Plathemis lydia. Behaviour 51, 49–87.CrossRefGoogle Scholar
Caro, T. M. and Bateson, P. 1986. Organization and ontogeny of alternative tactics. Animal Behaviour 34, 1483–1499.CrossRefGoogle Scholar
Carroll, S. P. 1993. Divergence in male mating tactics between two populations of the soapberry bug. 1. Guarding versus nonguarding. Behavioral Ecology 4, 156–164.CrossRefGoogle Scholar
Carroll, S. P. and Corneli, P. S. 1995. Divergence in male mating tactics between two populations of the soapberry bug. 2. Genetic change and the evolution of a plastic reaction norm in a variable social environment. Behavioral Ecology 6, 46–56.CrossRefGoogle Scholar
Catts, E. P. 1979. Hilltop aggregation and mating behavior by Gasterophilus intestinalis (Diptera: Gasterophilidae). Journal of Medical Entomology 16, 461–464.CrossRefGoogle Scholar
Chapman, T. W., Liddle, L. F., Kalb, J. M., Wolfner, M. F., and Partridge, L. 1995. Costs of mating in Drosophila melanogaster is mediated by male accessory gland products. Nature 373, 241–244.CrossRefGoogle Scholar
Clarke, C., Clarke, F. M. M., Collins, S. C., Gill, A. C. L., and Turner, J. R. G. 1985. Male-like females, mimicry and transvestism in butterflies (Lepidoptera: Papilionidae). Systematic Entomology 10, 257–283.CrossRefGoogle Scholar
Conner, J. 1989. Density dependent sexual selection in the fungus beetle Bolitotherus cornutus. Evolution 43, 1378–1386.CrossRefGoogle ScholarPubMed
Consoli, F. L. and Vinson, S. B. 2002. Clutch size, development and wing morph differentiation of Melittobia digitata. Entomologia Experimentalis et Applicata 102, 135–143.CrossRefGoogle Scholar
Cook, D. 1987. Sexual selection in dung beetles. 1. A multivariate study of the morphological variation in two species of Onthophagus (Scarabaeidae: Onthophagini). Australian Journal of Zoology 35, 123–132.CrossRefGoogle Scholar
Cook, D. 1988. Sexual selection in dung beetles. 2. Female fecundity as an estimate of male reproductive success in relation to horn size, and alternative behavioural strategies in Onthophagus binodis Thunberg (Scarabaeidae: Onthophagini). Australian Journal of Zoology 36, 521–532.CrossRefGoogle Scholar
Cook, D. F. 1990. Differences in courtship, mating and postcopulatory behaviour between male morphs of the dung beetle Onthophagus binodus Thunberg (Coleoptera: Scarabaeidae). Animal Behaviour 40, 428–436.CrossRefGoogle Scholar
Cook, J. M., Compton, S. G., Herre, E. A., and West, S. A. 1997. Alternative mating tactics and extreme male dimorphism in fig wasps. Proceedings of the Royal Society of London B 264, 747–754.CrossRefGoogle Scholar
Cordero, A. 1990. The inheritance of female polymorphism in the damselfly Ischnura graellsii (Rambur) (Odonata: Coenagrionidae). Heredity 64, 341–346.CrossRefGoogle Scholar
Cordero, A. 1999. Forced copulations and female contact guarding at a high male density in a calopterygid damselfly. Journal of Insect Behavior 12, 27–37.CrossRefGoogle Scholar
Courtney, S. P. and Parker, G. A. 1985. Mating behaviour of the tiger butterfly (Tarucus theophrastus): competitive mate-searching when not all females are captured. Behavioral Ecology and Sociobiology 17, 213–221.CrossRefGoogle Scholar
Cowan, D. P. 1979. Sibling matings in a hunting wasp: adaptive inbreeding?Science 205, 1403–1405.CrossRefGoogle Scholar
Cowan, D. P. 1981. Parental investment in two solitary wasps Ancistrocerus adiabatus and Euodynerus foraminatus (Eumenidae: Hymenoptera). Behavioral Ecology and Sociobiology 9, 95–102.CrossRefGoogle Scholar
Cremer, S. and Heinze, J. 2002. Adaptive production of fighter males: queens of the ant Cardiocondyla adjust the sex ratio under local mate competition. Proceedings of the Royal Society of London B 269, 417–422.CrossRefGoogle ScholarPubMed
Cremer, S. and Heinze, J. 2003. Stress grows wings: environmental induction of winged dispersal males in Cardiocondyla ants. Current Biology 13, 219–223.CrossRefGoogle ScholarPubMed
Cremer, S., Lautenschlager, B., and Heinze, J. 2002. A transitional stage between ergatoid and winged male morph in the ant Cardiocondyla obscurior. Insectes Sociaux 49, 221–228.CrossRefGoogle Scholar
Crespi, B. J. 1986. Size assessment and alternative fighting tactics in Elaphrothrips tuberculatus (Insecta: Thysanoptera). Animal Behaviour 34, 1324–1335.CrossRefGoogle Scholar
Crespi, B. J. 1988a. Adaptation, compromise, and constraint: the development, morphometrics, and behavioral basis of a fighter-flier polymorphism in male Hoplothrips karnyi (Insecta: Thysanoptera). Behavioral Ecology and Sociobiology 23, 93–104.CrossRefGoogle Scholar
Crespi, B. J. 1988b. Alternative male mating tactics in a thrips: effects of sex ratio variation and body size. American Midland Naturalist 119, 83–92.CrossRefGoogle Scholar
Crespi, B. J. 1988c. Risks and benefits of lethal male fighting in the colonial, polygynous thrips Hoplothrips karnyi (Insecta: Thysanoptera). Behavioral Ecology and Sociobiology 22, 293–301.CrossRefGoogle Scholar
Crnokrak, P. and Roff, D. A. 1995. Fitness differences associated with calling behaviour in the two wing morphs of male sand crickets, Gryllus firmus. Animal Behaviour 50, 1475–1481.CrossRefGoogle Scholar
Crnokrak, P. and Roff, D. A. 1998. The genetic basis of the trade-off between calling and wing morph in males of the cricket Gryllus firmus. Evolution 52, 1111–1118.CrossRefGoogle ScholarPubMed
Crnokrak, P. and Roff, D. A. 2002. Trade-offs to flight capability in Gryllus firmus: the influence of whole-organism respiration rate on fitness. Journal of Evolutionary Biology 15, 388–398.CrossRefGoogle Scholar
Danforth, B. N. 1991a. Female foraging and intranest behavior of a communal bee, Perdita portalis (Hymenoptera: Andrenidae). Annals of the Entomological Society of America 84, 537–548.CrossRefGoogle Scholar
Danforth, B. N. 1991b. The morphology and behavior of dimorphic males in Perdita portalis (Hymenoptera: Andrenidae). Behavioral Ecology and Sociobiology 29, 235–247.CrossRefGoogle Scholar
Danforth, B. N. 1999. Emergence dynamics and bet hedging in a desert bee, Perdita portalis. Proceedings of the Royal Society of London B 266, 1985–1994.CrossRefGoogle Scholar
Danforth, B. N. and Desjardins, C. A. 1999. Male dimorphism in Perdita portalis (Hymenoptera, Andrenidae) has arisen from preexisting allometric patterns. Insectes Sociaux 46, 18–28.CrossRefGoogle Scholar
Danforth, B. N. and Neff, J. L. 1992. Male polymorphism and polyethism in Perdita texana (Hymenoptera: Andrenidae). Annals of the Entomological Society of America 85, 616–626.CrossRefGoogle Scholar
Davies, N. B. 1982. Behaviour and competition for scarce resources. In King's College Sociobiology Group (eds.) Current Problems in Sociobiology, pp. 363–380. Cambridge, UK: Cambridge University Press.Google Scholar
Dawkins, R. 1980. Good strategy or evolutionarily stable strategy. In Barlow, G. W. and Silverberg, S. (eds.) Sociobiology: Beyond Nature/Nurture, pp. 331–367. Boulder, CO: Westview Press.Google Scholar
Day, M. C. 1984. Male polymorphism in some Old World species of Cryptocheilus Panzer (Hymenoptera: Pompilidae). Zoological Journal of the Linnean Society 80, 83–101.CrossRefGoogle Scholar
Day, T. H. and Gilburn, A. S. 1997. Sexual selection in seaweed flies. Advances in the Study of Behavior 26, 1–49.CrossRefGoogle Scholar
Downes, J. A. 1955. Observations on the swarming flight and mating of Culicoides (Diptera: Ceratopogonidae). Transactions of the Royal Entomological Society of London 106, 213–236.CrossRefGoogle Scholar
Dunn, D. W., Crean, C. S., Wilson, C. L., and Gilburn, A. S. 1999. Male choice, willingness to mate and body size in seaweed flies. Animal Behaviour 57, 847–853.CrossRefGoogle ScholarPubMed
Eberhard, W. G. 1982. Beetle horn dimorphism: making the best of a bad lot. American Naturalist 119, 420–426.CrossRefGoogle Scholar
Eberhard, W. G. 1987. Use of horns in fights by the dimorphic males of Ageopsis nigricollis (Coleoptera, Scarabeidae, Dynastinae). Journal of the Kansas Entomological Society 60, 504–509.Google Scholar
Eberhard, W. G. 1996. Female Control: Sexual Selection by Cryptic Female Choice. Princeton, NJ: Princeton University Press.Google Scholar
Eberhard, W. G. and Gutiérrez, E. E. 1991. Male dimorphisms in beetles and earwigs and the question of developmental constraints. Evolution 45, 18–28.CrossRefGoogle ScholarPubMed
Eggert, A. K. 1992. Alternative male mate-finding tactics in burying beetles. Behavioral Ecology 3, 243–254.CrossRefGoogle Scholar
Eickwort, G. 1975. Gregarious nesting of the mason bee Hoplites anthocopoides and the evolution of parasitism and sociality among megachilid bees. Evolution 29, 142–150.CrossRefGoogle Scholar
Eickwort, G. 1977. Male territorial behaviour in the mason bee Hoplites anthocopoides (Hymenopptera: Megachilidae). Animal Behaviour 25, 542–554.CrossRefGoogle Scholar
Elliott, N. B. and Elliott, W. M. 1992. Alternative male mating tactics in Tachytes tricinctus (Hymenoptera: Sphecidae, Larrinae). Journal of the Kansas Entomological Society 65, 261–266.Google Scholar
Emlen, D. J. 1994. Environmental control of horn length dimorphism in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proceedings of the Royal Society of London B 256, 131–136.CrossRefGoogle Scholar
Emlen, D. J. 1996. Artificial selection on horn length–body size allometry in the horned beetle Onthophagus acuminatus. Evolution 50, 1219–1230.CrossRefGoogle ScholarPubMed
Emlen, D. J. 1997a. Alternative reproductive tactics and male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Behavioral Ecology and Sociobiology 41, 335–341.CrossRefGoogle Scholar
Emlen, D. J. 1997b. Diet alters male horn allometry in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proceedings of the Royal Society of London B 264, 567–574.CrossRefGoogle Scholar
Emlen, D. J. and Allen, C. E. 2004. Genotype to phenotype: physiological control of trait size and scaling in insects. Integrative and Comparative Biology 43, 617–634.CrossRefGoogle Scholar
Emlen, D. J. and Nijhout, H. F. 1999. Hormonal control of male horn length dimorphism in the horned beetle Onthophagus taurus. Journal of Insect Physiology 45, 45–53.CrossRefGoogle Scholar
Emlen, D. J. and Nijhout, H. F. 2000. The development and evolution of exaggerated morphologies in insects. Annual Review of Entomology 45, 661–708.CrossRefGoogle ScholarPubMed
Emlen, D. J. and Nijhout, H. F. 2001. Hormonal control of male horn length dimorphism in Onthophagus taurus (Coleoptera: Scarabaeidae): a second critical period of sensitivity to juvenile hormone. Journal of Insect Physiology 47, 1045–1054.CrossRefGoogle ScholarPubMed
Engqvist, L. and Sauer, K. P. 2003. Influence of nutrition on courtship and mating in the scorpionfly Panorpa cognata (Mecoptera, Insecta). Ethology 109, 911–928.CrossRefGoogle Scholar
Evans, H. E. 1963. A new species of Cephalonomia exhibiting an unusually complex polymorphism (Hymenoptera: Bethylidae). Psyche 70, 151–163.CrossRefGoogle Scholar
Evans, H. E. and O'Neill, K. M. 1978. Alternative mating strategies in a digger wasp Philanthus zebratus Cresson. Proceedings of the National Academy of Sciences of the United States of America 75, 1901–1903.CrossRefGoogle Scholar
Feaver, M. N. 1983. Pair formation in the katydid Orchelimum nigripes (Orthoptera: Tettigoniidae). In Gwynne, D. T. and Morris, G. K. (eds.) Orthopteran Mating Systems: Sexual Competition in a Diverse Group of Insects, pp. 205–239. Boulder, CO: Westview Press.Google Scholar
Field, J. 1989. Alternative nesting tactics in a solitary wasp. Behaviour 110, 219–243.CrossRefGoogle Scholar
Field, J. 1992. Intraspecific parasitism as an alternative reproductive tactic in nest-building wasps and bees. Biological Review 67, 79–126.CrossRefGoogle Scholar
Field, S. A. and Keller, M. A. 1993. Alternative mating tactics and female mimicry as post-copulatory mate-guarding behaviour in the parasitic wasp Cotesia rubecula. Animal Behaviour 46, 1183–1189.CrossRefGoogle Scholar
Fincke, O. M. 1982. Lifetime mating success in a natural population of the damselfly, Enallagma hageni (Walsh) (Odonata: Coenagrionidae). Behavioral Ecology and Sociobiology 10, 293–302.CrossRefGoogle Scholar
Fincke, O. M. 1984. Sperm competition in the damselfly Enallagma hageni Walsh (Odonata: Coenagrionidae): benefits of multiple mating to males and females. Behavioral Ecology and Sociobiology 14, 235–240.CrossRefGoogle Scholar
Fincke, O. M. 1985. Alternative mate-finding tactics in a non-territorial damselfly (Odonata: Coenagrionidae). Animal Behaviour 33, 1124–1137.CrossRefGoogle Scholar
Fincke, O. M. 1986. Underwater oviposition in a damselfly (Odonata: Coenagrionidae) favors male vigilance, and multiple mating by females. Behavioral Ecology and Sociobiology 18, 405–412.CrossRefGoogle Scholar
Fincke, O. M. 2004. Polymorphic signals of harassed female odonates and the males that learn them support a novel frequency-dependent model. Animal Behaviour 67, 833–845.CrossRefGoogle Scholar
Foitzik, S., Heinze, J., Oberstadt, B., and Herbers, J. 2002. Mate guarding and alternative reproductive tactics in the ant Hypoponera opacior. Animal Behaviour 63, 597–604.CrossRefGoogle Scholar
Forrest, T. G. 1983. Calling songs and mate choice in mole crickets. In Gwynne, D. T. and Morris, G. K. (eds.) Orthopteran Mating Systems, pp. 185–204. Boulder, CO: Westview Press.Google Scholar
Forslund, P. 2003. An experimental investigation into status-dependent male dimorphism in the European earwig, Forficula auricularia. Animal Behaviour 65, 309–316.CrossRefGoogle Scholar
Forsyth, A. and Alcock, J. 1990. Female mimicry and resource defense polygyny by males of a tropical rove beetle, Leistotrophus versicolor (Coleoptera: Staphylinidae). Behavioral Ecology and Sociobiology 26, 325–330.CrossRefGoogle Scholar
Forsyth, A. and Montgomerie, R. D. 1987. Alternative reproductive tactics in a territorial damselfly Calopteryx maculata: sneaking by older males. Behavioral Ecology and Sociobiology 21, 73–81.CrossRefGoogle Scholar
Fortelius, W., Pamilo, P., Rosengren, R., and Sundström, L. 1987. Male size dimorphism and alternative reproductive tactics in Formica exsecta ants (Hymenoptera, Formicidae). Annales Zoologici Fennici 24, 45–54.Google Scholar
Freeeman, B. E. and Ittyeipe, K. 1982. Morph determination in Melittobia, an eulophid wasp. Ecological Entomology 7, 355–363.CrossRefGoogle Scholar
French, B. W. and Cade, W. H. 1989. Sexual selection at varying population densities in male field crickets Gryllus veletis and G. pennsylvanicus. Journal of Insect Behavior 2, 105–121.CrossRefGoogle Scholar
Fujisaki, K. 1992. A male fitness advantage to wing reduction in the oriental chinch bug, Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae). Researches on Population Ecology 34, 173–183.CrossRefGoogle Scholar
Gadgil, M. 1972. Male dimorphism as a consequence of sexual selection. American Naturalist 106, 574–579.CrossRefGoogle Scholar
Gadgil, M. and Taylor, C. E. 1975. Plausible models of sexual selection and polymorphism. American Naturalist 109, 470–472CrossRefGoogle Scholar
Gage, M. J. G. 1995. Continuous variation in reproductive strategy as an adaptive response to population density in the moth Plodia interpunctella. Proceedings of the Royal Society of London B 261, 25–30.CrossRefGoogle Scholar
Gilburn, A. S. and Day, T. H. 1994. Sexual dimorphism, sexual selection and the αβ chromosomal inversion polymorphism in the seaweek fly, Coelopa frigida. Proceedings of the Royal Society of London B 257, 303–309.CrossRefGoogle Scholar
Gilburn, A. S. and Day, T. H. 1996. The evolution of female choice when the preference and the preferred trait are linked to the same inversion system. Heredity 76, 19–27.CrossRefGoogle Scholar
Goldsmith, S. K. 1985a. Male dimorphism in Dendrobias mandibularis (Coleoptera: Cerambycidae). Journal of the Kansas Entomological Society 58, 534–538.Google Scholar
Goldsmith, S. K. 1985b. The mating system and alternative reproductive behaviors of Dendrobias mandibularis (Coleoptera: Cerambycidae). Behavioral Ecology and Sociobiology 20, 111–115.CrossRefGoogle Scholar
Goldsmith, S. K. 1987. The mating system and alternative reproductive behavior of Dendrobias mandibularis (Coleoptera: Cerambycidae). Behavioral Ecology and Sociobiology 20, 111–115.CrossRefGoogle Scholar
Goldsmith, S. K. and Alcock, J. 1993. The mating chances of small males of the cerambycid beetle Trachyderes mandibularis differ in different environments (Coleoptera: Cerambycidae). Journal of Insect Behavior 6, 351–360.CrossRefGoogle Scholar
Gomez, M. S., Fernandez-Salvador, R., and Garcia, R. 2003. First report of Siphonaptera infesting Microtus (Microtus) cabrerae (Rodentia, Muridae, Arvicolinae) in Cuenca, Spain and notes about the morphologic variability of Ctenophthalmus (Ctenophthalmus) apertus personatus (Insecta, Siphonaptera, Ctenophthalmidae). Parasite Journal de la Société Française de Parasitologie 10, 127–131.Google Scholar
Gonzalez-Soriano, E. and Cordoba-Aguilar, A. 2003. Sexual behaviour in Paraphlebia quinta Calvert: male dimorphism and a possible example of female control (Zygoptera: Megapodagrionidae). Odonatologica 32, 345–353.Google Scholar
Greeff, J. M. 2002. Mating system and sex ratios of a pollinating fig wasp with dispersing males. Proceedings of the Royal Society of London B 269, 2317–2323.CrossRefGoogle ScholarPubMed
Greeff, J. M. and Ferguson, W. H. 1999. Mating ecology of the nonpollinating fig wasps of Ficus ingens. Animal Behaviour 57, 215–222.CrossRefGoogle ScholarPubMed
Greenfield, M. D. and Shelly, T. E. 1985. Alternative mating strategies in a desert grasshopper: evidence of density dependence. Animal Behaviour 33, 1192–1210.CrossRefGoogle Scholar
Greenfield, M. D. and Shelly, T. E. 1989. Territory-based mating systems in desert grasshoppers: effect of host plant distribution and variation. In Chapman, T. W. and Joern, A. (eds.) A Biology of Grasshoppers, pp. 315–335. New York: Wiley Interscience.Google Scholar
Groddeck, J., Mauss, V., and Reinhold, K. 2004. The resource-based mating system of the Mediterranean pollen wasp Ceramius fonscolombei Latreille 1820 (Hymenoptera, Vespidae, Masarinae). Journal of Insect Behavior 17, 397–418.CrossRefGoogle Scholar
Gross, M. R. 1996. Alternative reproductive strategies and tactics: diversity within sexes. Trends in Ecology and Evolution 11, 92–97.CrossRefGoogle ScholarPubMed
Gross, M. R. and Repka, J. 1995. Inheritance and the conditional strategy. American Zoologist 24, 385–396.Google Scholar
Gross, M. R. and Repka, J. 1998a. Game theory and inheritance in the conditional strategy. In Dugatkin, L. and Reeve, H. K. (eds.) Game Theory and Animal Behavior, pp. 168–187. Oxford, UK: Oxford University Press.Google Scholar
Gross, M. R. and Repka, J. 1998b. Stability with inheritance in the conditional strategy. Journal of Theoretical Biology 192, 445–453.CrossRefGoogle Scholar
Gwynne, D. T. 1980. Female defence polygyny in the bumblebee wolf, Philanthus bicinctus (Hymenoptera: Sphecidae). Behavioral Ecology and Sociobiology 7, 213–225.CrossRefGoogle Scholar
Gwynne, D. T. 1983. Male nutritional investment and the evolution of sexual differences in Tettigoniidae and other Orthoptera. In Gwynne, D. T. and Morris, G. K. (eds.) Orthopteran Mating Systems: Sexual Competition in a Diverse Group of Insects, pp. 337–366. Boulder, CO: Westview Press.Google Scholar
Gwynne, D. T. 1984. Sexual selection and sexual differences in mormon crickets (Orthoptera, Tettigoniidae, Anabrus simplex). Evolution 38, 1011–1022.Google Scholar
Gwynne, D. T. 2001. Katydids and Bush-Crickets: Reproductive Behavior and Evolution of the Tettigoniidae.Ithaca, NY: Cornell University Press.Google Scholar
Gwynne, D. T. 2002. A secondary copulatory structure in a female insect: a clasp for a nuptial meal?Naturwissenschaften 89, 125–129.CrossRefGoogle Scholar
Gwynne, D. T. and Bailey, W. J. 1999. Female–female competition in katydids: sexual selection for increased sensitivity to a male signal. Evolution 53, 546–551.CrossRefGoogle ScholarPubMed
Gwynne, D. T. and Jamieson, I. G. 1998. Sexual selection and sexual dimorphism in a harem-polygynous insect, the alpine weta (Hemideina maori, Orthoptera, Stenopelmatidae). Ethology Ecology and Evolution 10, 393–402.CrossRefGoogle Scholar
Hamilton, W. D. 1979. Wingless and fighting males in fig wasps and other insects. In Blum, M. S. and Blum, N. A. (eds.) Sexual Selection and Reproductive Competition in Insects, pp. 167–220. New York: Academic Press.Google Scholar
Hanley, R. S. 2000. Mandibular allometry and male dimorphism in a group of obligately mycophagous beetles (Insecta: Coleoptera: Staphylinidae: Oxyporinae). Biological Journal of the Linnean Society 72, 451–459.CrossRefGoogle Scholar
Harari, A. R., Landolt, P. J., O'Brien, C. W., and Brockmann, H. J. 2003. Prolonged mate guarding and sperm competition in the weevil Diaprepes abbreviatus (L.). Behavioral Ecology 14, 89–96.CrossRefGoogle Scholar
Hastings, J. M. 1989. The influence of size, age, and residency status on territory defense in male western cicada killer wasps (Sphecius grandis, Hymenoptera: Sphecidae). Journal of the Kansas Entomological Society 62, 363–373.Google Scholar
Hayashi, K. 1985. Alternative mating strategies in the water strider Gerris elongatus (Heteroptera, Gerridae). Behavioral Ecology and Sociobiology 16, 301–306.CrossRefGoogle Scholar
Hedrick, A. V. 1988. Female choice and the heritability of attractive male traits: an empirical study. American Naturalist 132, 267–276.CrossRefGoogle Scholar
Hedrick, A. V. and Dill, L. M. 1993. Mate choice by female crickets is influenced by predation risk. Animal Behaviour 46, 193–196.CrossRefGoogle Scholar
Heinze, J. and Hölldobler, B. 1993. Fighting for a harem of queens: physiology of reproduction in Cardiocondyla male ants. Proceedings of the National Academy of Sciences of the United States of America 90, 8412–8414.CrossRefGoogle ScholarPubMed
Heinze, J., Kuhnholz, S., Schilder, K., and Hölldobler, B. 1993. Behavior of ergatoid males in the ant, Cardiocondyla nuda. Insectes Sociaux 40, 273–282.CrossRefGoogle Scholar
Heinze, J., Hölldobler, B., and Yamauchi, K. 1998. Male competition in Cardiocondyla ants. Behavioral Ecology and Sociobiology 42, 239–246.CrossRefGoogle Scholar
Heinze, J., Schrempf, A., Seifert, B., and Tinaut, A. 2002. Queen morphology and dispersal tactics in the ant, Cardiocondyla batesii. Insectes Sociaux 49, 129–132.CrossRefGoogle Scholar
Heinze, J., Bottcher, A., and Cremer, S. 2004. Production of winged and wingless males in the ant, Cardiocondyla minutior. Insectes Sociaux 51, 275–278.CrossRefGoogle Scholar
Hendrichs, J., Katsoyannos, B. I., Wornoayporn, V., and Hendrichs, M. A. 1994. Odour-mediated foraging by yellowjacket wasps (Hymenoptera: Vespidae): predation on leks of pheromone-calling Mediterranean fruit fly males (Diptera: Tephritidae). Oecologia 99, 88–94.CrossRefGoogle Scholar
Hernández, M. I. M. and Benson, W. W. 1998. Small-male advantage in the territorial tropical butterfly Heliconius sara (Nymphalidae): a paradoxical strategy?Animal Behaviour 56, 533–540.CrossRefGoogle ScholarPubMed
Herre, E. A., West, S. A., Cook, J. M., Compton, S. G., and Kjellberg, F. 1997. Fig-associated wasps: pollinators and parasites, sex-ratio adjustment and male polymorphism, population structure and its consequences. In Choe, J. and Crespi, B. J. (eds.) The Evolution of Mating Systems in Insects and Arachnids, pp. 226–239. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Higashi, K. and Nomakuchi, S. 1997. Alternative mating tactics and aggressive male interactions in Mnais nawai Yamamoto (Zygoptera: Calopterygidae). Odontologica 26, 159–169.Google Scholar
Hoffmann, A. A. and Cacoyianni, Z. 1990. Territoriality in Drosophila melanogaster as a conditional strategy. Animal Behaviour 40, 526–537.CrossRefGoogle Scholar
Holtmeier, C. and Zera, A. J. 1993. Differential mating success of male wing morphs of the cricket, Gryllus rubens. American Midland Naturalist 129, 223–233.CrossRefGoogle Scholar
Hooper, R. E., Tsubaki, Y., and Siva-Jothy, T. 1999. Expression of a costly, plastic secondary sexual trait is correlated with age and condition in a damselfly with two male morphs. Physiological Entomology 24, 364–369.CrossRefGoogle Scholar
Houston, T. F. 1970. Discovery of an apparent soldier caste in a nest of a halictine bee (Hymenoptera: Halictidae), with notes on the nest. Australian Journal of Zoology 18, 345–351.CrossRefGoogle Scholar
Howard, R. 1978. The evolution of mating strategies in bullfrogs, Rana catesbeiana. Evolution 32, 850–871.CrossRefGoogle ScholarPubMed
Hunt, J. and Simmons, L. W. 2001. Status-dependent selection in the dimorphic beetle Onthophagus taurus. Proceedings of the Royal Society of London B 268, 2409–2414.CrossRefGoogle ScholarPubMed
Jabłoński, P. and Vepsäläinen, K. 1995. Conflict between the sexes in the water strider, Gerris lacustris: a test of two hypotheses for male guarding behavior. Behavioral Ecology 6, 388–396.CrossRefGoogle Scholar
Jennions, M. D. and Petrie, M. 1997. Variation in mate choice and mating preferences: a review of causes and consequences. Biological Review 72, 283–327.CrossRefGoogle ScholarPubMed
Johnson, C. 1964. The inheritance of female dimorphism in the damselfly, Ischnura damula. Genetics 49, 513–519.Google ScholarPubMed
Johnson, C. 1966. Genetics of female dimorphism in Ischnura demorsa. Heredity 21, 453–459.CrossRefGoogle Scholar
Johnson, L. K. 1982. Sexual selection in a brentid weevil. Evolution 36, 251–262.CrossRefGoogle Scholar
Jones, A. G. 2002. The evolution of alternative cryptic female choice strategies in age-structured populations. Evolution 56, 2530–2536.CrossRefGoogle ScholarPubMed
Joseph, K. J. 1994. Sexual dimorphism and intra-sex variations in the elephant dung beetle, Heliocopris dominus (Coprinae: Scarabaeidae). Entomon 19, 165–168.Google Scholar
Jousselin, E., Noort, S., and Greeff, J. M. 2004. Labile male morphology and intraspecific male polymorphism in the Philotrypesis fig wasps. Molecular Phylogenetics and Evolution 33, 706–718.CrossRefGoogle ScholarPubMed
Kaitala, A. and Dingle, H. 1993. Wing dimorphism, territoriality and mating frequency of the waterstrider, Aquarius remegis. Annales Zoologici Fennici 30, 163–168.Google Scholar
Kawano, K. 1995. Horn and wing allometry and male dimorphism in giant rhinoceros beetles (Coleoptera: Scarabaeidae) of tropical Asia and America. Annals of the Entomological Society of America 88, 92–99.CrossRefGoogle Scholar
Kearns, C. W. 1934. Method of wing inheritance in Cephalonomia gallicola Ashmead (Bethylidae: Hymenoptera). Annals of the Entomological Society of America 27, 533–539.CrossRefGoogle Scholar
Kemp, D. J. 2001. Investigating the consistency of mate-locating behavior in the territorial butterfly Hypolimnas bolina (Lepidoptera: Nymphalidae). Journal of Insect Behavior 14, 129–147.CrossRefGoogle Scholar
Kinomura, K. and Yamauchi, K. 1987. Fighting and mating behaviors of dimorphic males in the ant Cardiocondyla wroughtoni. Journal of Ethology 5, 75–81.CrossRefGoogle Scholar
Knoppien, P. 1985. Rare male mating advantage: a review. Biological Reviews 60, 81–117.CrossRefGoogle Scholar
Kon, M., Otsuka, K., and Hidaka, T. 1986. Mating system of Tokunagayusurika akamusi (Diptera: Chironomidae). 1. Copulation in the air by swarming and on the ground by searching. Journal of Ethology 4, 49–58.CrossRefGoogle Scholar
Koning, J. W. and Jamieson, I. G. 2001. Variation in size of male weaponry in a harem-defence polygynous insect, the mountain stone weta Hemideina maori (Orthoptera: Anostostomatidae). New Zealand Journal of Zoology 28, 109–117.CrossRefGoogle Scholar
Kotiaho, J. S. and Simmons, L. W. 2003. Longevity cost of reproduction for males but no longevity cost of mating or courtship for females in the male-dimorphic dung beetle Onthophagus binodis. Journal of Insect Physiology 49, 817–822.CrossRefGoogle ScholarPubMed
Krupa, J. J. and Sih, A. 1993. Experimental studies on water strider mating dynamics: spatial variation in density and sex ratio. Behavioral Ecology and Sociobiology 33, 107–120.CrossRefGoogle Scholar
Krupa, J. J., Leopold, W. R., and Sih, A. 1990. Avoidance of male giant water striders by females. Behaviour 115, 247–253.CrossRefGoogle Scholar
Kukuk, P. F. 1996. Male dimorphism in Lasioglosum (Chilalictus) hemichalceum: the role of larval nutrition. Journal of the Kansas Entomological Society 69, 147–157.Google Scholar
Kukuk, P. F. and Schwarz, M. P. 1987. Intranest behavior of the communal sweat bee Lasioglossum (Chilallictus) erythrurum (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society 60, 58–64.Google Scholar
Kukuk, P. F. and Schwarz, M. P. 1988. Macrocephalic male bees as functional reproductives and probable guards. Pan-Pacific Entomologist 64, 131–137.Google Scholar
Kurczewski, F. E. and Spofford, M. G. 1998. Alternative nesting strategies in Ammophila urnaria (Hymenoptera: Sphecidae). Journal of Natural History 32, 99–106.CrossRefGoogle Scholar
Lamb, R. J. 1976. Polymorphisms among males of the European earwig Forficula auricularia (Dermaptera: Forficulidae). Canadian Entomologist 108, 69–75.CrossRefGoogle Scholar
Langellotto, G. A., Denno, R. F., and Ott, J. R. 2000. A trade-off between flight capability and reproduction in males of wing-dimorphic insect. Ecology 81, 865–875.CrossRefGoogle Scholar
Lauer, M. J. 1996. Effect of sperm depletion and starvation on the mating behavior of the water strider, Aquarius remigis. Behavioral Ecology and Sociobiology 38, 89–96.CrossRefGoogle Scholar
Lauer, M. J., Sih, A., and Krupa, J. J. 1996. Male density, female density and intersexual conflict in a stream-dwelling insect. Animal Behaviour 52, 929–939.CrossRefGoogle Scholar
Lawrence, W. S. 1986. Male choice and competition in Tetraopes tetraophthalmus: effects of local sex ratio variation. Behavioral Ecology and Sociobiology 18, 289–296.CrossRefGoogle Scholar
Lawrence, W. S. 1987. Dispersal: an alternative mating tactic conditional on sex ratio and body size. Behavioral Ecology and Sociobiology 21, 367–373.CrossRefGoogle Scholar
Leisnham, P. T. and Jamieson, I. G. 2004. Relationship between male head size and mating opportunity in the harem-defense, polygynous tree weta Hemideina maori (Orthoptera: Anostostomatidae). New Zealand Journal of Ecology 28, 49–54.Google Scholar
Lloyd, J. E. 1979. Sexual selection in luminescent beetles. In Blum, M. S. and Blum, N. A. (eds.) Sexual Selection and Reproductive Competition in Insects, pp. 293–342. New York: Academic Press.Google Scholar
Lloyd, J. E. 1980. Male Photuris fireflies mimic sexual signals of their females' prey. Science 210, 669–671.CrossRefGoogle ScholarPubMed
Longair, R. W. 2004. Tusked males, male dimorphism and nesting behavior in a subsocial afrotropical wasp, Synagris cornuta, and weapons and dimorphism in the genus (Hymenoptera: Vespidae: Eumeninae). Journal of the Kansas Entomological Society 77, 528–557.CrossRefGoogle Scholar
Luttbeg, B. 2004. Female mate assessment and choice behavior affect the frequency of male mating tactics. Behavioral Ecology 15, 239–247.CrossRefGoogle Scholar
Maier, C. T. and Waldbauer, G. P. 1979. Dual mate-seeking strategies in male syrphid flies (Diptera: Syrphidae). Annals of the Entomological Society of America 72, 54–61.CrossRefGoogle Scholar
Mangan, R. L. 1979. Reproductive behavior of the cactus fly, Odontoloxozus longicornis, male territoriality and female guarding as adaptive strategies. Behavioral Ecology and Sociobiology 4, 265–278.CrossRefGoogle Scholar
McLachlan, A. J. and Neems, R. 1989. An alternative mating system in small male insects. Ecological Entomology 14, 85–91.CrossRefGoogle Scholar
Milinski, M. and Parker, G. A. 1991. Competition for resources. In Krebs, J. R. and Davies, N. B. (eds.) Behavioral Ecology: An Evolutionary Approach, pp. 122–147. Oxford, UK: Blackwell Scientific.Google Scholar
Miller, P. L. 1984. Alternative reproductive routines in a small fly, Puliciphora borinquenensis (Diptera: Phoridae). Ecological Entomology 9, 293–302.CrossRefGoogle Scholar
Moczek, A. P. 2003. The behavioral ecology of threshold evolution in a polyphenic beetle. Behavioral Ecology 14, 841–854.CrossRefGoogle Scholar
Moczek, A. P. and Emlen, D. J. 2000. Male horn dimorphism in the scarab beetle Onthophagus taurus: do alternative tactics favor alternative phenotypes?Animal Behaviour 59, 459–466.CrossRefGoogle Scholar
Moczek, A. P. and Nijhout, H. F. 2003. Rapid evolution of a polyphenic threshold. Evolution and Development 5, 259–268.CrossRefGoogle ScholarPubMed
Moczek, A. P., Hunt, J., Emlen, D. J., and Simmons, L. W. 2002. Threshold evolution in exotic populations of a polyphenic beetle. Evolutionary Ecology Research 4, 587–601.Google ScholarPubMed
Mole, S. and Zera, A. J. 1992. Differential allocation of resources underlies the dispersal-reproduction trade-off in the wing-dimorphic cricket, Gryllus rubens. Oecologia 93, 121–127.CrossRefGoogle Scholar
Moore, A. J. and Wilson, P. 1993. The evolution of sexually dimorphic earwig forceps: social interactions among adults of the toothed earwig Vostox apicedentatus. Behavioral Ecology 4, 40–56.CrossRefGoogle Scholar
Moore, J. C., Pienaar, J., and Greeff, J. M. 2004. Male morphological variation and the determinants of body size in two otiteselline fig wasps. Behavioral Ecology 15, 735–741.CrossRefGoogle Scholar
Müller, J. K., Eggert, A. K., and Dressel, J. 1990. Intraspecific brood parasitism in the burying beetle, Necrophorus vespilloides (Coleoptera: Silphidae). Animal Behaviour 40, 491–499.CrossRefGoogle Scholar
Neff, B. D. and Danforth, B. N. 1991. The nesting and foraging behavior of Perdita texana (Cresson) (Hymenoptera: Andrenidae). Journal of the Kansas Entomological Society 64, 394–405.Google Scholar
Nielsen, M. G. and Watt, W. B. 2000. Interference competition and sexual selection promote polymorphism in Colias (Lepidoptera, Pieridae). Functional Ecology 14, 718–730.CrossRefGoogle Scholar
Nijhout, H. F. 1999. Control mechanisms of polyphenic development in insects. BioScience 49, 181–192.CrossRefGoogle Scholar
Nijhout, H. F. 2003. Development and evolution of adaptive polyphenisms. Evolution and Development 5, 9–18.CrossRefGoogle ScholarPubMed
Nomakuchi, S. and Higashi, K. 1996. Competitive habitat utilization in the damselfly Mnais nawai (Zygoptera: Calopterygidae) coexisting with a related species, Mnais pruinosa. Researches on Population Ecology 38, 41–50.CrossRefGoogle Scholar
Nonacs, P. and Reeve, H. K. 1995. The ecology of cooperation in wasps: causes and consequences of alternative reproductive decisions. Ecology 76, 953–967.CrossRefGoogle Scholar
O'Neill, K. M. 1983. The significance of body size in territorial interactions of male beewolves (Hymenoptera: Sphecidae, Philanthus). Animal Behaviour 31, 404–411.CrossRefGoogle Scholar
O'Neill, K. M. 2001. Solitary Wasps: Behavior and Natural History. Ithaca, NY: Cornell University Press.Google Scholar
O'Neill, K. M. and Evans, H. E. 1981. Predation on conspecific males by females of the beewolf Philanthus basilaris Cresson (Hymenoptera: Sphecidae). Journal of the Kansas Entomological Society 54, 553–556.Google Scholar
O'Neill, K. M. and Evans, H. E. 1983a. Alternative male mating tactics in Bembecinus quinquespinosus (Hymenoptera: Sphecidae): correlations with size and color variation. Behavioral Ecology and Sociobiology 14, 39–46.CrossRefGoogle Scholar
O'Neill, K. M. and Evans, H. E. 1983b. Body size and alternative mating tactics in the beewolf Philanthus zebratus (Hymenoptera: Sphecidae). Biological Journal of the Linnean Society 20, 39–46.CrossRefGoogle Scholar
O'Neill, K. M., Evans, H. E., and O'Neill, R. P. 1989. Phenotypic correlates of mating success in the sand wasp Bembecinus quinquespinosus (Hymenoptera: Sphecidae). Canadian Journal of Zoology 67, 2557–2568.CrossRefGoogle Scholar
Otronen, M. 1984a. The effect of differences in body size on the male territorial system of the fly Dryomyza anilis. Animal Behaviour 32, 882–890.CrossRefGoogle Scholar
Otronen, M. 1984b. Male contests for territories and females in the fly Dryomyza anilis. Animal Behaviour 32, 891–898.CrossRefGoogle Scholar
Otte, D. 1981. The North American Grasshoppers, vol. 1, Acrididae. Cambridge, MA: Harvard University Press.Google Scholar
Parker, G. A. 1970. The reproductive behavior and the nature of sexual selection in Scatophaga stercoraria. 2. The fertilization rate and the spatial and temporal relationships of each around the site of mating and oviposition. Journal of Animal Ecology 39, 205–228.CrossRefGoogle Scholar
Parker, G. A. 1974. Courtship persistence and female-guarding as male time investment strategies. Behaviour 48, 157–184.CrossRefGoogle Scholar
Parker, G. A. 1978. Evolution of competitive mate searching. Annual Review of Entomology 23, 173–196.CrossRefGoogle Scholar
Parker, G. A. 1982. Phenotype-limited evolutionarily stable strategies. In King's College Sociobiology Group (eds.) Current Problems in Sociobiology, pp. 173–201. Cambridge, UK: Cambridge University Press.Google Scholar
Parker, G. A. and Sutherland, W. J. 1986. Ideal free distribution when individuals differ in competitive ability: phenotype limited ideal-free models. Animal Behaviour 34, 1222–1242.CrossRefGoogle Scholar
Partridge, L. 1988. The rare-male effect; what is its evolutionary significance?Philosophical Transactions of the Royal Society of London B 319, 525–539.CrossRefGoogle ScholarPubMed
Peschke, K. 1987. Male aggression, female mimicry and female choice in the rove beetle, Aleochara curtula. Ethology 75, 265–284.CrossRefGoogle Scholar
Pienaar, J. and Greeff, J. M. 2003a. Different male morphs of Otitesella pseudoserrata fig wasps have equal fitness but are not determined by different alleles. Ecology Letters 6, 286–289.CrossRefGoogle Scholar
Pienaar, J. and Greeff, J. M. 2003b. Maternal control of offspring sex and male morphology in the Otitesella fig wasps. Journal of Evolutionary Biology 16, 244–253.CrossRefGoogle Scholar
Pinto, J. D. 1975. Intra- and interspecific courtship behavior in blister beetles of the genus Tegrodera (Meloidae). Annals of the Entomological Society of America 68, 275–285.CrossRefGoogle Scholar
Plaistow, S. and Siva-Jothy, T. 1996. Energetic constraints and male mate-securing tactics in the damselfly Calopteryx splendens xanthostoma (Charpentier). Proceedings of the Royal Society of London B 263, 1233–1238.CrossRefGoogle Scholar
Preston-Mafham, K. G. 1999. Courtship and mating in Empis (Xanthempis) trigramma Meig., E. tessellata F. and E. (Polyblepharis) opaca F. (Diptera: Empididae) and the possible implications of “cheating” behaviour. Journal of Zoology (London) 247, 239–246.Google Scholar
Prestwich, K. N. 1994. The energetics of acoustic signaling in anurans and insects. American Zoologist 34, 625–643.CrossRefGoogle Scholar
Prokopy, R. J. and Hendrichs, J. 1979. Mating behavior of Ceratitis capitata on a field-caged host tree. Annals of the Entomological Society of America 72, 642–648.CrossRefGoogle Scholar
Radesäter, T. and Halldórsdóttir, H. 1993. Two male types of the common earwig: male–male competition and mating success. Ethology 95, 89–96.CrossRefGoogle Scholar
Ramirez, W. and Marsh, P. M. 1996. Review of the genus Psenobolus (Hymenoptera: Braconidae) from Costa Rica, an inquiline fig wasp with brachypterous males, with descriptions of two new species. Journal of Hymenoptera Research 5, 64–72.Google Scholar
Rasmussen, J. L. 1994. The influence of horn and body size on the reproductive behavior of the horned rainbow scarab beetle Phanaeus difformis (Coleoptera: Scarabaeidae). Journal of Insect Behavior 7, 67–82.CrossRefGoogle Scholar
Repka, J. and Gross, M. R. 1995. The evolutionarily stable strategy under individual condition and tactic frequency. Journal of Theoretical Biology 176, 27–31.CrossRefGoogle ScholarPubMed
Rice, W. R. 1996. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381, 232–234.CrossRefGoogle ScholarPubMed
Robertson, H. 1985. Female dimorphism and mating behaviour in a damselfly, Ischnura ramburi: females mimicking males. Animal Behaviour 33, 805–809.CrossRefGoogle Scholar
Robinson, G. E. 1992. Regulation of division of labor in insect societies. Annual Review of Entomology 37, 637–665.CrossRefGoogle ScholarPubMed
Roff, D. A. 1986. The evolution of wing dimorphism in insects. Evolution 40, 1009–1020.CrossRefGoogle ScholarPubMed
Roff, D. A. 1996. The evolution of threshold traits in animals. Quarterly Review of Biology 71, 3–35.CrossRefGoogle Scholar
Rowe, L., Arnqvist, G., Sih, A., and Krupa, J. J. 1994. Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system. Trends in Ecology and Evolution 9, 289–293.CrossRefGoogle ScholarPubMed
Rowell, G. A. and Cade, W. H. 1993. Simulation of alternative male reproductive behavior: calling and satellite behavior in field crickets. Ecological Modelling 65, 265–280.CrossRefGoogle Scholar
Rowland, J. M. 2003. Male horn dimorphism, phylogeny and systematics of rhinoceros beetles of the genus Xylotrupes (Scarabaeidae: Coleoptera). Australian Journal of Zoology 51, 213–258.CrossRefGoogle Scholar
Rubenstein, D. I. 1984. Resource acquisition and alternative mating strategies in water striders. American Zoologist 24, 345–353.CrossRefGoogle Scholar
Rüppell, O. and Heinze, J. 1999. Alternative reproductive tactics in females: the case of size polymorphism in winged ant queens. Insectes Sociaux 46, 6–17.Google Scholar
Rüppell, O., Heinze, J., and Hölldobler, B. 1998. Size-dimorphism in the queens of the North American ant Leptothorax rugatulus (Emery). Insectes Sociaux 45, 67–77.Google Scholar
Rüppell, O., Heinze, J., and Hölldobler, B. 2001. Alternative reproductive tactics in the queen-size dimorphic ant Leptothorax rugatulus (Emery) and their consequences for genetic population structure. Behavioral Ecology and Sociobiology 50, 189–197.Google Scholar
Sakaluk, S. K. and Belwood, J. J. 1984. Gecko phonotaxis to cricket calling song: a case of satellite predation. Animal Behaviour 32, 659–662.CrossRefGoogle Scholar
Sakaluk, S. K., Bangert, P. J., Eggert, A. K., Gack, C., and Swanson, L. V. 1995. The gin trap as a device facilitating coercive mating in sagebrush crickets. Proceedings of the Royal Society of London B 261, 65–72.CrossRefGoogle Scholar
Salt, G. 1937. The egg parasite of Sialis lutaria: a study of the influence of the host upon a dimorphic parasite. Parasitology 29, 539–553.CrossRefGoogle Scholar
Salt, G. 1952. Trimorphism in the ichneumonid parasite Gelis corruptor. Quarterly Journal of Microscopy Science 93, 453–474.Google Scholar
Sauer, K. P., Lubjuhn, T., Sindern, J., et al. 1998. Mating system and sexual selection in the scorpionfly, Panorpa vulgaris (Mecoptera: Panorpidae). Naturwissenschaften 85, 219–228.CrossRefGoogle Scholar
Schmieder, R. G. 1933. The polymorphic forms of Melittobia chalybii Ashmead and the determining factors involved in their production (Hymenoptera: Chalcidoidea, Eulophidae). Biological Bulletin 65, 338–354.CrossRefGoogle Scholar
Schöne, H. and Tengö, J. 1981. Competition of males, courtship behaviour and chemical communication in the digger wasp Bembix rostrata (Hymenoptera, Sphecidae). Behaviour 77, 44–66.CrossRefGoogle Scholar
Scott, J. A. 1974a. Adult behavior and population biology of Poladryas minuta, and the relationship of the Texas and Colorado populations. Pan-Pacific Entomologist 50, 9–22.Google Scholar
Scott, J. A. 1974b. Mate-locating behavior of butterflies. American Midland Naturalist 91, 103–117.CrossRefGoogle Scholar
Severinghaus, I. L., Kurtak, B. H., and Eickwort, G. C. 1981. The reproductive behavior of Anthidium manicatum (Hymenoptera: Megachilidae) and the significance of size for territorial males. Behavioral Ecology and Sociobiology 9, 51–58.CrossRefGoogle Scholar
Shelly, T. E. and Greenfield, M. D. 1985. Alternative mating strategies in a desert grasshopper: a transitional analysis. Animal Behaviour 33, 1211–1222.CrossRefGoogle Scholar
Shelly, T. E. and Greenfield, M. D. 1989. Satellites and transients: ecological constraints on alternative mating tactics in male grasshoppers. Behaviour 109, 200–221.CrossRefGoogle Scholar
Shelly, T. E., Greenfield, M. D., and Downum, K. R. 1987. Variation in host plant quality: influences on the mating system of a desert grasshopper. Animal Behaviour 35, 1200–1209.CrossRefGoogle Scholar
Sherratt, T. N. 2001. The evolution of female-limited polymorphisms in damselflies: a signal detection model. Ecology Letters 4, 22–29.CrossRefGoogle Scholar
Shuster, S. M. and Wade, M. J. 2003. Mating Systems and Strategies. Princeton, NJ: Princeton University Press.Google Scholar
Sih, A. and Krupa, J. J. 1995. Interacting effects of predation risk and male and female density on male/female conflicts and mating dynamics of stream water striders. Behavioral Ecology 6, 316–325.CrossRefGoogle Scholar
Simmons, L. and Gwynne, D. T. 1991. The refractory period of female katydids (Orthoptera: Tettigoniidae): sexual conflict over the remating interval?Behavioral Ecology 2, 276–282.CrossRefGoogle Scholar
Simmons, L. W. 2001. Sperm Competition and Its Evolutionary Consequences in Insects. Princeton, NJ: Princeton University Press.Google Scholar
Simmons, L. W., Tomkins, J. L., and Alcock, J. 2000. Can minor males of Dawson's burrowing bee, Amegilla dawsoni (Hymenoptera: Anthophorini) compensate for reduced access to virgin females through sperm competition?Behavioral Ecology 11, 319–325.CrossRefGoogle Scholar
Simmons, L. W., Beveridge, M., and Krauss, S. 2004. Genetic analysis of parentage within experimental populations of a male dimorphic beetle, Onthophagus taurus, using amplified fragment length polymorphism. Behavioral Ecology and Sociobiology 57, 164–173.CrossRefGoogle Scholar
Sirot, L. K. and Brockmann, H. J. 2001. Costs of sexual interactions to females in Rambur's forktail damselfly, Ischnura ramburi (Zygoptera: Coenagrionidae). Animal Behaviour 61, 415–424.CrossRefGoogle Scholar
Sirot, L. K., Brockmann, H. J., Marinis, C., and Muschett, G. 2003. Maintenance of a female-limited polymorphism in Ischnura ramburi (Zygoptera: Coenagrionidae). Animal Behaviour 66, 763–775.CrossRefGoogle Scholar
Siva-Jothy, T. 1987. Mate securing tactics and the cost of fighting in the Japanese horned beetle, Allomyrina dichotoma L. (Scarabaeidae). Journal of Ethology 5, 165–172.CrossRefGoogle Scholar
Smith, D. C. and Prokopy, R. J. 1980. Mating behavior of Rhagoletis pomonella (Diptera, Tephritidae). 6. Site of early season encounters. Canadian Entomologist 112, 585–590.CrossRefGoogle Scholar
Spence, J. R. and Wilcox, R. S. 1986. The mating system of two hybridizing species of water striders (Gerridae). 2. Alternative tactics of males and females. Behavioral Ecology and Sociobiology 19, 87–95.CrossRefGoogle Scholar
Starks, P. T. 1998. A novel “sit and wait” reproductive strategy in social wasps. Proceedings of the Royal Society of London B 265, 1407–1410.CrossRefGoogle Scholar
Starks, P. T. 2001. Alternative reproductive tactics in the paper wasp Polistes dominulus with specific focus on the sit-and-wait tactic. Annales Zoologici Fennici 38, 189–199.Google Scholar
Starks, P. T. and Reeve, H. K. 1999. Condition-based alternative reproductive tactics in the wool-carder bee, Anthidium manicatum. Ethology Ecology and Evolution 11, 71–75.CrossRefGoogle Scholar
Sutherland, W. J. and Parker, G. A. 1985. Distribution of unequal competitors. In Sibly, R. M. and Smith, R. H. (eds.) Behavioural Ecology: Ecological Consequences of Adaptive Behaviour, pp. 255–274. Oxford, UK: Blackwell Scientifics.Google Scholar
Svensson, E. I., Abbott, J., and Hardling, R. 2005. Female polymorphism, frequency dependence, and rapid evolutionary dynamics in natural populations. American Naturalist 165, 567–576.CrossRefGoogle ScholarPubMed
Taborsky, M. 1997. Bourgeois and parasitic tactics: do we need collective, functional terms for alternative reproductive behaviours?Behavioral Ecology and Sociobiology 41, 361–362.CrossRefGoogle Scholar
Takamura, K. 1999. Wing length and asymmetry of male Tokunagayusurika akamusi chironomid midges using alternative mating tactics. Behavioral Ecology 10, 498–503.CrossRefGoogle Scholar
Tallamy, D. W. and Horton, L. A. 1990. Costs and benefits of the egg-dumping alternative in Gargaphia lace bugs (Hemiptera: Tingidae). Animal Behaviour 39, 352–359.CrossRefGoogle Scholar
Thornhill, R. 1976. Sexual selection and nuptial feeding behavior in Bittacus apicalis (Insecta: Mecoptera). American Naturalist 110, 529–548.CrossRefGoogle Scholar
Thornhill, R. 1979a. Adaptive female-mimicking behavior in a scorpionfly. Science 205, 412–414.CrossRefGoogle Scholar
Thornhill, R. 1979b. Male and female sexual selection and the evolution of mating strategies in insects. In Blum, M. S. and Blum, N. A. (eds.) Sexual Selection and Reproductive Competition in Insects, pp. 81–121. New York: Academic Press.Google Scholar
Thornhill, R. 1980. Rape in Panorpa scorpionflies and a general rape hypothesis. Animal Behaviour 28, 52–59.CrossRefGoogle Scholar
Thornhill, R. 1981. Panorpa (Mecoptera: Panorpidae) scorpionflies: systems for understanding resource-defense polygyny and alternative male reproductive efforts. Annual Review of Ecology and Systematics 12, 355–386.CrossRefGoogle Scholar
Thornhill, R. 1984. Alternative female choice tactics in the scorpionfly Hylobittacus apicalis (Mecoptera) and their implications. American Zoologist 24, 367–383.CrossRefGoogle Scholar
Thornhill, R. and Alcock, J. 1983. The Evolution of Insect Mating Systems. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Thornhill, R. and Sauer, K. P. 1991. The notal organ of the scorpionfly (Panorpa vulgaris): an adaptation to coerce mating duration. Behavioral Ecology 2, 156–164.CrossRefGoogle Scholar
Tomkins, J. L. 1999. Environmental and genetic determinants of the male forceps length dimorphism in the European earwig Forficula auricularia L. Behavioral Ecology and Sociobiology 47, 1–8.CrossRefGoogle Scholar
Tomkins, J. L. and Brown, G. S. 2004. Population density drives the local evolution of a threshold dimorphism. Nature 431, 1099–1103.CrossRefGoogle ScholarPubMed
Tomkins, J. L. and Simmons, L. W. 1996. Dimorphisms and fluctuating asymmetry in the forceps of male earwigs. Journal of Evolutionary Biology 9, 753–770.CrossRefGoogle Scholar
Tomkins, J. L. and Simmons, L. W. 1998. Female choice and manipulations of forceps size and symmetry in the earwig Forficula auricularia L. Animal Behaviour 56, 347–356.CrossRefGoogle ScholarPubMed
Tomkins, J. L. and Simmons, L. W. 2000. Sperm competition games played by dimorphic male beetles: fertilization gains with equal mating access. Proceedings of the Royal Society of London B 266, 1547–1553.CrossRefGoogle Scholar
Tomkins, J. L. and Simmons, L. W. 2002. Measuring relative investment: a case study of testes investment in species with alternative male reproductive tactics. Animal Behaviour 63, 1009–1016.CrossRefGoogle Scholar
Tomkins, J. L., Simmons, L. W., and Alcock, J. 2001. Brood-provisioning strategies in Dawson's burrowing bee, Amegilla dawsoni (Hymenoptera: Anthophorini). Behavioral Ecology and Sociobiology 50, 81–89.CrossRefGoogle Scholar
Tomkins, J. L., Lebas, N. R., Unrug, J., and Radwan, J. 2004. Testing the status-dependent ESS model: population variation in fighter expression in the mite Sancassania berlesei. Journal of Evolutionary Biology 17, 1377–1388.CrossRefGoogle ScholarPubMed
Trumbo, S. T. 1996. Parental care in invertebrates. Advances in the Study of Behavior 25, 3–52.CrossRefGoogle Scholar
Tsubaki, Y. 2003. The genetic polymorphism linked to mate-securing strategies in the male damselfly Mnais costalis Selys (Odonata: Calopterygidae). Population Ecology 45, 263–266.CrossRefGoogle Scholar
Tsubaki, Y. and Hooper, R. E. 2004. Effects of eugregarine parasites on adult longevity in the polymorphic damselfly Mnais costalis Selys. Ecological Entomology 29, 361–366.CrossRefGoogle Scholar
Tsubaki, Y. and Ono, T. 1986. Competition for territorial sites and alternative mating tactics in the dragonfly, Nannophya pygmaea Rambur (Odonata: Libellulidae). Behaviour 97, 234–252.CrossRefGoogle Scholar
Tsubaki, Y., Hooper, R. E., and Siva-Jothy, T. 1997. Differences in adult and reproductive lifespan in the two male forms of Mnais pruinosa costalis (Selys) (Odonata: Calopterygidae). Researches on Population Ecology 39, 149–155.CrossRefGoogle Scholar
Uéda, T. D. 1979. Plasticity of the reproductive behavior in a dragonfly, Sympetrum parvulum Bartenoff, with reference to the social relationsihps of males and the density of territories. Researches on Population Ecology 21, 135–152.CrossRefGoogle Scholar
Utida, S. 1972. Density dependent polymorphism in the adult of Callosobruchus maculatus (Coleoptera, Bruchidae). Journal of Stored Products Research 8, 111–126.CrossRefGoogle Scholar
Dyck, H. and Matthysen, E. 1998. Thermoregulatory differences between phenotypes in the speckled wood butterfly: hot perchers and cold patrollers. Oecologia 114, 326–334.CrossRefGoogle ScholarPubMed
Dyck, H. and Wiklund, C. 2002. Seasonal butterfly design: morphological plasticity among three developmental pathways relative to sex, flight and thermoregulation. Journal of Evolutionary Biology 15, 216–225.CrossRefGoogle Scholar
Dyck, H., Matthysen, E., and Dhondt, A. A. 1997. The effect of wing colour on male behavioural strategies in the speckled wood butterfly. Animal Behaviour 53, 39–51.CrossRefGoogle Scholar
Staaden, M. J. and Römer, H. 1997. Sexual signaling in bladder grasshoppers: tactical design for maximizing calling range. Journal of Experimental Biology 200, 2597–2608.Google Scholar
Vepsäläinen, K. and Nummelin, M. 1985. Male territoriality in the water strider Limnoporus rufoscutellatus. Annales Zoologici Fennici 22, 441–448.Google Scholar
Villalobos, E. M. and Shelly, T. E. 1996. Intraspecific nest parasitism in the sand wasp Stictia heros (Fabr.) (Hymenoptera: Sphecidae). Journal of Insect Behavior 9, 105–119.CrossRefGoogle Scholar
Waage, J. K. 1973. Reproductive behavior and its relation to territoriality in Calopteryx maculata (Beauvois) (Odonata: Calopterygidae). Behaviour 47, 240–256.CrossRefGoogle Scholar
Waage, J. K. 1979. Adaptive significance of postcopulatory guarding of mates and non-mates by male Calopteryx maculata (Odonata). Behavioral Ecology and Sociobiology 6, 147–154.CrossRefGoogle Scholar
Wagner, W. E., Murray, A. M., and Cade, W. H. 1995. Phenotypic variation in the mating preferences of female field crickets, Gryllus integer. Animal Behaviour 49, 1269–1281.CrossRefGoogle Scholar
Walker, S. E. and Cade, W. H. 2003. A simulation model of the effects of frequency dependence, density dependence and parasitoid flies on the fitness of male field crickets. Ecological Modelling 169, 119–130.CrossRefGoogle Scholar
Walker, T. J. 1980. Reproductive behavior and mating success of male short-tailed crickets: differences within and between demes. Evolutionary Biology 13, 219–260.CrossRefGoogle Scholar
Walker, T. J. 1983. Mating modes and female choice in short-tailed crickets (Anugryllus arboreus). In Gwynne, D. T. and Morris, G. K. (eds.) Orthopteran Mating Systems: Sexual Competition in a Diverse Group of Insects, pp. 240–267. Boulder, CO: Westview Press.Google Scholar
Walker, T. J. 1987. Wing dimorphism in Gryllus rubens (Orthoptera: Gryllidae). Annals of the Entomological Society of America 69, 547–560.CrossRefGoogle Scholar
Walker, T. J. and Sivinski, J. M. 1986. Wing dimorphism in field crickets (Orthoptera: Gryllidae). Annals of the Entomological Society of America 79, 84–90.CrossRefGoogle Scholar
Waltz, E. C. 1982. Alternative mating tactics and the law of diminishing returns: the satellite threshold model. Behavioral Ecology and Sociobiology 10, 75–83.CrossRefGoogle Scholar
Waltz, E. C. and Wolf, L. L. 1984. By Jove! Why do alternative mating tactics assume so many different forms?American Zoologist 24, 333–343.CrossRefGoogle Scholar
Waltz, E. C. and Wolf, L. L. 1988. Alternative mating tactics in male white-faced dragonflies (Leucorhinia intacta): plasticity of tactical options and consequences for reproductive success. Evolutionary Ecology 2, 205–231.CrossRefGoogle Scholar
Warburg, M. S. and Yuval, B. 1997. Effects of energetic reserves on behavioral patterns of Mediterranean fruit flies (Diptera: Tephritidae). Oecologia 112, 314–319.CrossRefGoogle Scholar
Ward, P. I. 1993. Females influence sperm storage and use in the yellow dung fly Scatophaga stercoraria (L.). Behavioral Ecology and Sociobiology 32, 313–319.CrossRefGoogle Scholar
Ward, P. I. 1998. A possible explanation for cryptic female choice in the yellow dung fly, Scatophaga stercoraria (L.). Ethology 104, 97–110.CrossRefGoogle Scholar
Weall, C. V. and Gilburn, A. S. 2000. Factors influencing the choice of female mate rejection strategies in the seaweed fly Coelopa nebularum (Diptera: Coelopidae). Journal of Insect Behavior 13, 539–552.CrossRefGoogle Scholar
Wedell, N. 1996. Mate quality affects reproductive effort in a paternally investing species. American Naturalist 148, 1075–1088.CrossRefGoogle Scholar
Wendelken, P. W. and Barth, R. H. 1985. On the significance of pseudofemale behavior in the neotropical cockroach genera Blaberus, Archimandrita, and Byrsotria. Psyche 92, 493–503.CrossRefGoogle Scholar
West-Eberhard, M. J. 2003. Developmental Plasticity and Evolution. Oxford, UK: Oxford University Press.Google Scholar
Wheeler, D. E. 1991. The developmental basis of worker caste polymorphism in ants. American Naturalist 138, 1218–1238.CrossRefGoogle Scholar
Wickman, P. O. 1988. Dynamics of mate-searching behaviour in a hilltopping butterfly, Lasiommata megera (L.): the effects of weather and male density. Zoological Journal of the Linnean Society 93, 357–377.CrossRefGoogle Scholar
Wolf, L. L. and Waltz, E. C. 1988. Oviposition site selection and spatial predictability of female white-faced dragonflies Leucorrhinia intacta (Hagen). Journal of Ethology 78, 306–320.CrossRefGoogle Scholar
Wolf, L. L. and Waltz, E. C. 1993. Alternative mating tactics in male white-faced dragonflies: experimental evidence for a behavioural assessment ESS. Animal Behaviour 46, 325–334.CrossRefGoogle Scholar
Wolfner, M. F. 2002. The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 88, 85–93.CrossRefGoogle ScholarPubMed
Yamauchi, K. and Kawase, N. 1992. Pheromonal manipulation of workers by a fighting male to kill his rival males in the ant Cardiocondyla wroughtoni. Naturwissenschaften 79, 274–276.CrossRefGoogle Scholar
Yamauchi, K., Kimura, Y., Corbara, B., Kinomura, K., and Tsuji, K. 1996. Dimorphic ergatoid males and their reproductive behavior in the ponerine ant Hypoponera bondroiti. Insectes Sociaux 43, 119–130.CrossRefGoogle Scholar
Zera, A. J. 1999. The endocrine genetics of wing polymorphism in Gryllus: critique of recent studies and state of the art. Evolution 53, 973–977.Google ScholarPubMed
Zera, A. J. and Denno, R. F. 1997. Dispersal polymorphism in insects: integrating physiology, genetics and ecology. Annual Review of Entomology 42, 207–231.CrossRefGoogle Scholar
Zera, A. J. and Harshman, L. G. 2001. The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics 32, 95–126.CrossRefGoogle Scholar
Zhao, Z. and Zera, A. J. 2002. Differential lipid biosynthesis underlies a tradeoff between reproduction and flight capability in a wing-polymorphic cricket. Proceedings of the National Academy of Sciences of the United States of America 99, 16829–16834.CrossRefGoogle Scholar
Zink, A. G. 2003. Intraspecific brood parasitism as a conditional reproductive tactic in the treehopper Publilia concava. Behavioral Ecology and Sociobiology 54, 406–415.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×