Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T05:45:15.685Z Has data issue: false hasContentIssue false

6 - Neuroendocrine mechanisms of alternative reproductive tactics: the chemical language of reproductive and social plasticity

Published online by Cambridge University Press:  10 August 2009

Andrew H. Bass
Affiliation:
Department of Neurobiology and Behavior Cornell University W233 Seeley G. Mudd Hall Ithaca, Ny 14853 USA
Paul M. Forlano
Affiliation:
Department of Neurobiology and Behavior Cornell University W233 Seeley G. Mudd Hall Ithaca, Ny 14853 USA
Rui F. Oliveira
Affiliation:
Instituto Superior Psicologia Aplicada, Lisbon
Michael Taborsky
Affiliation:
Universität Bern, Switzerland
H. Jane Brockmann
Affiliation:
University of Florida
Get access

Summary

CHAPTER SUMMARY

The wide range of variation in reproductive tactics displayed among teleost fishes has provided a rich source of natural experiments for investigating the neural mechanisms of alternative reproductive tactics (ARTs). These studies have mainly focused on identifying the location and extent of neuropeptide-containing cells in the forebrain's preoptic area (POA), in part, because of the well-established influence of these neurons on reproductive mechanisms. We first review the ARTs of teleost species that have served as model systems for investigating the neural mechanisms of reproductive plasticity and then the general organization of the POA of vertebrates. Comparative surveys then show how life-history trajectories and reproductive tactics vary with inter- and intrasexual dimorphisms in the size and number of POA neurons that synthesize either arginine vasotocin (AVT) or gonadotropin-releasing hormone (GnRH). The emerging evidence for the potential role of neurosteroids in mechanisms of reproductive plasticity inclusive of ARTs is then considered before concluding with a listing of a suite of neuroendocrinological traits that may provide proximate mechanisms essential to the widespread evolution of ARTs among teleost fish.

INTRODUCTION: DIVERGENT LIFE-HISTORY TRAJECTORIES

A major theme that continues to emerge from many studies of the neural mechanisms of ARTs is the uncoupling of gonadal and neurobiological traits that provides for the adaptable patterning of suites of mechanisms between alternative behavioral phenotypes (Bass 1992).

Type
Chapter
Information
Alternative Reproductive Tactics
An Integrative Approach
, pp. 109 - 131
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balthazart, J. and Ball, G. 1998. New insights into the regulation and function of brain estrogen synthase (aromatase). Trends in Neuroscience 21, 243–248.CrossRefGoogle Scholar
Baroiller, J. -F., Guiguen, Y., and Fostier, A. 1999. Endocrine and environmental aspects of sex differentiation in fish. Cell and Molecular Life Sciences 55, 910–931.CrossRefGoogle Scholar
Bass, A. H. 1992. Dimorphic male brains and alternate reproductive tactics in a vocalizing fish. Trends in Neuroscience 15, 139–145.CrossRefGoogle Scholar
Bass, A. H. 1995. Alternative life history strategies and dimorphic males in an acoustic communication system. In Goetz, F. W. and Thomas, P. (eds.) Proceedings of the 5th International Symposium on the Reproductive Physiology of Fish, pp. 258–260. Port Aransas, TX: Marine Science Institute, University of Texas at Austin.Google Scholar
Bass, A. H. 1996. Shaping brain sexuality. American Scientist 84, 352–363.Google Scholar
Bass, A. H. 1998. Behavioral and evolutionary neurobiology: a pluralistic approach. American Zoologist 38, 97–107.CrossRefGoogle Scholar
Bass, A. H. and Baker, R. 1990. Sexual dimorphisms in the vocal control system of a teleost fish: morphology of physiologically identified cells. Journal of Neurobiology 21, 1155–1168.CrossRefGoogle Scholar
Bass, A. H. and Grober, M. S. 2001. Social and neural modulation of sexual plasticity in teleost fish. Brain, Behavior and Evolution 57, 293–300.CrossRefGoogle ScholarPubMed
Bass, A. H. and Marchaterre, M. A. 1989. Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphism in the ultrastructure of myofibrils. Journal of Comparative Neurology 286, 141–153.CrossRefGoogle Scholar
Bass, A. H. and McKibben, J. R. 2003. Neural mechanisms and behaviors for acoustic communication in teleost fish. Progress in Neurobiology 69, 1–26.CrossRefGoogle ScholarPubMed
Bass, A. H., Marchaterre, M. A., and Baker, R. 1994. Vocal–acoustic pathways in a teleost fish. Journal of Neuroscience 14, 4025–4039.CrossRefGoogle Scholar
Bass, A. H., Horvath, B. J., and Brothers, E. B. 1996. Nonsequential developmental trajectories lead to dimorphic vocal circuitry for males with alternative reproductive tactics. Journal of Neurobiology 30, 493–504.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Bass, A. H., Bodnar, D. A., and Marchaterre, M. A. 1999. Complementary explanations for existing phenotypes in an acoustic communication system. In Hauser, M. and Konishi, M. (eds.) Neural Mechanisms of Communication, pp. 493–514. Cambridge, MA: MIT Press.Google Scholar
Bass, A. H., Bodnar, D. A., and Marchaterre, M. A. 2000. Midbrain acoustic circuitry in a vocalizing fish. Journal of Comparative Neurology 419, 505–531.3.0.CO;2-3>CrossRefGoogle Scholar
Bastian, J., Schniederjan, S., and Nguyenkim, J. 2001. Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus. Journal of Experimental Biology 204, 1909–1923.Google ScholarPubMed
Bentley, P. J. 1998. Comparative Vertebrate Endocrinology, 3rd edn. Cambridge, UK: Cambridge University Press.Google Scholar
Beyer, C. 1999. Estrogen and the developing mammalian brain. Anatomy and Embryology 199, 379–390.CrossRefGoogle ScholarPubMed
Bhandari, R. K., Higa, M., Nakamura, S., and Nakamura, M. 2004. Aromatase inhibitor induces complete sex change in the protandrous honeycomb grouper (Epinephelus merra). Molecular Reproduction and Development 67, 303–307.CrossRefGoogle Scholar
Black, M. P., Reavis, R. H., and Grober, M. S. 2004. Socially induced sex change regulates forebrain isotocin in Lythrypnus dalli. Neuroreport 15, 185–189.CrossRefGoogle ScholarPubMed
Black, M. P., Balthazart, J., Baillien, M., and Grober, M. S. 2005. Socially induced and rapid increases in aggression are inversely related to brain aromatase activity in a sex-changing fish, Lythrypnus dalli. Proceedings of the Royal Society of London B 272, 2337–2344.CrossRefGoogle Scholar
Boyd, S. K. 1994. Arginine vasotocin facilitation of advertisement calling and call phonotaxis in bullfrogs. Hormones and Behavior 28, 232–240.CrossRefGoogle ScholarPubMed
Boyd, S. K. 1997. Brain vasotocin pathways and the control of sexual behaviors in the bullfrog. Brain Research Bulletin 44, 345–350.CrossRefGoogle ScholarPubMed
Braford Jr., M. R., and Northcutt, R. G. 1983. Organization of the diencephalon and pretectum of the ray-finned fishes. In Davis, R. E. and Northcutt, R. G. (eds.) Fish Neurobiology, vol. 2, pp. 117–164. Ann Arbor, MI: University of Michigan Press.Google Scholar
Brantley, R. K. and Bass, A. H. 1994. Alternative male spawning tactics and acoustic signaling in the plainfin midshipman fish, Porichthys notatus. Ethology 96, 213–232.CrossRefGoogle Scholar
Brantley, R. K., Marchaterre, M. A., and Bass, A. H. 1993a. Androgen effects on vocal muscle structure in a teleost fish with inter- and intra-sexual dimorphism. Journal of Morphology 216, 305–318.CrossRefGoogle Scholar
Brantley, R. K., Wingfield, J. C., and Bass, A. H. 1993b. Sex steroid levels in Porichthys notatus, a fish with alternative male reproductive tactics, and a review of the hormonal bases for male dimorphism among teleost fishes. Hormones and Behavior 27, 332–347.CrossRefGoogle Scholar
Brockmann, H. J. 2001. The evolution of alternative strategies and tactics. Advances in the Study of Behavior 30, 1–51.CrossRefGoogle Scholar
Burke, K. A., Kuwajima, M., and Sengelaub, D. R. 1999. Aromatase inhibition reduces dendritic growth in a sexually dimorphic rat spinal nucleus. Journal of Neurobiology 38, 301–312.3.0.CO;2-Y>CrossRefGoogle Scholar
Butler, A. B. and Hodos, W. 1996. Comparative Vertebrate Neuroanatomy. New York: Wiley-Liss.Google Scholar
Cardwell, J. R. and Liley, N. R. 1991. Hormonal control of sex and color change in the stoplight parrotfish, Sparisoma viride. General and Comparative Endocrinology 81, 7–20.CrossRefGoogle ScholarPubMed
Chang, C.-F. and Lin, B.-Y. 1998. Estradiol-17β stimulates aromatase activity and reversible sex change in protandrous black porgy, Acanthopagrus schlegeli. Journal of Experimental Zoology 280, 165–173.3.0.CO;2-M>CrossRefGoogle Scholar
Cole, K. S. 1990. Patterns of gonad structure in hermaphroditic gobies (Teleostei: Gobiidae). Environmental Biology of Fishes 28, 125–142.CrossRefGoogle Scholar
Compagnone, N. A. and Mellon, S. H. 2000. Neurosteroids: biosynthesis and function of the novel neuromodulators. Frontiers in Neuroendocrinology 21, 1–56.CrossRefGoogle ScholarPubMed
Crews, D. 1993. The organizational concept and vertebrates without sex chromosomes. Brain, Behavior and Evolution 42, 202–214.CrossRefGoogle ScholarPubMed
Crews, D. 1996. Temperature-dependent sex determination: the interplay of steroid hormones and temperature. Zoological Science 13, 1–13.CrossRefGoogle ScholarPubMed
Crews, D. 1998. On the organization of individual differences in sexual behavior. American Zoologist 38, 118–132.CrossRefGoogle Scholar
Crews, D. and Bergeron, J. M. 1994. Role of reductase and aromatase in sex determination in the red-eared slider (Trachemys scripta) turtle with temperature-dependent sex determination. Journal of Endocrinology 143, 279–289.CrossRefGoogle ScholarPubMed
Crews, D., Fleming, A., Willingham, E., Baldwin, R., and Skipper, J. K. 2001. Role of steroidogenic factor 1 and aromatase in temperature-dependent sex determination in the red-eared slider turtle. Journal of Experimental Zoology 290, 597–606.CrossRefGoogle ScholarPubMed
Davis, M. R. and Fernald, R. D. 1990. Social control of neuronal soma size. Journal of Neurobiology 21, 1180–1189.CrossRefGoogle ScholarPubMed
D'cotta, H., Fostier, A., Guiguen, Y., Govoroun, M., and Baroiller, J.-F. 2001. Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus. Molecular Reproduction and Development 59, 265–276.CrossRefGoogle Scholar
Devlin, R. H. and Nagahama, Y. 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.CrossRefGoogle Scholar
DeVries, G. J. and Simerly, R. 2002. Anatomy, development, and functions of sexually dimorphic neural circuits in the mammalian brain. In Pfaff, D., Arnold, A. P., Etgen, A. M., Fahrbach, S. E., and Rubin, R. T. (eds.) Hormones, Brain, and Behavior, vol. 4, pp. 137–191. San Diego, CA: Academic Press.Google Scholar
DeVries, G. J., Wang, Z., Bullock, N. A., and Numan, S. 1994. Sex differences in the effects of testosterone and its metabolites on vasopression mRNA levels in the bed nucleus of the stria terminalis of rats. Journal of Neuroscience 14, 1789–1794.CrossRefGoogle Scholar
Elofsson, U., Winburg, S., and Francis, R. C. 1997. Number of preoptic GnRH-immunoreactive cells correlates with sexual phase in a protandrously hermaphroditic fish, the dusky anemonefish (Amphiprion melanopus). Journal of Comparative Physiology 181, 484–492.CrossRefGoogle Scholar
Elofsson, U., Winburg, S., and Nilsson, G. E. 1999. Relationships between sex and the size and number of forebrain gonadotropin-releasing hormone-immunoreactive neurons in the ballan wrasse (Labrus berggylta), a protogynous hermaphrodite. Journal of Comparative Neurology 410, 158–170.3.0.CO;2-P>CrossRefGoogle Scholar
Fernald, R. D. and White, R. B. 1999. Gonadotropin-releasing hormone genes: phylogeny, structure, and functions. Frontiers in Neuroendocrinology 20, 224–240.CrossRefGoogle ScholarPubMed
Foran, C. M. and Bass, A. H. 1998. Preoptic AVT immunoreactive neurons of a teleost fish with alternative reproductive tactics. General and Comparative Endocrinology 111, 271–282.CrossRefGoogle ScholarPubMed
Foran, C. M. and Bass, A. H. 1999. Preoptic GnRH and AVT: axes for sexual plasticity in teleost fish. General and Comparative Endocrinology 116, 141–152.CrossRefGoogle ScholarPubMed
Forlano, P. M. and Bass, A. H. 2001. Sex steroid modulation of brain aromatase mRNA expression in a vocal fish. Society for Neuroscience Abstracts 27, 1081.Google Scholar
Forlano, P. M. and Bass, A. H. 2005a. Seasonal plasticity of brain aromatase mRNA expression in glia: divergence across sex and vocal phenotypes. Journal of Neurobiology 65, 37–49.CrossRefGoogle Scholar
Forlano, P. M. and Bass, A. H. 2005b. Steroid regulation of brain aromatase expression in glia: female preoptic and vocal motor nuclei. Journal of Neurobiology 65, 50–58.CrossRefGoogle Scholar
Forlano, P. M., Deitcher, D. L., Myers, D. A., and Bass, A. H. 2001. Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: aromatase enzyme and mRNA expression identify glia as source. Journal of Neuroscience 21, 8943–8955.CrossRefGoogle ScholarPubMed
Forlano, P. M., Deitcher, D. L., and Bass, A. H. 2005. Distribution of estrogen receptor alpha mRNA in the brain and inner ear of a vocal fish with comparisons to sites of aromatase expression. Journal of Comparative Neurology 483, 91–113.CrossRefGoogle ScholarPubMed
Francis, R. C. 1992. Sexual lability in teleosts: developmental factors. Quarterly Review of Biology 67, 1–18.CrossRefGoogle Scholar
Gelinas, D., Pitoc, G. A., and Callard, G. V. 1998. Isolation of a goldfish brain cytochrome P450 aromatase cDNA: mRNA expression during the seasonal cycle and after steroid treatment. Molecular and Cellular Endocrinology 138, 81–93.CrossRefGoogle ScholarPubMed
Gerald, J. W. 1971. Sound production during courtship in six species of sunfish (Centrarchidae). Evolution 25, 75–87.CrossRefGoogle Scholar
Godwin, J. R. and Thomas, P. 1993. Sex change and steroid profiles in the protandrous anemonefish Amphiprion melanopus (Pomacentridae, teleostei). General and Comparative Endocrinology 91, 144–157.CrossRefGoogle Scholar
Godwin, J. R., Crews, D., and Warner, R. R. 1996. Behavioral sex change in the absence of gonads in a coral reef fish. Proceedings of the Royal Society of London B 263, 1683–1688.CrossRefGoogle Scholar
Godwin, J., Sawby, R., Warner, R. R., Crews, D., and Grober, M. S. 2000. Hypothalamic arginine vasotocin mRNA abundance variation across sexes and with sex change in a coral reef fish. Brain, Behavior and Evolution 55, 74–84.CrossRefGoogle Scholar
Godwin, J., Luckenbach, J. A., and Borski, R. J. 2003. Ecology meets endocrinology: environmental sex determination in fishes. Evolution and Development 5, 40–49.CrossRefGoogle ScholarPubMed
Goodson, J. L. and Bass, A. H. 2000a. Vasotocin innervation and modulation of vocal–acoustic circuitry in the teleost Porichthys notatus. Journal of Comparative Neurology 422, 363–379.3.0.CO;2-8>CrossRefGoogle Scholar
Goodson, J. L. and Bass, A. H. 2000b. Forebrain peptide modulation of sexually polymorphic vocal motor circuitry. Nature 403, 769–772.CrossRefGoogle Scholar
Goodson, J. L. and Bass, A. H. 2001. Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Research Reviews 35, 246–265.CrossRefGoogle ScholarPubMed
Goodson, J. L. and Bass, A. H. 2002. Forebrain and midbrain vocal–acoustic complexes: intraconnectivity and descending vocal motor pathways. Journal of Comparative Neurology 448, 298–321.CrossRefGoogle Scholar
Goodson, J. L., Evans, A. K., and Bass, A. H. 2003. Putative isotocin distributions in sonic fish: relation to vasotocin and vocal–acoustic circuitry. Journal of Comparative Neurology 462, 1–14.CrossRefGoogle ScholarPubMed
Goto-Kazeto, R., Kight, K. E., Zohar, Y., Place, A. R., and Trant, J. M. 2004. Localization and expression of aromatase mRNA in adult zebrafish. General and Comparative Endocrinology 139, 72–84.CrossRefGoogle ScholarPubMed
Grober, M. S. 1998. Socially controlled sex change: integrating ultimate and proximate levels of analysis. Acta Ethologica 1, 3–17.Google Scholar
Grober, M. S. and Bass, A. H. 1991. Neuronal correlates of sex/role change in labrid fishes: LHRH-like immunoreactivity. Brain, Behavior and Evolution 38, 302–312.CrossRefGoogle ScholarPubMed
Grober, M. S. and Bass, A. H. 2002. Life history, neuroendocrinology, and behavior in fish. In Pfaff, D., Arnold, A. P., Etgen, A. M., Fahrbach, S. E., and Rubin, R. T. (eds.) Hormones, Brain and Behavior, vol. 2, pp. 331–347. San Diego, CA: Academic Press.Google Scholar
Grober, M. S. and Sunobe, T. 1996. Serial adult sex change involves rapid and reversible changes in forebrain neurochemistry. Neuroreport 7, 2945–2949.CrossRefGoogle ScholarPubMed
Grober, M. S., Jackson, I. M. D., and Bass, A. H. 1991. Gonadal steroids affect LHRH preoptic cell number in a sex-role changing fish. Journal of Neurobiology 22, 734–741.CrossRefGoogle Scholar
Grober, M. S., Fox, S. H., Laughlin, C., and Bass, A. H. 1994. GnRH cell size and number in a teleost fish with two male reproductive morphs: sexual maturation, final sexual status and body size allometry. Brain, Behavior and Evolution 43, 61–78.CrossRefGoogle Scholar
Grober, M. S., George, A. A., Watkins, K. K., Carneiro, L. A., and Oliveira, R. 2002. Forebrain AVT and courtship in fish with male alternative reproductive tactics. Brain Research Bulletin 57, 423–425.CrossRefGoogle ScholarPubMed
Gross, M. R. 1991. Evolution of alternative reproductive strategies: frequency-dependent selection in male bluegill sunfish. Philosophical Transactions of the Royal Society of London B 332, 59–66.CrossRefGoogle Scholar
Gross, M. 1996. Alternative reproductive tactics and strategies: diversity within sexes. Trends in Ecology and Evolution 11, 92–97.CrossRefGoogle ScholarPubMed
Halpern-Sebold, L., Schreibman, M. P., and Margolis-Nunno, H. 1986. Differences between early- and late-maturing genotypes of the platyfish (Xiphophorus maculatus) in the morphometry of their immunoreactive leuteinizing hormone releasing hormone-containing cells: a developmental study. Journal of Experimental Zoology 240, 245–257.CrossRefGoogle ScholarPubMed
Herbert, J. 1993. Peptides in the limbic system: neurochemical codes for co-ordinated adaptive responses to behavioural and physiological demand. Progress in Neurobiology 41, 723–791.CrossRefGoogle ScholarPubMed
Hiraoka, S., Ando, H., Ban, M., Ueda, H., and Urano, A. 1997. Changes in expression of neurohypophysial hormone genes during spawning migration in Chum salmon, Oncorhynchus keta. Journal of Molecular Endocrinology 18, 49–55.CrossRefGoogle ScholarPubMed
Hofmann, H. A. and Fernald, R. D. 2000. Social status controls somatostatin neuron size and growth. Journal of Neuroscience 20, 4740–4744.CrossRefGoogle Scholar
Insel, T. and Young, L. J. 2000 The neurobiology of attachment. Nature Reviews Neuroscience 2, 129–136.CrossRefGoogle Scholar
Jeyasuria, P. and Place, A. R. 1998. Embryonic brain–gonadal axis in temperature-dependent sex determination of reptiles: a role for P450 aromatase (CYP19). Journal of Experimental Zoology 281, 428–449.3.0.CO;2-Q>CrossRefGoogle Scholar
Kitano, T., Takamune, K., Koyayashi, T., Nagahama, Y., and Abe, S.-I. 1999. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). Journal of Molecular Endocrinology 23, 167–176.CrossRefGoogle Scholar
Knapp, R. 2004. Endocrine mediation of vertebrate male alternative reproductive tactics: the next generation of studies. Integrative and Comparative Biology 43, 658–668.CrossRefGoogle Scholar
Knapp, R., Wingfield, J. C., and Bass, A. H. 1999. Steroid hormones and paternal care in the plainfin midshipman fish (Porichthys notatus). Hormones and Behavior 35, 81–89.CrossRefGoogle Scholar
Kroon, F. J. and Liley, N. R. 2000. The role of steroid hormones in protogynous sex change in the blackeye goby, Coryphopterus nicholsii (Teleostei: Gobiidae). General and Comparative Endocrinology 118, 273–283.CrossRefGoogle Scholar
Kroon, F. J., Munday, P. L., Wescott, D. A., Hobbs, J. P., and Liley, N. R. 2005. Aromatase pathway mediates sex change in each direction. Proceedings of the Royal Society of London B 272, 1399–1405.CrossRefGoogle ScholarPubMed
Kuntz, S., Chesnel, A., Duterque-Coquillaud, M., et al. 2003. Differential expression of P450 aromatase during gonadal sex differentiation and sex reversal of the newt Pleurodeles walti. Journal of Steroid Biochemistry and Molecular Biology 84, 89–100.CrossRefGoogle Scholar
Lee, J. S. F. and Bass, A. H. 2004. Does the “exaggerated” morphology preclude plasticity to cuckoldry? A test in the midshipman fish, Porichthys notatus. Naturwissenschaften 91, 338–341.CrossRefGoogle Scholar
Lee, J. S. F. and Bass, A. H. 2005. Differential effects of 11-ketotestosterone on dimorphic traits in a teleost with alternative male reproductive morphs. Hormones and Behavior 47, 523–531.CrossRefGoogle Scholar
Lee, Y.-H., Du, J.-L., Yueh, W.-S., et al. 2001. Sex change in the protandrous black porgy, Acanthopagrus schegeli: a review in gonadal development, estradiol, estrogen receptor, aromatase activity and gonadotropin. Journal of Experimental Zoology 290, 715–726.CrossRefGoogle ScholarPubMed
Lee, Y.-H., Yueh, W.-S., Du, J.-L., Sun, L.-T., and Chang, C.-F. 2002. Aromatase inhibitors block natural sex change and induce male function in the protandrous black porgy, Acanthopagrus schegeli Bleeker: possible mechanism of natural sex change. Biology of Reproduction 66, 1749–1754.CrossRefGoogle ScholarPubMed
Leiser, J. K. and Itzkowitz, M. 2004. Changing tactics: dominance, territoriality, and the responses of “primary” males to competition from conditional breeders in the variegated pupfish (Cyprinodon variegatus). Behavioral Processes 66, 119–130.CrossRefGoogle Scholar
Lephart, E. D. 1996. A review of brain aromatase cytochrome P450. Brain Research Reviews 22, 1–26.CrossRefGoogle ScholarPubMed
Lethimonier, C., Madigou, T., Munoz-Cueto, J. A., Lareyre, J. J., and Kah, O. 2004. Evolutionary aspects of GnRHs, GnRH neuronal systems and GnRH receptors in teleost fish. General and Comparative Endocrinology 135, 1–16.CrossRefGoogle ScholarPubMed
Markakis, E. A. 2002. Development of the neuroendocrine hypothalamus. Frontiers in Neuroendocrinology 23, 257–291.CrossRefGoogle ScholarPubMed
Marler, C. A., Boyd, S. K., and Wilczynski, W. 1999. Forebrain arginine vasotocin correlates of alternative mating strategies in frogs. Hormones and Behavior 36, 53–61.CrossRefGoogle ScholarPubMed
Mazzoldi, C., Scaggiante, M., Ambrosin, E., and Rasotto, M. B. 2000. Mating system and alternative male mating tactics in the grass goby Zosterisessor ophiocephalus (Teleostei: Gobiidae). Marine Biology 137, 1041–1048.CrossRefGoogle Scholar
Meek, J. and Nieuwenhuys, R. 1998. Holosteans and teleosts. In Nieuwenhuys, R., Donkelaar, H. J. ten, and Nicholson, C. (eds.) The Central Nervous System of Vertebrates, pp. 759–937. New York: Springer-Verlag.CrossRefGoogle Scholar
Menuet, A., Anglade, I., Guevel, R., et al. 2003. Distribution of aromatase mRNA and protein in the brain and pituitary of female rainbow trout: comparison with estrogen receptor. Journal of Comparative Neurology 462, 180–193.CrossRefGoogle ScholarPubMed
Menuet, A., Pellegrini, E., Brion, F., et al. 2005. Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. Journal of Comparative Neurology 485, 304–320.CrossRefGoogle ScholarPubMed
Miranda, J. A., Oliveira, R. F., Carneiro, L. A., Santos, R., and Grober, M. S. 2003. Neurochemical correlates of male polymorphism and alternative reproductive tactics in the Azorean rock-pool blenny, Parablennius parvicornis. General and Comparative Endocrinology 132, 183–189.CrossRefGoogle ScholarPubMed
Moore, F. L. and Lowry, C. A. 1998. Comparative neuroanatomy of vasotocin and vasopressin in amphibians and other vertebrates. Comparative Biochemistry and Physiology 119, 251–260.Google ScholarPubMed
Morrey, G. E., Kobayashi, T., Nakamura, M., Grau, E. G., and Nagahama, Y. 1998. Loss of gonadal P450 aromatase mRNA corresponds with the de-differentiation of the ovary in the protogynous wrasse, Thalassoma duperrey. Experimental Zoology 281, 507–508.Google Scholar
Nelson, R. 1998. Behavioral Neuroendocrinology. Sunderland, MA: Sinauer Associates.Google Scholar
Nieuwenhuys, R., Veening, J. G., and Domburg, P. 1989. Core and paracores: some new chemoarchitectural entities in the mammalian neuraxis. Acta Morphologica Neerlando-Scandinavica 26, 131–163.Google Scholar
Oka, Y. and Ichikawa, M. 1990. Gonadotropin-releasing hormone (GnRH) immunoreactive system in the brain of the dwarf gourami (Colisa lalia) as revealed by light microscopic immunocytochemistry using a monoclonal antibody to common amino acid sequence of GnRH. Journal of Comparative Neurology 300, 511–522.CrossRefGoogle ScholarPubMed
Oka, Y. and Matsushima, T. 1993. Gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve cells have intrinsic rhythmicity and project widely in the brain. Journal of Neuroscience 13, 2161–2176.CrossRefGoogle Scholar
Okuzawa, K. and Kobayashi, M. 1999. Gonadotropin-releasing hormone neuronal systems in the teleostean brain and functional significance. In Rao, P. and Kluwer, P. (eds.) Neural Regulation in the Vertebrate Endocrine System, pp. 85–100. New York: Plenum Press.Google Scholar
Oliveira, R. F., Canario, A. V. M., and Grober, M. S. 2001. Male sexual polymorphism, alternative reproductive tactics, and androgens in combtooth blennies (Pisces: Blenniidae). Hormones and Behavior 40, 266–275.CrossRefGoogle Scholar
Ota, Y., Ando, H., Ban, M., Ueda, H., and Urano, A. 1996. Sexually different expression of neurohypophysial hormone genes in the preoptic nucleus of pre-spawning Chum salmon. Zoological Science 13, 593–601.CrossRefGoogle Scholar
Ota, Y., Ando, H., Ueda, H., and Urano, A. 1999. Seasonal changes in expression of neurohypophysial hormone genes in the preoptic nucleus of immature female Masu salmon. General and Comparative Endocrinology 116, 31–39.CrossRefGoogle ScholarPubMed
Panzica, G. C., Castagna, C., Viglietti-Panzica, C., et al. 1998. Organizational effects of estrogens on brain vasotocin and sexual behavior in quail. Journal of Neurobiology 37, 684–699.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Pasmanik, M. and Callard, G. V. 1985. Aromatase and 5a-reductase in the teleost brain, spinal cord and pituitary gland. General and Comparative Endocrinology 60, 244–251.CrossRefGoogle Scholar
Perry, A. N. and Grober, M. S. 2002. A model for social control of sex change: interactions of behavior, neuropeptides, glucocorticoids, and sex steroids. Hormones and Behavior 43, 31–38.CrossRefGoogle Scholar
Peter, R. E. and Fryer, J. N. 1983. Endocrine functions of the hypothalamus of actinopterygians. In Davis, R. E. and Northcutt, R. G. (eds.) Fish Neurobiology, vol. 2, pp. 165–201. Ann Arbor, MI: University of Michigan Press.Google Scholar
Pfaff, D. W., Arnold, A. P., Etgen, A. M., Fahrbach, S. E., and Rubin, R. T. 2002. Hormones, Brain and Behavior. San Diego, CA: Academic Press.Google Scholar
Puelles, L. 2001. Brain segmentation and forebrain development in amniotes. Brain Research Bulletin 55, 695–710.CrossRefGoogle ScholarPubMed
Reavis, R. H. and Grober, M. S. 1999. An integrative approach to sex change: social, behavioural and neurochemical changes in Lythrypnus dalli (Pisces). Acta Ethological 2, 51–60.CrossRefGoogle Scholar
Remage-Healey, L. and Bass, A. H. 2004. Rapid, hierarchical modulation of vocal patterning by steroid hormones. Journal of Neuroscience 24, 5892–5900.CrossRefGoogle ScholarPubMed
Rhen, T. and Crews, D. 2002. Variation in reproductive behavior within a sex: neural systems and endocrine activation. Journal of Neuroendocrinology 14, 517–531.CrossRefGoogle ScholarPubMed
Rose, J. D. and Moore, F. L. 2002. Behavioral neuroendocrinology of vasotocin and vasopressin and the sensorimotor processing hypothesis. Frontiers in Neuroendocrinology 23, 317–341.CrossRefGoogle ScholarPubMed
Saito, D. and Urano, A. 2001. Synchronized periodic Ca2+ pulses define neurosecretory activities in magnocellular vasotocin and isotocin neurons. Journal of Neuroscience 21, RC178.CrossRefGoogle ScholarPubMed
Saito, D., Hasegawa, Y., and Urano, A. 2003. Gonadotropin-releasing hormones modulate electrical activity of vasotocin and isotocin neurons in the brain of rainbow trout. Neuroscience Letters 351, 107–110.CrossRefGoogle ScholarPubMed
Schlinger, B. A., Greco, C., and Bass, A. H. 1999. Aromatase activity in hindbrain vocal control region of a teleost fish: divergence among males with alternative reproductive tactics. Proceedings of the Royal Society of London B 266, 131–136.CrossRefGoogle Scholar
Schlinger, B. A., Soma, K., and London, S. E. 2001. Neurosteroids and brain sexual differentiation. Trends in Neuroscience 24, 429–431.CrossRefGoogle ScholarPubMed
Schreibman, M. P. and Magliulo-Cepriano, L. 2002. Differentiation/maturation of centers in the brain regulating reproductive function in fishes. In Pfaff, D., Arnold, A. P., Etgen, A. M., Fahrbach, S. E., and Rubin, R. T. (eds.) Hormones, Brain, and Behavior, vol. 4, pp. 303–323. San Diego, CA: Academic Press.Google Scholar
Semsar, K. and Godwin, J. 2002. Social influences on the arginine vasotocin system status are independent of gonads in a sex-changing fish. Journal of Neuroscience 23, 4386–4393.CrossRefGoogle Scholar
Semsar, K., Kandel, F. L., and Godwin, J. 2001. Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Hormones and Behavior 40, 21–31.CrossRefGoogle ScholarPubMed
Sisneros, J. A., Forlano, P. M., Knapp, R., and Bass, A. H. 2004. Seasonal variation of steroid hormone levels in an intertidal-nesting fish, the vocal plainfin midshipman. General and Comparative Endocrinology 136, 101–116.CrossRefGoogle Scholar
Strobl-Mazzulla, P. H., Moncaut, N. P., Lopez, G. C., et al. 2005. Brain aromatase from pejerrey fish (Odontesthes bonariensis): cDNA cloning, tissue expression, and immunohistochemical localization. General and Comparative Endocrinology 143, 21–32.CrossRefGoogle ScholarPubMed
Taborsky, M. 1994. Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Advances in the Study of Behavior 23, 1–100.CrossRefGoogle Scholar
Teitsma, C. A., Bailhache, B., Anglade, I., et al. 1997. Distribution and expression of glucocorticoid receptor mRNA in the forebrain of the rainbow trout. Neuroendocrinology 66, 294–304.CrossRefGoogle ScholarPubMed
Teitsma, C. A., Anglade, I., Toutirais, G., et al. 1998. Immunohistochemical localization of glucocorticoid receptors in the forebrain of the rainbow trout (Oncorhynchus mykiss). Journal of Comparative Neurology 401, 395–410.3.0.CO;2-P>CrossRefGoogle Scholar
Teitsma, C. A., Anglade, I., Lethimonier, C., et al. 1999. Glucocorticoid receptor immunoreactivity in neurons and pituitary cells implicated in reproductive functions in rainbow trout: a double immunohistochemical study. Biology of Reproduction 60, 642–650.CrossRefGoogle ScholarPubMed
Tsai, C. L., Chang, S. L., Wang, L. H., and Chao, T. Y. 2003. Temperature influences the ontogenetic expression of aromatase and oestrogen receptor mRNA in the developing tilapia (Oreochromis mossambicus) brain. Journal of Neuroendocrinology 15, 97–102.CrossRefGoogle ScholarPubMed
Urano, A., Kurokawa, K., and Hiraoka, S. 1994. E xpression of the vasotocin and isotocin gene family in fish. In Sherwood, N. and Hew, C. L. (eds.) Fish Physiology, vol. 13, Molecular Aspects of Hormonal Regulation in Fish, pp. 101–132. San Diego, CA: Academic Press.Google Scholar
Wang, Z. and DeVries, G. J. 1995. Androgen and estrogen effects on vasopressin messenger RNA expression in the medial amygdaloid nucleus in male and female rats. Journal of Neuroendocrinology 7, 827–831.CrossRefGoogle ScholarPubMed
White, S. A., Nguyen, T., and Fernald, R. D. 2002. Social regulation of gonadotropin-releasing hormone. Journal of Experimental Biology 205, 2567–2581.Google ScholarPubMed
Zhang, Y., Zhang, W., Zhang, L., et al. 2004. Two distinct cytochrome P450 aromatases in the orange-spotted grouper (Epinephelus coioides): cDNA cloning and differential mRNA expression. Journal of Steroid Biochemistry and Molecular Biology 92, 39–50.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×