Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T22:15:32.130Z Has data issue: false hasContentIssue false

16 - The functions of black-and-white coloration in mammals

Review and synthesis

Published online by Cambridge University Press:  05 June 2012

Tim Caro
Affiliation:
University of California at Davis, CA, USA
Martin Stevens
Affiliation:
University of Cambridge
Sami Merilaita
Affiliation:
Åbo Akademi University, Finland
Get access

Summary

Patches of black-and-white fur or skin are the subject of this chapter but they seem an unlikely form of camouflage. Conspicuous pelage conjures up aposematism or intraspecific communication (Wallace 1889) but we cannot take this for granted because three forms of camouflage may involve conspicuous coloration. These are disruptive coloration that relies on contrasting colours (Cott 1940; Cuthill & Szekely 2009; Stevens & Merilaita 2009), high-contrast markings that may draw the attention of the viewer, impeding detection or recognition of prey (Dimitrova et al. 2009), and background matching in environments that have dark shadows, or white snow and ice (Thayer 1909). Furthermore, aposematic colour patterns can be conspicuous nearby but cryptic at a distance (Marshall 2000; Tullberg et al. 2005; Gomez & Thery 2007). Unfortunately, there have been very few attempts to document or test theories about black-and-white coloration in mammals.

Here I categorise all terrestrial mammals into ten different groupings, and marine mammals into three, based principally on the placement and pattern of black-and-white patches of fur or skin. Then I use natural history and principles of animal coloration to suggest why certain species have evolved conspicuous coloration. Many of the great Victorian and twentieth-century naturalists debated issues of animal coloration in just such a way (Caro et al. 2008a, b). The novelty of my review is that it is comprehensive (although not completely exhaustive) but it faces some problems. First, I may have misclassified species because conspicuous coloration apparent in photographs or descriptions may not be conspicuous under natural conditions (see Wallace 1889; Poulton 1890; Thayer 1909; Hingston 1933).

Type
Chapter
Information
Animal Camouflage
Mechanisms and Function
, pp. 298 - 329
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, W.L., Cuthill, S. C., Scott-Samuel, N. E. & Baddeley, R. 2010. Why the leopard got its spots: relating pattern development to ecology in felids. Proceedings of the Royal Society, Series B,
Andersson, M. 1994. Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Armitage, K. B. 2009. Fur color diversity in marmots. Ethology Ecology and Evolution, 21, 183–194.CrossRefGoogle Scholar
Acevedo, J., Torres, D. & Aguayo-Lobo, A. 2009. Rare piebald and partially leucistic Antarctic fur seals, Arctocephalus gazella, at Cape Shirreff, Livingston Island, Antarctica. Polar Biology, 32, 41–45.CrossRefGoogle Scholar
Badyaev, A. V. & Hill, G. E. 2003. Avian sexual dichromatism in relation to phylogeny and ecology. Annual Review of Ecology, Evolution and Systematics, 34, 27–49.CrossRefGoogle Scholar
Barelli, C., Heistermann, M., Boesch, C. & Reichard, U. H. 2008. Mating patterns and sexual swellings in pair-living and multimale groups of wild white-handed gibbons, Hylobates lar. Animal Behaviour, 75, 991–1001.CrossRefGoogle Scholar
Bercovitch, F. B. 1996. Testicular function and scrotal coloration in patas monkeys. Journal of Zoology (London), 239, 93–100.CrossRefGoogle Scholar
Bicca-Marques, J. C. & Calegaro-Marques, C. 1998. Behavioral thermoregulation in a sexually and developmentally dichromatic neotropical primate, the black-and-gold howling monkey (Alouatta caraya). American Journal of Physical Anthropology, 106, 533–546.3.0.CO;2-J>CrossRefGoogle Scholar
Bradley, B. J. & Mundy, N. I. 2008. The primate palette: the evolution of primate coloration. Evolutionary Anthropology, 17, 97–111.CrossRefGoogle Scholar
Caro, T. 2005a. Antipredator Defenses in Birds and Mammals. Chicago, IL: University of Chicago Press.Google Scholar
Caro, T. 2005b. The adaptive significance of coloration in mammals. BioScience, 55, 125–136.CrossRefGoogle Scholar
Caro, T. & Stankowich, S. 2010. The function of contrasting pelage markings in artiodactyls. Behavioral Ecology, 21, 78–84.CrossRefGoogle Scholar
Caro, T., Merilaita, S. & Stevens, M. 2008a. The colours of animals: from Wallace to the present day. I. Cryptic coloration. In Natural Selection and Beyond: The Intellectual Legacy of Alfred Russel Wallace, eds. Smith, C. H. & Beccaloni, G.Oxford, UK: Oxford University Press, pp. 125–143.Google Scholar
Caro, T., Hill, G., Lindstrom, L. & Speed, M. 2008b. The colours of animals: from Wallace to the present day. II. Conspicuous coloration. In Natural Selection and Beyond: The Intellectual Legacy of Alfred Russel Wallace, eds. Smith, C. H. & Beccaloni, G.Oxford, UK: Oxford University Press, pp. 144–165.Google Scholar
Caro, T., Beeman, K., Stankowich, T. & Whitehead, H. in press. The functional significance of colouration in cetaceans. Evolutionary Ecology.
Changizi, M. A., Zhang, Q. & Shimojo, S. 2006. Bare skin, blood and the evolution of primate colour vision. Biology Letters, 2, 217–221.CrossRefGoogle ScholarPubMed
Clapham, P. J. 2000. The humpback whale: seasonal feeding and breeding in a baleen whale. In Cetacean Societies: Field Studies of Dolphins and Whales, eds. Mann, J., Connor, R. C., Tyack, P. L. & Whitehead, H.Chicago, IL: University of Chicago Press, pp. 173–196.Google Scholar
Clutton-Brock, T. H. & Harvey, P. H. 1976. Evolutionary rules and primate societies. In Growing Points in Ethology, eds. Bateson, P. P. G. & Hinde, R. A.Cambridge, UK: Cambridge University Press, pp. 195–237.Google Scholar
Cott, H. B. 1940. Adaptive Coloration in Animals. London: Methuen.Google Scholar
Cuthill, I. C. & Szekely, A. 2009. Coincident disruptive coloration. Philosophical Transactions of the Royal Society, Series B, 364, 489–496.CrossRefGoogle ScholarPubMed
Dawbin, W. H. 1988. Baleen whales. In Whales, Dolphins and Porpoises, eds. Harrison, R. & Bryden, M. M.New York, Facts on File, pp. 44–63.Google Scholar
Diamond, J. 2005. Geography and skin colour. Nature, 435, 283–284.CrossRefGoogle ScholarPubMed
Dimitrova, M., Stobbe, N., Schaefer, H. M. & Merilaita, S. 2009. Concealed by conspicuousness: distractive prey markings and backgrounds. Philosophical Transactions of the Royal Society, Series B, 276, 1905–1910.CrossRefGoogle ScholarPubMed
Dixson, A. F. 1998. Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes, and Human beings. Oxford, UK: Oxford University Press.Google Scholar
Domb, L. G. & Pagel, M. 2001. Sexual swellings advertise female quality in wild baboons. Nature, 410, 204–206.CrossRefGoogle ScholarPubMed
Donaldio, E. & Buskirk, S. W. 2006. Diet, morphology, and interspecific killing in Carnivora. American Naturalist, 167, 524–536.CrossRefGoogle Scholar
Drea, C. M. & Scordato, E. S. 2007. Olfactory communication in the ringtailed lemur (Lemur catta): form and function of multimodal signals. In Chemical Signals in Vertebrates 11, eds. Hurst, J. L., Benyon, R. J., Roberts, S. C. & Wyatt, T. D.Berlin: Springer, pp. 91–102.Google Scholar
Ducrest, A-L., Keller, L. & Roulin, A. 2008. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends in Ecology and Evolution, 23, 502–510.CrossRefGoogle ScholarPubMed
Endler, J. A. 1978. A predator's view of animal colour patterns. Evolutionary Biology, 11, 319–364.Google Scholar
Estes, R. D. 1991. The Behavior Guide to African Mammals. Berkeley, CA: University of California Press.Google Scholar
Fernandez, A. A. & Morris, M. R. 2007. Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. American Naturalist, 170, 10–20.CrossRefGoogle ScholarPubMed
Ficken, R. W., Matthiae, P. E. & Horwich, R. 1971. Eye marks in vertebrates: aids to vision. Science, 173, 936–938.CrossRefGoogle Scholar
Gaskin, D. E. 1967. Luminescence in a squid Moroteuthis sp. (probably ingens Smith), and a possible feeding mechanism in the sperm whale Physeter catodon L. Tuatara, 15, 86–88.Google Scholar
Geist, V. 1987. On the evolution of optical signals in deer: a preliminary analysis. In Biology and Management of the Cervidae, ed. Wemmer, C. M.Washington, DC: Smithsonian Institution Press, pp. 235–255.Google Scholar
Gerald, M. S. 2001. Primate colour predicts social status and aggressive outcome. Animal Behaviour, 61, 559–566.CrossRefGoogle Scholar
Gomez, D., & Théry, M. 2007. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a neotropical rainforest bird community. American Naturalist, 169, S42–S61.CrossRefGoogle ScholarPubMed
Griebel, U., & Peichl, L. 2003. Colour vision in aquatic mammals: facts and open questions. Aquatic Mammals, 29, 18–30.CrossRefGoogle Scholar
Grojean, R. E., Sousa, J. A. & Henry, M. C. 1980. Utilisation of solar radiation by polar animals: an optical model for pelts. Applied Optics, 19, 339–346.CrossRefGoogle Scholar
Guthrie, R. D. 1971a. A new theory of mammalian rump patch evolution. Behaviour, 38, 132–145.CrossRefGoogle Scholar
Guthrie, R. D. 1971b. The evolutionary significance of the cervid labial spot. Journal of Mammalogy, 32, 209–211.CrossRefGoogle Scholar
Hailman, J. P. 1977. Optical Signals: Animal Communication and Light. Bloomington, IN: Indiana University Press.Google Scholar
Hamilton, W.J. III. 1973. Life's Color Code. New York: McGraw-Hill.Google Scholar
Hamilton, W. J. 1984. Significance of paternal investment by primates to the evolution of male–female associations. In Primate Paternalism, ed. Taub, D. M.New York: Van Nostrand Rheinhold, pp. 57–74.Google Scholar
Hershkovitz, P. 1968. Metachromism or the principle of evolutionary change in mammalian tegumentary colors. Evolution, 22, 556–575.CrossRefGoogle ScholarPubMed
Hetem, R. S., de Witt, B. A., Fick, L. G.et al. 2009. Body temperature, thermoregulatory behaviour and pelt characteristics of three colour morphs of springbok (Antidorcas marsupialis). Comparative Biochemistry and Physiology A, 152, 379–388.CrossRefGoogle Scholar
Heth, G., Beiles, A, & Nevo, E. 1988. Adaptive variation of pelage color within and between species of the subterranean mole rat (Spalax ehrenbergi) in Israel. Oecologia, 74, 617–622.CrossRefGoogle Scholar
Hingston, R. W. G. 1932. A Naturalist in the Guiana Forest. New York: Longmans, Green.Google Scholar
Hingston, R. W. G. 1933. The Meaning of Animal Colour and Adornment. London: Edward Arnold.Google Scholar
Horvath, G., Blaho, M., Kriska, G.et al. 2010. An unexpected advantage of whiteness in horses: the most horsefly-proof horse has a depolarizing white coat. Proceedings of the Royal Society, Series B, 277, 1643–1650.CrossRefGoogle Scholar
Houston, A. I., Stevens, M. & Cuthill, I. C. 2007. Animal camouflage: compromise or specialize in a two patch-type environment? Behavioral Ecology, 18, 769–775.CrossRefGoogle Scholar
Hrdy, S. B. 1979. Infanticide among animals: a review, classification, and examination of implicatrions for the reproductive strategies of females. Ethology and Sociobiology, 1, 13–40CrossRefGoogle Scholar
Hrdy, S. B. 1981. The Woman that Never Evolved. Cambridge, MA: Harvard University Press.Google Scholar
Hrdy, S. B. & Whitten, P. L. 1987. Patterning of sexual activity. In Primate Societies, eds. Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W. & Struhsaker, T. T.Chicago, IL: University of Chicago Press, pp. 370–384.Google Scholar
Hunter, J. S. 2009. Familiarity breeds contempt: effects of striped skunk color, shape, and abundance on wild carnivore behavior. Behavioral Ecology, 20, 1315–1322.CrossRefGoogle Scholar
Hunter, J. & Caro, T. 2008. Interspecific competition and predation in American carnivore families. Ethology, Ecology, and Evolution, 20, 295–324.CrossRefGoogle Scholar
Jacobs, G. H. 1993. The distribution and nature of colour vision among the mammals. Biological Reviews, 68, 413–444.CrossRefGoogle ScholarPubMed
Kamler, J. F. 2007. Ear flashing behaviour of cape hares (Lepus capensis) in South Africa. African Journal of Ecology, 46, 434–444.Google Scholar
Kiley-Worthington, M. 1976. Tail movements of ungulates, canids and felids with particular reference to their causation and function as displays. Behaviour, 56, 69–115.CrossRefGoogle Scholar
Kiltie, R. A. 1988. Countershading: universally deceptive or deceptively universal? Trends in Ecology and Evolution, 3, 21–23.CrossRefGoogle ScholarPubMed
Kingdon, J. 1979. East African Mammals, Part IIIb, Large Mammals. London: Academic Press.Google Scholar
Kingdon, J. 1984. The zebra's stripes: an aid to group cohesion? In The Encylopedia of Mammals, ed. Macdonald, D. W.London: Allen & Unwin, pp. 486–487.Google Scholar
Koon, D. W. 1998. Is polar bear hair fiber optic? Applied Optics, 37, 3198–3200.CrossRefGoogle ScholarPubMed
Krupa, J. J. & Geluso, K. N. 2000. Matching the color of excavated soil: cryptic coloration in the plains pocket gopher (Geomys bursarius). Journal of Mammalogy, 81, 86–96.2.0.CO;2>CrossRefGoogle Scholar
Kruuk, H. 1972. The Spotted Hyaena. Chicago, IL: University of Chicago Press.Google Scholar
Lai, Y.-C., Shiroishi, T., Moriwaki, K., Motokawa, M., & Yu, H-T. 2008. Variation in coat color in house mice throughout Asia. Journal of Zoology (London), 274, 270–276.CrossRefGoogle Scholar
Lariviere, S. & Messier, F. 1996. Aposematic behavior in the striped skunk, Mephitis mephitis. Ethology, 102, 986–992.CrossRefGoogle Scholar
Litvaitis, J. A. 1991. Habitat use by snowshoe hares, Lepus americanus, in relation to pelage color. Canadian Field Naturalist, 105, 275–277.Google Scholar
Lorenz, K. 1966. On Aggression. New York: Harcourt, Brace & Jovanovich.Google Scholar
Loucks, C. J., Zhi, L., Dinerstein, E.et al. 2003. The giant pandas of the Qiling Mountains, China: a case study in designing conservation landscapes for elevational migrants. Conservation Biology, 17, 558–565.CrossRefGoogle Scholar
Macdonald, D. W. 1985. The carnivores: Order Carnivora. In Social Odours in Mammals, eds. Brown, R. E. & Macdonald, D. W.Oxford, UK: Clarendon Press, pp. 619–722.Google Scholar
Macdonald, D. W. (ed.) 2006. The Encyclopedia of Mammals, 2nd edn. New York: Facts on File.Google Scholar
Marshall, N. J. 2000. Communication and camouflage with the same ‘bright’ colours in reef fishes. Philosophical Transactions of the Royal Society, Series B, 355, 1243–1248.CrossRefGoogle ScholarPubMed
Merilaita, S. 1998. Crypsis through disruptive coloration in an isopod. Philosophical Transactions of the Royal Society, Series B,. 265, 1059–1064.CrossRefGoogle Scholar
Merilaita, S., Lyytinen, A. & Mappes, J. 2001. Selection for cryptic coloration in a visually heterogeneous habitat. Philosophical Transactions of the Royal Society, Series B, 268, 1925–1929.CrossRefGoogle Scholar
Mitchell, E. 1970. Pigmentation pattern in delphinid cetaceans: an essay in adaptive radiation. Canadian Journal of Zoology, 48, 717–740.CrossRefGoogle Scholar
Montgomerie, R. D., Lyon, B. & Holder, K. 2001. Dirt plumage: behavioral modification of conspicuous male plumage. Behavioral Ecology, 12, 429–438.CrossRefGoogle Scholar
Morris, R. 1988. The world of the senses. In: Whales, Dolphins and Porpoises, eds. Harrison, R. & Bryden, M. M.New York: Facts on File, pp. 122–133.Google Scholar
Murray, J. D. 1981. A pre-pattern formation mechanism for animal coat markings. Journal of Theoretical Biology, 88, 161–199.CrossRefGoogle Scholar
Newman, C., Buesching, C. D. & Wolff, J. O. 2005. The function of facial masks in ‘midguild’ carnivores. Oikos, 108, 623–633.CrossRefGoogle Scholar
Nowak, R. M. 1999. Walker's Mammals of the World, 6th edn. Baltimore, MD: John Hopkins University Press.Google Scholar
Nunn, C. L. 1999. The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Animal Behaviour, 58, 229–246.CrossRefGoogle ScholarPubMed
Ortolani, A. 1999. Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method. Biological Journal of the Linnean Society, 67, 433–476.CrossRefGoogle Scholar
Ortolani, A. & Caro, T. M. 1996. The adaptive significance of color patterns in carnivores: phylogenetic tests of classic hypotheses. In Carnivore Behavior, Ecology, and Evolution, ed. Gittleman, J. L.Ithaca, NY: Cornell University Press, pp. 132–188.Google Scholar
Palomares, F. & Caro, T. M. 1999. Interspecific killing among mammalian carnivores. American Naturalist, 153, 482–508.CrossRefGoogle ScholarPubMed
Pereira, M. E., Seeligson, M. L. & Macedonia, J. M. 1988. The behavioral repertoire of the black-and-white ruffed lemur, Varecia variegata variegata (Primates: Lemuridae). Folia Primatologica, 51, 1–32.CrossRefGoogle Scholar
Perrin, W. F. 2009. Coloration. In Encyclopedia of Marine Mammals, 2nd edn, eds. Perrin, W. F., Wursig, B. & Thewissen, J.G.M.Amsterdam: Elsevier, pp. 243–249.CrossRefGoogle Scholar
Poulton, E. B. 1890. The Colours of Animals. London: Kegan Paul, Trench, Trubner.Google Scholar
Powell, R. A. 1982. Evolution of black-tipped tails in weasels: predator confusion. American Naturalist, 119, 126–131.CrossRefGoogle Scholar
Prange, S., & Gehrt, S. D. 2007. Response of skunks to a simulated increase in coyote activity. Journal of Mammalogy, 88, 1040–1049.CrossRefGoogle Scholar
Ralls, K. & Mesnick, S. 2009. Sexual dimorphism. In Encyclopedia of Marine Mammals, 2nd edn, eds. Perrin, W. F., Wursig, B. & Thewissen, J.G.M.Amsterdam: Elsevier, pp. 1005–1011.CrossRefGoogle Scholar
Richard, A. F. 1985. Primates in Nature. New York: W.H. Freeman.Google Scholar
Riedman, M. 1990. The Pinnipeds: Seals, Sea Lions, and Walruses. Berkeley, CA: University of California Press.Google Scholar
Roulin, A. & Altwegg, R. 2007. Breeding rate is associated with pheomelanism in male and with eumelanism in female barn owls. Behavioral Ecology, 18, 563–570.CrossRefGoogle Scholar
Rounds, R. C. 1987. Distribution and analysis of colourmorphs of the black bear (Ursus americanus). Journal of Biogeography, 14, 521–538.CrossRefGoogle Scholar
Rowland, H. M. 2009. From Abbott Thayer to the present day: What have we learned about the function of countershading? Philosophical Transactions of the Royal Society, Series B, 364, 519–527.
Russell, J. E. & Tumlison, R. 1996. Comparison of microstructure of white winter fur and brown summer fur of some arctic mammals. Acta Zoologica, 77, 279–282.CrossRefGoogle Scholar
Ruxton, G. D. 2002. The possible fitness benefits of striped coat coloration for zebra. Mammal Review, 32, 237–244.CrossRefGoogle Scholar
Ruxton, G. D., Speed, M. P. & Kelly, D. J. 2004. What, if anything, is the adaptive function of countershading? Animal Behaviour, 68, 445–451.CrossRefGoogle Scholar
Schaefer, H. M. & Stobbe, N. 2006. Disruptive coloration provides camouflage independent of background matching. Philosophical Transactions of the Royal Society, Series B, 273, 2427–2432.CrossRefGoogle ScholarPubMed
Senar, J. C. 2006. Color displays as intrasexual signals of aggression and dominance. In Bird Coloration, vol. 2, Function and Evolution, eds. Hill, G. E. & McGraw, K. J.Cambridge, MA: Harvard University Press, pp. 87–136.Google Scholar
Sergeant, D. E. 1958. Dolphins in Newfoundland waters. Canadian Field Naturalist, 72, 156–159.Google Scholar
Setchell, J. M. & Dixson, A. F. 2001. Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39, 177–184.CrossRefGoogle ScholarPubMed
Setchell, J. M. & Wickings, E. J. 2003. Sexual swellings in mandrills (Mandrillus sphinx): a test of the reliable indicator hypothesis. Behavioral Ecology, 15, 438–445.CrossRefGoogle Scholar
Sherratt, T. N. & Beatty, C. D. 2003. The evolution of warning signals as reliable indicators of prey defense. American Naturalist, 162, 377–389.CrossRefGoogle ScholarPubMed
Shirihai, H. & Jarrett, B. 2006. Whales, Dolphins and Other Marine Mammals of the World. Princeton, NJ: Princeton University Press.Google Scholar
Speed, M. P. & Ruxton, G. D. 2005. Warning displays in spiny animals: one (more) evolutionary route to aposematism. Evolution, 59, 2499–2508.CrossRefGoogle ScholarPubMed
Stankowich, T. 2008. Tail-flicking, tail-flagging, and tail position in ungulates with special reference to black-tailed deer. Ethology, 114, 875–885.CrossRefGoogle Scholar
Steen, J. B., Erikstad, K. E., & Hoidal, K. 1992. Cryptic behaviour in moulting hen willow ptarmigan Lagopus l. lagopus during snow melt. Ornis Scandinavia, 23, 101–104.CrossRefGoogle Scholar
Stevens, M. 2005. The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biological Reviews, 80, 573–588.CrossRefGoogle ScholarPubMed
Stevens, M. 2007. Predator perception and the interrelation between different forms of protective coloration. Philosophical Transactions of the Royal Society, Series B, 274, 1457–1464.CrossRefGoogle ScholarPubMed
Stevens, M. & Merilaita, S. 2009. Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society, Series B, 364, 481–488.CrossRefGoogle ScholarPubMed
Stevens, M., Cuthill, I. C., Windsor, A. M. M., & Walker, H. J. 2006. Disruptive contrast in animal camouflage. Philosophical Transactions of the Royal Society, Series B, 273, 2433–2438.CrossRefGoogle ScholarPubMed
Stevens, M., Parraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. 2007. Using digital photography to study animal coloration. Biological Journal of the Linnean Society, 90, 211–237.CrossRefGoogle Scholar
Stevens, M., Graham, J., Winney, I. S. & Cantor, A. 2008. Testing Thayer's hypothesis: can camouflage work by distraction? Biology Letters, 4, 648–650.CrossRefGoogle ScholarPubMed
Stoner, C. J., Caro, T. M. & Graham, C. M. 2003a. Ecological and behavioral correlates of coloration in artiodactyls: systematic analyses of conventional hypotheses. Behavioral Ecology, 14, 823–840.CrossRefGoogle Scholar
Stoner, C. J., Bininda-Emonds, O.R.P. & Caro, T. 2003b. The adaptive significance of coloration in lagomorphs. Biological Journal of the Linnean Society, 79, 309–328.CrossRefGoogle Scholar
Sumner, P. & Mollon, J. D. 2003. Colors of primate pelage and skin: objective assessment of conspicuousness. American Journal of Primatology, 59, 67–91.CrossRefGoogle ScholarPubMed
Tershy, B. R. & Wiley, D. N. 1992. Asymmetrical pigmentation in the fin whale: a test of two feeding related hypotheses. Marine Mammal Science, 8, 315–318.CrossRefGoogle Scholar
Thayer, A. G. 1909. Concealing Coloration in the Animal Kingdom. New York: Macmillan.Google Scholar
Thayer, A. H. 1896. The law which underlies protective coloration. The Auk, 13, 477–482.Google Scholar
Tinbergen, N. 1953. Social Behaviour in Animals. London: Chapman & Hall.Google Scholar
Tullberg, B. S., Merliaita, S. & Wiklund, C. 2005. Aposematism and crypsis is combined as a result of distance dependence: functional versatility of the colour pattern in swallowtail butterfly larva. Philosophical Transactions of the Royal Society, Series B, 272, 1315–1321.CrossRefGoogle ScholarPubMed
Waage, J. K. 1981. How the zebra got its stripes: biting flies as selective agents in the evolution of zebra colouration. Journal of the Entomological Society of South Africa, 44, 351–358.Google Scholar
Wallace, A. R. 1879. The protective colours of animals. Science for All, 2, 128–137.Google Scholar
Wallace, A. R. 1889. Darwinism. London: Macmillan.Google Scholar
Walsberg, G. E. 1983. Coat color and solar heat gain in animals. BioScience, 33, 88–91.CrossRefGoogle Scholar
Walsberg, G. E. & Schmidt, C. A. 1989. Seasonal adjustment of solar heat gain in a desert mammal by altering coat properties independently of surface coloration. Journal of Experimental Biology, 142, 387–400.Google Scholar
Watkins, W. A. & Schevill, W. E. 1979. Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus. Journal of Mammalogy, 60, 155–163.CrossRefGoogle Scholar
West, P. M. & Packer, C. 2002. Sexual selection, temperature and the lion's mane. Science, 297, 1339–1343.CrossRefGoogle ScholarPubMed
Wilson, R. P., Ryan, P. G., James, A. & Wilson, M-P. T. 1987. Conspicuous coloration may enhance prey capture in some piscivores. Animal Behaviour, 35, 1558–1560.CrossRefGoogle Scholar
Wursig, B., Kieckhefer, T. & Jefferson, T. A. 1990. Visual displays for communication in cetaceans. In Sensory Abilities of Cetaceans: Laboratory and Field Evidence, eds. Thomas, J. A. & Kastelein, R. A.New York: Plenum Press, pp. 545–559.CrossRefGoogle Scholar
Yablokov, A. V. 1963. O typakh okraski kitoobraznykh. Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Biologischeskii, 68 (6), 27–41. (Types of colour of the Cetacea. Bull Moscow Soc Nat. Biol. Dep. Fish. Res. Board Transl. Ser. No. 1239.)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×