Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T03:10:37.224Z Has data issue: false hasContentIssue false

14 - The multiple disguises of spiders

Published online by Cambridge University Press:  05 June 2012

Marc Théry
Affiliation:
Muséum National d’Histoire Naturelle, Brunoy, France
Teresita C. Insausti
Affiliation:
Université de Tours, France
Jérémy Defrize
Affiliation:
Université de Tours, France
Jérôme Casas
Affiliation:
Université de Tours, France
Martin Stevens
Affiliation:
University of Cambridge
Sami Merilaita
Affiliation:
Åbo Akademi University, Finland
Get access

Summary

This chapter aims at a broad exploration of the literature pertinent to the subject of spider camouflage, from web colour and decorations, body colour to movement. It is an extended and updated version of a previous paper (Théry & Casas 2009). Several functions have been assigned to spider web decorations, the most extensively studied being visually related, like camouflage from predator and/or prey, prey attraction and signalling to animals that are likely to damage the web (Herberstein et al. 2000; Bruce 2006). The function of these structures is highly controversial, as also are other visual aspects of spider ecology, like the appearance of spiders themselves. Moreover, a few spider species have the ability to change their body coloration, a peculiarity that has been suggested to improve camouflage or to constitute a form of aggressive mimicry (Oxford & Gillespie 1998). Are such visual appearances used to lure prey, deter predators or hide from predators or prey?

Type
Chapter
Information
Animal Camouflage
Mechanisms and Function
, pp. 254 - 274
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, K., Reed, S. M. & Masta, S. E. 2007. Spiders fluoresce variably across many taxa. Biology Letters, 3, 265–267.CrossRefGoogle ScholarPubMed
Bjorkman-Chiswell, B. T., Kulinski, M. M., Muscat, R. L.et al. 2004. Web-building spiders attract prey by storing decaying matter. Naturwissenschaften, 91, 245–248.CrossRefGoogle ScholarPubMed
Blackledge, T. A. & Wenzel, J. W. 1999. Do stabilimenta in orb webs attract prey or defend spiders? Behavioral Ecology, 10, 372–376.CrossRefGoogle Scholar
Blackledge, T. A. & Wenzel, J. W. 2000. The evolution of cryptic spider silk: a behavioral test. Behavioral Ecology, 11, 142–145.CrossRefGoogle Scholar
Blamires, S. J., Hochuli, D. F. & Thompson, M. B. 2008. Why cross the web: decoration spectral properties and prey capture in an orb spider (Argiope keyserlingi) web. Biological Journal of the Linnean Society, 94, 221–229.CrossRefGoogle Scholar
Brechbühl, R., Casas, J. & Bacher, S. 2010. Ineffective crypsis in a crab spider: a prey community perspective. Proceedings of the Royal Society, Series B, 277, 739–746.CrossRefGoogle Scholar
Briffa, M., Haskell, P. & Wilding, C. 2008. Behavioural colour change in the hermit crab Pagurus bernhardus: reduced crypticity when the threat of predation is high. Behaviour, 145, 915–929.CrossRefGoogle Scholar
Bruce, M. J. 2006. Silk decorations: controversy and consensus. Journal of Zoology (London), 269, 89–97.CrossRefGoogle Scholar
Bruce, M. J., Herberstein, M. E. & Elgar, M. A. 2001. Signalling conflict between prey and predator attraction. Journal of Evolutionary Biology, 14, 786–794.CrossRefGoogle Scholar
Bruce, M. J., Heiling, A. M. & Herberstein, M. E. 2005. Spider signals: are web decorations visible to birds and bees? Biology Letters, 1, 299–302.CrossRefGoogle ScholarPubMed
Bush, A. A., Yu, D. W. & Herberstein, M. E. 2008. Function of bright coloration in the wasp spider Argiope bruennichi (Araneae: Araneidae). Proceedings of the Royal Society, Series B, 275, 1337–1342.CrossRefGoogle Scholar
Cheng, R.-C. & Tso, I.-M. 2007. Signaling by decorating webs: luring prey or deterring predators? Behavioral Ecology, 18, 1085–1091.CrossRefGoogle Scholar
Cheng, R.-C., Yang, E.-C., Lin, C.-P., Herberstein, M. E. & Tso, I.-M. 2010. Insect form vision as one potential shaping force of spider web decoration design. Journal of Experimental Biology, 213, 759–768.CrossRefGoogle ScholarPubMed
Chiao, C. C., Wu, W. Y., Chen, S. H. & Yang, E. C. 2009. Visualization of the spatial and spectral signals of orb-weaving spiders, Nephila pilipes, through the eyes of a honeybee. Journal of Experimental Biology, 212, 2269–2278.CrossRefGoogle ScholarPubMed
Chittka, L. 2001. Camouflage of predatory crab spiders on flowers and the colour perception of bees (Aranida: Thomisidae/Hymenoptera: Apidae). Entomologia Generalis, 25, 181–187.CrossRefGoogle Scholar
Chou, I.-C., Wang, P.-H., Shen, P.-S. & Tso, I.-M. 2005. A test of prey-attracting and predator defence functions of prey carcass decorations built by Cyclosa spiders. Animal Behaviour, 69, 1055–1061.CrossRefGoogle Scholar
Chuang, C.-Y., Yang, E.-C. & Tso, I.-M. 2007. Diurnal and nocturnal prey luring of a colorful predator. Journal of Experimental Biology, 210, 3830–3837.CrossRefGoogle ScholarPubMed
Chuang, C.-Y., Yang, E.-C. & Tso, I.-M. 2008. Deceptive color signaling in the night: a nocturnal predator attracts prey with visual lures. Behavioral Ecology, 19, 237–244.CrossRefGoogle Scholar
Craig, C. L. 1986. Orb-web visibility: the influence of insect flight behaviour and visual physiology on the evolution of web designs within the Araneoidea. Animal Behaviour, 34, 54–68.CrossRefGoogle Scholar
Craig, C. L. 1988. Insect perception of spider webs in three light environments. Functional Ecology, 2, 277–282.CrossRefGoogle Scholar
Craig, C. L. 1990. Effects of background pattern on insect perception of webs spun by orb-weaving spiders. Animal Behaviour, 39, 135–144.CrossRefGoogle Scholar
Craig, C. L. & Bernard, G. D. 1990. Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology, 71, 616–623.CrossRefGoogle Scholar
Craig, C. L. & Freeman, C. R. 1991. Effects of predator visibility on prey encounter: a case study on aerial web weaving spiders. Behavioral Ecology and Sociobiology, 29, 249–254.CrossRefGoogle Scholar
Craig, C. L., Weber, R. S. & Bernard, G. D. 1996. Evolution of predator–prey systems: spider foraging plasticity in response to the visual ecology of prey. American Naturalist, 147, 205–229.CrossRefGoogle Scholar
Cushing, P. E. 1997. Myrmecomorphy and myrmecophily in spiders: a review. Florida Entomologist, 80, 165–193.CrossRefGoogle Scholar
Defrize, J., Théry, M. & Casas, J. 2010. Background colour matching by a crab spider in the field: a community sensory ecology perspective. Journal of Experimental Biology, 213, 1425–1435.CrossRefGoogle ScholarPubMed
Dontsov, A. E. 1999. Comparative study of spectral and antioxidant properties of pigments from the eyes of two Mysis relicta (Crustacea, Mysidacea) populations, with different light damage resistence. Journal of Comparative Physiology B, 169, 157–164.CrossRefGoogle Scholar
Dontsov, A. E., Lapina, V. A. & Ostrovsky, M. A. 1984. Photoregeneration of O2 by ommochromes and their role in the system of antioxidative protection of invertebrate eye cells. Biofizika, 29, 878–882.Google Scholar
Eberhard, W. G. 2003. Substitution of silk stabilimenta for egg sacs by Allocyclosa bifurca (Araneae: Araneidae) suggests that silk stabilimenta function as camouflage devices. Behaviour, 140, 847–868.CrossRefGoogle Scholar
Eisner, T. & Nowicki, S. 1983. Spider-web protection through visual advertisment: role of the stabilimentum. Science, 219, 185–187.CrossRefGoogle Scholar
Elgar, M. A., Allan, R. A. & Evans, T. A. 1996. Foraging strategies in orb-spinning spiders: ambient light and silk decorations in Argiope aetherea Walckenaer (Araneae: Araneoidea). Austral Ecology, 21, 464–467.CrossRefGoogle Scholar
Endler, J. A. 1984. Progressive background in moths, and a quantitative measure of crypsis. Biological Journal of the Linnean Society, 22, 187–231.CrossRefGoogle Scholar
Fan, C. M., Yang, E. C. & Tso, I. M. 2009. Hunting efficiency and predation risk shapes the color-associated foraging traits of a predator. Behavioral Ecology, 20, 808–816.CrossRefGoogle Scholar
Fuzeau-Braesch, S. 1985. Colour changes. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, eds. Kerkut, G. A. & Gilbert, L. I.Oxford, UK: Pergamon Press, pp. 549–589.Google Scholar
Gabritschevsky, E. 1927. Experiments on color changes and regeneration in the crab-spider, Misumena vatia. Journal of Experimental Zoology, 47, 251–267.CrossRefGoogle Scholar
Gawryszewski, F. M. & Motta, P. C. 2008. The silk tuft web decorations of the orb-weaver Gasteracantha cancriformis: testing the prey attraction and the web advertisement hypotheses. Behaviour, 145, 277–295.CrossRefGoogle Scholar
Godar, D. E. 2005. UV doses worldwide. Photochemistry and Photobiology, 81, 736–749.CrossRefGoogle ScholarPubMed
Gonzaga, M. O. & Vasconcellos-Neto, J. 2005. Testing the functions of detritus stabilimenta in webs of Cyclosa fililineata and Cyclosa morretes (Araneae: Araneidae): do they attract prey or reduce the risk of predation? Ethology, 111, 479–491.CrossRefGoogle Scholar
Hamilton, P. S., Gaalema, D. E. & Sullivan, B. K. 2008. Short-term changes in dorsal reflectance for background matching in Ornate Tree Lizards (Urosaurus ornatus). Amphibia–Reptilia, 29, 473–477.CrossRefGoogle Scholar
Hanlon, R. 2007. Cephalopod dynamic camouflage. Current Biology, 17, 400–404.CrossRefGoogle ScholarPubMed
Heckel, E. 1891. Sur le mimétisme de Thomisus onustus. Bulletin Scientifique de la France et de la Belgique, 23, 347–354.Google Scholar
Heiling, A. M. & Herberstein, M. E. 2004. Predator–prey coevolution: Australian native bees avoid their spider predators. Proceedings of the Royal Society, Series B, 271 (Suppl.), S196–S198.CrossRefGoogle ScholarPubMed
Heiling, A. M., Herberstein, M. E. & Chittka, L. 2003. Crab-spiders manipulate flower signals. Nature, 421, 334.CrossRefGoogle ScholarPubMed
Heiling, A. M., Cheng, K., Chittka, L., Goeth, A. & Herberstein, M. E. 2005a. The role of UV in crab spider signals: effects on perception by prey and predators. Journal of Experimental Biology, 208, 3925–3931.CrossRefGoogle ScholarPubMed
Heiling, A. M., Chittka, L., Cheng, K. & Herberstein, M. E. 2005b. Colouration in crab spiders: substrate choice and prey attraction. Journal of Experimental Biology, 208, 1785–1792.CrossRefGoogle ScholarPubMed
Heiling, A. M., Cheng, K. & Herberstein, M. E. 2006. Picking the right spot: crab spiders position themselves on flowers to maximize prey attraction. Behaviour, 143, 957–968.CrossRefGoogle Scholar
Hemmi, J. H., Marshall, J., Pix, W., Vorobyev, M. & Zeil, J. 2006. The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. Journal of Experimental Biology, 209, 4140–4153.CrossRefGoogle ScholarPubMed
Herberstein, M. E. & Fleisch, A. F. 2003. Effect of abiotic factors on the foraging strategy of the orb-web spider Argiope keyserlingi (Araneae: Araneidae). Austral Ecology, 28, 622–628.CrossRefGoogle Scholar
Herberstein, M. E., Craig, C. L., Coddington, J. A. & Elgar, M. A. 2000. The functional significance of silk decorations of orb-web spiders: a critical review of the empirical evidence. Biological Reviews, 75, 649–669.CrossRefGoogle ScholarPubMed
Herberstein, M. A., Heiling, A. M. & Cheng, K. 2009. Evidence for UV-based sensory exploitation in Australian but not European crab spiders. Evolutionary Ecology, 23, 621–634.CrossRefGoogle Scholar
Insausti, T. C. & Casas, J. 2008. The functional morphology of color changing in a spider: development of ommochrome pigment granules. Journal of Experimental Biology, 211, 780–789.CrossRefGoogle Scholar
Insausti, T. C. & Casas, J. 2009. Turnover of pigment granules: cyclic catabolism and anabolism within epidermal cells. Tissue and Cell, 41, 421–429.CrossRefGoogle ScholarPubMed
Kayser, H. 1985. Pigments. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, eds. Kerkut, G. A. & Gilbert, L. I.Oxford, UK: Pergamon Press, pp. 367–415.Google Scholar
King, R. B., Hauff, S. & Phillips, J. B. 1994. Physiological color change in the green treefrog: responses to background brightness and temperature. Copeia, 2, 422–432.CrossRefGoogle Scholar
Krupa, J. K. & Geluso, K. N. 2000. Matching the color of excavated soil: cryptic coloration in the plains pocket gopher (Geomys bursarius). Journal of Mammalogy, 81, 86–96.2.0.CO;2>CrossRefGoogle Scholar
Langer, H. 1975. Properties and functions of screening pigments in insects' eyes. In Photoreceptor Optics, eds. Snyder, A. W. & Menzel, R.Berlin: Springer, pp. 429–455.Google Scholar
Li, D. 2005. Spiders that decorate their webs at higher frequency intercept more prey and grow faster. Proceedings of the Royal Society, Series B, 272, 1753–1757.CrossRefGoogle ScholarPubMed
Li, D., Lim, M. L. M., Seah, W. K. & Tay, S. L. 2004. Prey attraction as a possible function of discoid stabilimenta of juvenile orb-spinning spiders. Animal Behaviour, 68, 629–635.CrossRefGoogle Scholar
Lim, M. L. M., Land, M. F. & Li, D. 2007. Sex-specific UV and fluorescence signals in jumping spiders. Science, 315, 481.CrossRefGoogle ScholarPubMed
Linzen, B. 1974. The tryptophan → ommochrome pathway in insects. In Advances in Insect Physiology, eds. Treherne, J. E., Berridge, M. J. & Wigglesworth, V. B.London: Academic Press, pp. 117–246.Google Scholar
Mackenzie, S. M., Howells, A. J., Cox, G. B. & Ewart, G. D. 2000. Sub-cellular localisation of the White/Scarlet ABC transporter to pigment granule membranes within the compound eye of Drosophila melanogaster. Genetica, 108, 239–252.CrossRefGoogle ScholarPubMed
Mäthger, L. M., Chiao, C. C., Barbosa, A. & Hanlon, R. T. 2008. Color matching on natural substrates in cuttlefish, Sepia officinalis. Journal of Comparative Physiology A, 194, 577–585.CrossRefGoogle ScholarPubMed
McIver, J. D. & Stonedahl, G. 1993. Myrmecomorphy: morphological and behavioral mimicry of ants. Annual Review of Entomology, 38, 351–379.CrossRefGoogle Scholar
Millot, J. 1926. Contributions à l'histophysiologie des araneides. Bulletin Biologique de la France et de la Belgique, 8 (Suppl.), 1–283.Google Scholar
Morse, D. H. 2007. Predator upon a Flower: Life History and Fitness in a Crab Spider. Cambridge, MA: Harvard University Press.Google Scholar
Nakata, K. 2008. Spiders use airborne cues to respond to flying insect predators by building orb-web with fewer silk thread and larger silk decorations. Ethology, 114, 686–692.CrossRefGoogle Scholar
Nakata, K. 2009. To be or not to be conspicuous: the effects of prey availability and predator risk on spider's web decoration building. Animal Behaviour, 78, 1255–1260.CrossRefGoogle Scholar
Needham, A. E. 1974. The Significance of Zoochromes. Berlin: Springer.CrossRefGoogle Scholar
Nelson, X. J. & Jackson, R. R. 2006. Vision-based innate aversion to ants and ant mimics. Behavioral Ecology, 17, 676–681.CrossRefGoogle Scholar
Nelson, X. J. & Jackson, R. R. 2007. Vision-based ability of an ant-mimicking jumping spider to discriminate between models, conspecific individuals and prey. Insectes Sociaux, 54, 1–4.CrossRefGoogle Scholar
Nelson, X. J. & Jackson, R. R. 2009a. Prey classification by an araneophagic ant-like jumping spider (Araneae: Salticidae). Journal of Zoology, 279, 173–179.CrossRefGoogle Scholar
Nelson, X. J. & Jackson, R. R. 2009b. Aggressive use of Batesian mimicry by an ant-like jumping spider. Biology Letters, 5, 755–757.CrossRefGoogle ScholarPubMed
Nelson, X. J., Jackson, R. R., Li, D., Barrion, A. T. & Edwards, G. B. 2006a. Innate aversion to ants (Hymenoptera: Formicidae) and ant mimics: experimental findings from mantises (Mantodea). Biological Journal of the Linnean Society, 88, 23–32.CrossRefGoogle Scholar
Nelson, X. J., Li, D. & Jackson, R. R. 2006b. Out of the frying pan and into the fire: a novel trade-off for Batesian mimics. Ethology, 112, 270–277.CrossRefGoogle Scholar
Norris, K. S. & Lowe, C. H. 1964. An analysis of background color-matching in amphibians and reptiles. Ecology, 45, 565–580.CrossRefGoogle Scholar
Ostrovsky, M. A. & Fedorovich, I. B. 1994. Retinal as sensitizer of photodamage to retinal proteins of eye retina. Biofisika, 39, 13–25.Google Scholar
Ostrovsky, M. A., Sakina, N. L. & Dontsov, A. E. 1987. An antioxidative role of ocular screening pigments. Vision Research, 27, 893–899.CrossRefGoogle ScholarPubMed
Oxford, G. S. 2005. Genetic drift within a protected polymorphism: enigmatic variation in color-polymorph frequencies in the candy-stripe spider, Enoplognatha ovata. Evolution, 59, 2170–2184.CrossRefGoogle ScholarPubMed
Oxford, G. S. & Gillespie, R. G. 1998. Evolution and ecology of spider coloration. Annual Review of Entomology, 43, 619–643.CrossRefGoogle ScholarPubMed
Oxford, G. S. & Gillespie, R. G. 2001. Portraits of evolution: studies of coloration in Hawaiian spiders. BioSciences, 51, 521–528.CrossRefGoogle Scholar
Rao, D., Webster, M., Heiling, A. M., Bruce, M. J. & Herberstein, M. E. 2009. The aggregating behaviour of Argiope radon, with special reference to web decorations. Journal of Ethology, 27, 35–42.CrossRefGoogle Scholar
Sakina, N. L., Dontsov, A. E., Lapina, V. A. & Ostrovsky, M. A. 1987. Protective system of eye structures from photoinjury. II. Screening pigments of arthropods – ommochromes – as inhibitors of photooxidative processes. Journal of Evolutionary Biochemistry and Physiology, 23, 702–706.Google Scholar
Seah, W. K. & Li, D. 2001. Stabilimenta attract unwelcome predators to orb-webs. Proceedings of the Royal Society, Series B, 268, 1553–1558.CrossRefGoogle ScholarPubMed
Seligy, V. L. 1972. Ommochrome pigments of spiders. Comparative Biochemistry and Physiology A, 42, 699–709.CrossRefGoogle Scholar
Starks, P. T. 2002. The adaptive significance of stabilimentum in orb-webs: a hierarchical approach. Annales Zoologici Fennici, 39, 307–315.Google Scholar
Stavenga, D. G. 1989. Pigments in compound eyes. In Facets of Vision, eds Stavenga, D. G. & Hardie, R. C.Berlin: Springer, pp. 152–172.CrossRefGoogle Scholar
Stuart-Fox, D., Moussalli, A., Johnston, G. R. & Owens, I. P. F. 2004. Evolution of color variation in dragon lizards: quantitative tests of the role of crypsis and local adaptation. Evolution, 58, 1549–1559.CrossRefGoogle ScholarPubMed
Stuart-Fox, D., Whiting, M. J. & Moussalli, A. 2006. Camouflage and colour change: antipredator responses to bird and snake predators across multiple populations in a dwarf chameleon. Biological Journal of the Linnean Society, 88, 437–466.CrossRefGoogle Scholar
Stuart-Fox, D., Moussalli, A. & Whiting, M. J. 2008. Predator-specific camouflage in chameleons. Biology Letters, 4, 326–329.CrossRefGoogle ScholarPubMed
Tan, E. J. & Li, D. Q. 2009. Detritus decorations of an orb-weaving spider, Cyclosa mulmeinensis (Thorell): for food or camouflage? Journal of Experimental Biology, 212, 1832–1839.CrossRefGoogle ScholarPubMed
Tan, E. J., Stanley, W. H. S., Yap, L.et al. 2010. Why do orb-weaving spiders (Cyclosa ginnaga) decorate their webs with silk spirals and plant detritus? Animal Behaviour, 79, 179–186.CrossRefGoogle Scholar
Théry, M. 2007. Colours of background reflected light and of the prey's eye affect adaptive coloration in female crab spiders. Animal Behaviour, 73, 797–804.CrossRefGoogle Scholar
Théry, M. & Casas, J. 2002. Predator and prey views of spider camouflage. Nature, 415, 133.CrossRefGoogle ScholarPubMed
Théry, M. & Casas, J. 2009. The multiple disguises of spiders: web colour and decorations, body colour and movement. Philosophical Transactions of the Royal Society, Series B, 364, 471–480.CrossRefGoogle ScholarPubMed
Théry, M., Debut, M., Gomez, D. & Casas, J. 2005. Specific color sensitivities of prey and predator explain camouflage in different visual systems. Behavioral Ecology, 16, 25–29.CrossRefGoogle Scholar
Tietjen, W. J., Ayyagari, L. R. & Uetz, G. W. 1987. Symbiosis between social spiders and yeast: the role in prey attraction. Psyche, 94, 151–158.CrossRefGoogle Scholar
Tseng, L. & Tso, I. M. 2009. A risky defence by a spider using conspicuous decoys resembling itself in appearance. Animal Behaviour, 78, 425–431.CrossRefGoogle Scholar
Tso, I. M. 1998. Isolated spider web stabilimentum attracts insects. Behaviour, 135, 311–319.CrossRefGoogle Scholar
Tso, I.-M., Liao, C.-P., Huang, R.-P. & Yang, E.-C. 2006. Function of being colorful in web spiders: attracting prey or camouflaging oneself? Behavioral Ecology, 17, 606–613.CrossRefGoogle Scholar
Tso, I.-M., Huang, J.-P. & Liao, C.-P. 2007. Nocturnal hunting of a brightly coloured sit-and-wait predator. Animal Behaviour, 74, 787–793.CrossRefGoogle Scholar
Vanderhoff, E. N., Byers, C. J. & Hanna, C. J. 2008. Do the color and pattern of Micrathena gracilis (Araneae : Araneidae) attract prey? Examination of the prey attraction hypothesis and crypsis. Journal of Insect Behavior, 21, 469–475.CrossRefGoogle Scholar
Vuillaume, M. 1968. Pigmentations et variations pigmentaires de trois insectes: Mantis religiosa, Sphodromantis viridis, et Locusta migratoria. Bulletin Biologique de la France et de la Belgique, 102, 147–232.Google Scholar
Walter, A., Elgar, M. A., Bliss, P. & Moritz, R. F. A. 2008. Wrap attack activates web-decorating behavior in Argiope spiders. Behavioral Ecology, 19, 799–804.CrossRefGoogle Scholar
Walter, A., Bliss, P., Elgar, M. A. & Moritz, R. F. A. 2009. Argiope bruennichi shows a drinking-like behaviour in web hub decorations (Araneae, Araneidae). Journal of Ethology, 27, 25–29.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×