Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-17T14:38:43.734Z Has data issue: false hasContentIssue false

9 - Nestling begging as a communication network

Published online by Cambridge University Press:  06 August 2010

Andrew G. Horn
Affiliation:
Dalhousie University, Halifax, Canada
Marty L. Leonard
Affiliation:
Dalhousie University, Halifax, Canada
P. K. McGregor
Affiliation:
Cornwall College, Newquay
Get access

Summary

Introduction

In many bird species, young beg for care from their parents. A parent arriving at the nest with food is met by begging nestlings, which are waving their wings, calling and stretching to expose brightly coloured gapes, all within the confines of a nest that may contain several other begging nestlings. This mode of parent–offspring communication has become a model for the study of the evolution of biological signalling.

Hungrier nestlings beg more intensely, so the parent can use the display to decide which nestling to feed and to decide how soon it should return to the nest with food (reviewed by Budden & Wright, 2001). The fact that the parent can extract information on nestling hunger from such a confusing burst of signalling raises numerous questions. How does each nestling ensure that its own signal of need is received above the din of its nestmates' displays? How do parents differentiate among these displays to choose which nestling to feed? How much do the displays, as opposed to the physical jostling toward the parent that also goes on in the nest, determine which nestlings are fed?

To answer such questions we need to understand how the begging behaviours of whole broods function together. Concepts derived from the new field of communication networks seem well suited to this task but have not yet been explicitly applied to begging. As currently defined (McGregor & Dabelsteen, 1996; McGregor & Peake, 2000), a communication network forms whenever several individuals communicate within transmission range of each other's signals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×