Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T19:26:52.066Z Has data issue: false hasContentIssue false

5 - The surface energy budget

Published online by Cambridge University Press:  10 August 2009

Get access

Summary

Overview

As reviewed in Chapter 3, the mean annual cycle of moist static energy storage in the Arctic atmosphere, considered as a whole, is determined from the interactions between the net radiation budget at the top of the atmosphere, net horizontal energy transports via the atmospheric circulation, and the net surface flux. These latter transfers were shown to be quite important. While Chapter 3 provides insights into the energetics of the Arctic climate system, a necessary next step is to examine the complete surface energy budget. The surface energy budget represents the transfers of energy across an infinitesimally thin surface interface (with no energy storages) that determine the net surface heat flux between the atmospheric column (or volume) and underlying ocean–ice–land column. Even today, direct surface measurements of the various budget terms, especially in a spatially distributed sense, are rather sparse. However, a reasonably comprehensive picture can be assembled by using available surface observations along with modern satellite-derived products and model results.

Shortwave radiation exchanges are strongly impacted by the high albedo of snow and ice covered surfaces. Both shortwave and longwave exchanges at the surface are greatly influenced by cloud cover, the former largely through cloud albedo and the latter through impacts on the effective atmospheric emissivity and temperature. During winter, the surface net radiation budget is almost always negative. Over land, this deficit is balanced by a small downward sensible heat flux from the atmosphere to the surface, and a small upward conductive flux through the snow cover.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×