Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T11:31:16.427Z Has data issue: false hasContentIssue false

2 - Derived catalogues and applications

Published online by Cambridge University Press:  23 November 2009

Michael Perryman
Affiliation:
European Space Agency
Get access

Summary

Introduction

The use of photography to determine star positions began around 1870, flourished with the immense international cooperation of the Carte du Ciel project to map the entire celestial sphere to about 15 mag, and remained one of the most important astrometric techniques until the last decade or so of the twentieth century. Schmidt telescopes were constructed, from the 1930s onwards, with astrometry as their main objective. Such surveys have only recently been superseded by ground-based digital surveys in terms of classifying large numbers of very faint objects. In parallel, fast and accurate measuring machines and associated reduction software were developed. Kovalevsky (2002) provides details of the underlying techniques, including image formation, atmospheric effects, and plate measurements and reductions.

The development of stellar reference frames during the second half of the twentieth century has comprised both meridian and photographic observational campaigns, the former to provide reference stars with a density of about one star per square degree for the reduction of the plates obtained in the latter.

Hipparcos has allowed a re-calibration of basic meridian circle observations, of photographic plates, and of other classical astrometric instruments (Figure 2.1). Telescopes used may be classical astrographs (typified by the Carte du Ciel refracting astrograph of field ˜2°), Schmidt telescopes (with a larger field of view of ˜6°, using reflectors to minimise chromatic aberration and a correcting optical element to control spherical aberration), and long-focus instruments to obtain a larger image scale: either using refractors equipped with photographic plates, such as the Sproul in Princeton, or using reflectors as in the US Naval Observatory 1.55-m Strand telescope at Flagstaff (Figure 2.15 below).

Type
Chapter
Information
Astronomical Applications of Astrometry
Ten Years of Exploitation of the Hipparcos Satellite Data
, pp. 54 - 90
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×