Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T23:15:50.777Z Has data issue: false hasContentIssue false

5 - Proliferative Periosteal Reactions

Assessment of Trends in Europe Over the Past Two Millennia

Published online by Cambridge University Press:  29 October 2018

Richard H. Steckel
Affiliation:
Ohio State University
Clark Spencer Larsen
Affiliation:
Ohio State University
Charlotte A. Roberts
Affiliation:
University of Durham
Joerg Baten
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Backbone of Europe
Health, Diet, Work and Violence over Two Millennia
, pp. 137 - 174
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnew, A. M.; Betsinger, T. K.; Justus, H. M. (2015). Post-cranial traumatic injury patterns in two medieval Polish populations: the effects of lifestyle differences, PLoS One, 10: e0129458.CrossRefGoogle ScholarPubMed
Alirol, E.; Getaz, L.; Stoll, B.; Chappuis, F.; Loutan, L. (2011). Urbanisation and infectious diseases in a globalized world, Lancet Infectious Diseases, 11: 131141.CrossRefGoogle Scholar
Allen, M.; Hock, J.; Burr, D. (2004). Periosteum: biology, regulation, and response to osteoporosis therapies, Bone, 35: 10031012.CrossRefGoogle ScholarPubMed
Alley, C.; Sommerfeld, J. (2013). Infectious disease in times of social and ecological change, Medical Anthropology, 33: 8591.Google Scholar
Amorim, A. A. (2015). Palimpsesto ósseo: estudo de lesões proliferativas do periósteo na Colecção dos Esqueletos Identificados de Coimbra, Master dissertation, Coimbra University.Google Scholar
Anastasiou, E. (2015). Parasites in European populations from prehistory to the industrial revolution. In: Mitchell, P. D. (ed.), Sanitation, Latrines and Intestinal Parasites in Past Populations, Dorchester: Ashgate Publishing, pp. 203217.Google Scholar
Andersen, T. B.; Jensen, P. S.; Skovsgaard, C. S. (2016). The heavy plow and the agricultural revolution in Medieval Europe, Journal of Development Economics, 118: 133149.Google Scholar
Arcini, C. (1999). Health and Disease in Early Lund: Osteo-Pathologic Studies of 3,305 Individuals Buried in the First Cemetery Area of Lund 990–1536, Ph.D. dissertation, Lund University.Google Scholar
Assis, S. (2013). Beyond the Visible World: Bridging Macroscopic and Paleohistopathological Techniques in the Study of Periosteal New Bone Formation in Human Skeletal Remains, PhD dissertation, University of Coimbra.Google Scholar
Barrett, R.; Armelagos, G. J. (2013). An Unnatural History of Emerging Infections, Oxford: Oxford University Press.Google Scholar
Bedić, Ž.; Novak, M.; Šlaus, M. (2013). Anthropological analysis of the human skeletal remains from the late antique necropolis (fourth century AD) of Tekić-Treštanovačka gradina near Požega, Arheološki Radovi i Rasprave, 17: 301320.Google Scholar
Behrens, E. M.; Koretzky, G. A. (2017). Cytokine storm syndrome: looking toward the precision medicine era, Arthritis & Rheumatology, DOI: 10.1002/art.40071.Google Scholar
Belcastro, G.; Rastelli, E.; Mariotti, V; et al. (2007). Continuity or discontinuity of the life-style in central Italy during the Roman Imperial Age–Early Middle Ages transition: diet, health, and behavior, American Journal of Physical Anthropology, 132: 381394.Google Scholar
Bennike, P.; Lewis, M. E.; Schutkowski, H.; Valentin, F. (2005). Comparison of child morbidity in two contrasting medieval cemeteries from Denmark, American Journal of Physical Anthropology, 128: 734746.Google Scholar
Betsinger, T. (2007). The Biological Consequences of Urbanization in Medieval Poland, PhD dissertation, The Ohio State University.Google Scholar
Bisseret, D.; Kaci, R.; Lafage-Proust, M. H.; et al. (2015). Periosteum: characteristic imaging findings with emphasis on radiologic–pathologic comparisons, Skeletal Radiology, 44: 321338.Google Scholar
Blockmans, W. (2011). Urbanisation in the European Middle Ages: phases of openness and occlusion. In: Lucassen, L.; Willems, W. (eds.), Living in the City: Urban Institutions in the Low Countries 1200–2010, New York: Routledge, pp. 1627.Google Scholar
Boel, L. W. T.; Ortner, D. J. (2013). Skeletal manifestations of skin ulcer in the lower leg, International Journal of Osteoarchaeology, 23: 303309.CrossRefGoogle Scholar
Bouché, R. T.; Johnson, C. H. (2007). Medial tibial stress syndrome (tibial fasciitis): proposed pathomechanical model involving fascial traction, Journal of the American Podiatric Medical Association, 97: 3136.CrossRefGoogle ScholarPubMed
Burgener, F. A.; Kormano, M.; Pudas, T. (2008). Differential Diagnosis in Conventional Radiology, 3rd edition, New York: Thieme Verlag.Google Scholar
Buzon, M. R.; Judd, M. A. (2008). Investigating health at Kerma: sacrificial versus nonsacrificial individuals, American Journal of Physical Anthropology, 136: 9399.Google Scholar
Byrne, F. J.; Waters, P. S.; Waters, S. M.; et al. (2011). Demographics, nature and treatment of orthopaedic trauma injuries occurring in an agricultural context in the west of Ireland, Irish Journal of Medical Science, 180: 185189.CrossRefGoogle Scholar
Cardoso, F. A. (2008). A Portrait of Gender in Two 19th and 20th Century Portuguese Populations: A Palaeopathological Perspective, PhD dissertation, University of Durham.Google Scholar
Cerdá, M. P.; Feucht, M.; Blanco, V. J. D. (2003). Periostitis y marcadores ocupaciones en soldados franceses fallecidos durante la guerra de la Independencia en Valencia. In: Campo, M.; Robles, F. (eds.), ¿Dónde estamos? Pasado, Presente y Futuro de la Paleopatología, Madrid: Universidad Autónoma de Madrid, pp. 420429.Google Scholar
Clark, A. L. (2014). Health and sexual dimorphism at Ban Non Wat: the effects of the intensification of agriculture in prehistoric Southeast Asia, Bulletins et mémoires de la Société d’Anthropologie de Paris, 26: 196204.Google Scholar
Clark, I. A. (2007). The advent of the cytokine storm, Immunology and Cell Biology, 85: 271273.Google Scholar
Cleaveland, S.; Laurenson, M. K.; Taylor, L. H. (2001). Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philosophical Transactions of the Royal Society of London, Biological Sciences, Series B, 356: 991999.CrossRefGoogle ScholarPubMed
Cohen, M.; Armelagos, G. (eds.) (1984). Palaeopathology at the Origins of Agriculture, Gainesville: University Press of Florida.Google Scholar
Cohen, M. N.; Crane-Kramer, G. M. M. (eds.) (2007). Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification, Gainesville: University Press of Florida.Google Scholar
Cunha, E.; Umbelino, C.; Silva, A. M.; et al. (2012). What can pathology say about the Mesolithic and Late Neolithic/Chalcolithic communities? In: Cohen, M. N.; Crane-Kramer, G. M. M. (eds.), Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification, Gainesville: University Press of Florida, pp. 164175.Google Scholar
Cunningham, C.; Scheuer, L.; Black, S. (2016). Developmental Juvenile Osteology, 2nd edition, London: Academic Press.Google Scholar
DeBoer, M. D.; Lima, A. A. M.; Oría, R. B.; et al. (2012). Early childhood growth failure and the developmental origins of adult disease: do enteric infections and malnutrition increase risk for the metabolic syndrome? Nutrition Reviews, 70(11): 642653.Google Scholar
DeWitte, S. N. (2010). Sex differentials in frailty in medieval England, American Journal of Physical Anthropology, 143: 285297.CrossRefGoogle ScholarPubMed
DeWitte, S. N. (2014a). Differential survival among individuals with active and healed periosteal new bone formation, International Journal of Paleopathology, 7: 3844.Google Scholar
DeWitte, S. N. (2014b). Health in post-Black Death London (1350–1538): age patterns of periosteal new bone formation in a post-epidemic population, American Journal of Physical Anthropology, 155: 260267.CrossRefGoogle Scholar
DeWitte, S. N.; Wood, J. W. (2008). Selectivity of Black Death mortality with respect to preexisting health, Proceedings of the National Academy of Sciences, 105: 14361441.CrossRefGoogle ScholarPubMed
Djurić, M. P.; Roberts, C. A.; Rakočević, Z. B.; Djonić, D. D.; Lesic, A. R. (2006). Fractures in late medieval skeletal populations from Serbia, American Journal of Physical Anthropology, 130: 167178.CrossRefGoogle ScholarPubMed
Domett, K. M.; Tayles, N. (2006). Adult fracture patterns in prehistoric Thailand: a biocultural interpretation, International Journal of Osteoarchaeology, 16: 185199.CrossRefGoogle Scholar
Douphrate, D. I.; Rosecrance, J. C.; Stallones, L.; et al. (2009). Livestock-handling injuries in agriculture: an analysis of Colorado workers’ compensation data, American Journal of Industrial Medicine, 52: 391407.Google Scholar
Drubach, L.; Connolly, L.; D’Hemecourt, P.; Treves, S. T. (2001). Assessment of the clinical significance of asymptomatic lower extremity uptake abnormality in young athletes, Journal of Nuclear Medicine, 42: 209212.Google Scholar
Erkal, S.; Gerberich, S. G.; Ryan, A. D.; Renier, C. M.; Alexander, B. H. (2008). Animal-related injuries: a population-based study of a five-state region in the upper midwest – regional rural injury study II, Journal of Safety Research, 39: 351363.Google Scholar
Fennell, K.; Trinkaus, E. (1997). Bilateral femoral and tibial periostitis in the La Ferrassie 1 Neanderthal, Journal of Archaeological Science, 24: 985995.CrossRefGoogle Scholar
Furuse, Y.; Suzuki, A.; Oshitani, H. (2010). Origin of measles virus: divergence from rinderpest virus between the 11th and 12th centuries, Virology Journal, 7: 52, DOI: 10.1186/1743-422x-7-52.CrossRefGoogle ScholarPubMed
Garcia, S. (2007). Maleitas do corpo em tempos medievais: indicadores paleodemográficos, de stresse e paleopatológicos numa série osteológica urbana de Leiria, Ph.D. dissertation, University of Coimbra.Google Scholar
Glick, T.; Livesey, S.; Wallis, F. (2005). Medieval Science, Technology, and Medicine: An Encyclopedia, New York: Routledge.Google Scholar
Goodman, A. H.; Martin, D. L. (2002). Reconstructing health profiles from skeletal remains. In: Steckel, R. H.; Rose, J. C. (eds.), The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press, pp. 1160.CrossRefGoogle Scholar
Gosman, J. H.; Stout, S. D.; Larsen, C. S. (2011). Skeletal biology over the life span: a view from the surfaces, American Journal of Physical Anthropology, 146: 8698.Google Scholar
Grauer, A. L. (1993). Patterns of anemia and infection from Medieval York, England. American Journal of Physical Anthropology, 91: 203213.CrossRefGoogle ScholarPubMed
Grauer, A. L.; McNamara, E. M.; Houdek, D. V. (1998). A history of their own: patterns of death in a nineteenth century poorhouse. In: Grauer, A. L.; Stuart-Macadam, P. (eds.), Sex and Gender in Paleopathological Perspective, Cambridge: Cambridge University Press, pp. 149164.Google Scholar
Hackett, C. J. (1976). Diagnostic Criteria of Syphilis, Yaws, and Treponarid (Treponematoses) and of Some Other Diseases in Dry Bones, Berlin: Springer-Verlag.Google Scholar
Hill, A. V. S. (2006). Aspects of genetic susceptibility to human infectious diseases, Annual Review of Genetics, 40: 469486.CrossRefGoogle ScholarPubMed
Inhorn, M. C.; Brown, P. J. (1990). The anthropology of infectious disease, Annual Review of Anthropology, 19: 89117.Google Scholar
Jones, C. A. (2013). Hunter-Gatherers of the Central Gulf Coastal Plain and the Lower Pecos Region of Texas: Interpreting Patterns of Health and Variability, unpublished Ph.D. dissertation, A&M University.Google Scholar
Jones, K. E.; Patel, N. G.; Levy, M. A.; et al. (2008). Global trends in emerging infectious diseases, Nature, 451: 990993.Google Scholar
Judd, M. A.; Roberts, C. A. (1999). Fracture trauma in a medieval British farming village, American Journal of Physical Anthropology, 109: 229243.Google Scholar
Kenan, S.; Abdelwahab, I. F.; Klein, M. J.; Hermann, G.; Lewis, M. M. (1993). Lesions of juxtacortical origin (surface lesions of bone), Skeletal Radiology, 22: 337357.CrossRefGoogle ScholarPubMed
Kim, Y.-S.; Kim, D. K.; Oh, C. S.; et al. (2013). Evidence of periostitis in Joseon dynasty skeletons, Korean Journal of Physical Anthropology, 26: 8190.Google Scholar
Klaus, H. D. (2014). Frontiers in the bioarchaeology of stress and disease: cross disciplinary perspectives from pathophysiology, human biology, and epidemiology, American Journal of Physical Anthropology, 155: 294308.Google Scholar
Klaus, H. D.; Tam, M. E. (2009). Contact in the Andes: bioarchaeology of systemic stress in colonial Mórrope, Peru, American Journal of Physical Anthropology, 138: 356368.Google Scholar
Koepke, N.; Baten, J. (2005). The biological standard of living in Europe during the last two millennia, European Review of Economic History, 9: 6195.Google Scholar
Koepke, N.; Baten, J. (2008). Agricultural specialization and height in ancient and medieval Europe, Explorations in Economic History, 45: 127146.Google Scholar
Kwon, D. S.; Spevak, M. R.; Fletcher, K.; Kleinman, P. K. (2002). Physiologic subperiosteal new bone formation: prevalence, distribution, and thickness in neonates and infants, American Journal of Roentgenology, 179: 985988.CrossRefGoogle ScholarPubMed
Lambert, P. M. (1993). Health in prehistoric populations of the Santa Barbara Channel Islands, American Antiquity, 58: 509522.Google Scholar
Lambert, P. M.; Walker, P. L. (1991). Physical anthropological evidence for the evolution of social complexity in coastal southern California, Antiquity, 65: 963973.CrossRefGoogle Scholar
Lambert, P. M.; Welker, M. H. (2017). Traumatic injury risk and agricultural transitions: a view from the American Southeast and beyond, American Journal of Physical Anthropology, 162: 120142.Google Scholar
Larsen, C. S. (1984). Health and disease in prehistoric Georgia: the transition to agriculture. In: Cohen, M. N.; Armelagos, G. J. (eds.), Paleopathology at the Origins of Agriculture, Orlando: Academic Press, pp. 367392.Google Scholar
Larsen, C. S. (1995). Biological changes in human populations with agriculture, Annual Review of Anthropology, 24: 185213.CrossRefGoogle Scholar
Larsen, C. S. (2002). Bioarchaeology: the lives and lifestyles of past people, Journal of Archaeological Research, 10: 119166.Google Scholar
Larsen, C. S. (2006). The agricultural revolution as environmental catastrophe: Implications for health and lifestyle in the Holocene. Quaternary International, 150: 1220.CrossRefGoogle Scholar
Larsen, C. S. (2015). Bioarchaeology: Interpreting Behavior from the Human Skeleton, 2nd edition, Cambridge: Cambridge University Press.Google Scholar
Larsen, C. S.; Griffin, M. C.; Hutchinson, D.L.; et al. (2001). Frontiers of contact: bioarchaeology of Spanish Florida, Journal of World Prehistory, 15: 69123.Google Scholar
Levine, S. M.; Lambiase, R. E.; Petchprapa, C. N. (2003). Cortical lesions of the tibia: characteristic appearances at conventional radiography, Radiographics, 23: 157177.Google Scholar
Lewis, M. (2003). A comparison of health in past rural, urban and industrial environments. In: Murphy, P.; Wiltshire, P. (eds.), The Environmental Archaeology of Industry, Oxford: Oxbow Books, pp. 154161.Google Scholar
Lewis, M. (2007). The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology, Cambridge: Cambridge University Press.Google Scholar
Lewis, M. (2017). Paleopathology of Children: Identification of Pathological Conditions in the Human Skeletal Remains of Non-Adults, London: Academic Press.Google Scholar
Lopes, C. (2014). As Mil Caras de uma Doença. Sífilis na Sociedade Coimbrã no Início do Século XX. Evidências Históricas e Paleopatológicas nas Coleções Identificadas de Coimbra, PhD dissertation, University of Coimbra.Google Scholar
Maat, G. (2003). Male stature: a parameter of health and wealth in the Low Countries, 50–1997 AD. In: Metz, W. H. (ed.), Wealth, Health and Human Remains in Archaeology, Amsterdam: Foundation for Anthropology and Prehistory in the Netherlands, pp. 5788.Google Scholar
Maggiano, C. (2012). Making the mold: a microstructural perspective on bone modeling during growth and mechanical adaptation. In: Crowder, C.; Stout, S. (eds.), Bone Histology: An Anthropological Perspective, Boca Raton: CRC Press, pp. 4590.Google Scholar
Mann, R. W.; Hunt, D. R. (2005). Photographic Regional Atlas of Bone Disease: A Guide to Pathologic and Normal Variation in the Human Skeleton, Springfield: Charles C. Thomas Pub. Ltd.Google Scholar
Marques, C.; Cunha, E.; Zink, A. (2013). Epidemiological profile of neoplasms on four Portuguese identified skeletal collections (19th–20th centuries). Poster presented at the 40th Annual North American Meeting of the Paleopathology Association, Knoxville, Tennessee, www.uc.pt/en/cia/grupos/app/Posters/Posteres2013/Marquesetal2013aGoogle Scholar
Marques, C.; Matos, V.; Costa, T.; Zink, A.; Cunhab, E. (2017). Absence of evidence or evidence of absence? A discussion on paleoepidemiology of neoplasms with contributions from two Portuguese human skeletal reference collections (nineteenth–twentieth century), International Journal of Paleopathology . https://doi.org/10.1016/j.ijpp.2017.03.005Google Scholar
Mays, S. (1997). Life and death in a medieval village. In: De Boe, G.; Verhaeghe, F. (eds.), Death and Burial in Medieval Europe, vol. 2, Brugge: I.A.P. Rapporten, pp. 121125.Google Scholar
Mays, S. (2010). The Archaeology of Human Bones, 2nd edition, London: Routledge.Google Scholar
McClatchie, M.; McCormick, F.; Kerr, T. R.; O’Sullivan, A. (2015). Early medieval farming and food production: a review of the archaeobotanical evidence from archaeological excavations in Ireland, Vegetation History and Archaeobotany, 24: 179186.CrossRefGoogle Scholar
McDade, T. (2005). The ecologies of human immune function, Annual Review of Anthropology, 34: 495521.CrossRefGoogle Scholar
McMichael, A. J. (2004). Environmental and social influences on emerging infectious diseases: past, present and future. Philosophical Transactions of the Royal Society of London, Biological Sciences, Series B, 359: 10491058.Google Scholar
Minozzi, S.; Catalano, P.; Caldarini, C.; Fornaciari, G. (2012) Palaeopathology of human remains from the Roman Imperial Age, Pathobiology, 79: 268283.Google Scholar
Mitchell, P. D. (2015). A better understanding of sanitation and health in the past. In: Mitchell, P. D. (ed.), Sanitation, Latrines and Intestinal Parasites in Past Populations, Dorchester: Ashgate Publishing, pp. 229233.Google Scholar
Moen, M. H. (2012). Aetiology, Imaging and Treatment of Medial Tibial Stress Syndrome, Ph.D. dissertation, University of Utrecht.Google Scholar
Molleson, T.; Cox, M. (1993). The Spitalfields Project, Volume II : The Middling Sort, York: Council for British Archaeology Research Report.Google Scholar
Moore, S. R.; Milz, S.; Knothe Tate, M. L. (2014). Periosteal thickness and cellularity in mid- diaphyseal cross-sections from human femora and tibiae of aged donors, Journal of Anatomy, 224: 142149.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P. (2016). Disease and human/animal interactions, Annual Review of Anthropology, 45: 395416.CrossRefGoogle Scholar
Mummert, A.; Esche, E.; Robinson, J.; Armelagos, G. J. (2011). Stature and robusticity during the agricultural transition: evidence from the bioarchaeological record, Economics & Human Biology, 9: 284301.Google Scholar
NCD Risk Factor Collaboration (2016). A century of trends in adult human height. eLIFE, 5: e13410. DOI: 10.7554/eLife.13410Google Scholar
Neiderud, C.-J. (2015). How urbanization affects the epidemiology of emerging infectious diseasesInfection Ecology & Epidemiology5: 10.3402/iee.v5.27060.Google Scholar
Novak, M.; Martinčić, O.; Strinović, D.; Šlausac, M. (2012). Skeletal and dental indicators of health in the late mediaeval (twelfth–fifteenth century) population from Nin, southern Croatia, HOMO: Journal of Comparative Human Biology, 63: 435450.Google Scholar
Novak, M.; Šlaus, M. (2010). Health and disease in a Roman walled city: an example of Colonia Iulia Iader, Journal of Anthropological Sciences, 88: 189206.Google Scholar
Ortner, D. (1991). Theoretical and methodological issues in paleopathology. In: Ortner, D.; Aufderheide, A. (eds.), Human Paleopathology: Current Syntheses and Future Options, Washington: Smithsonian Institution Press, pp. 512.Google Scholar
Ortner, D. (1998). Male–female immune reactivity and its implications for interpreting evidence in human skeletal pathologies. In: Grauer., A.; Stuart-Macadam, P. (eds.), Sex and Gender in Paleopathological Perspective, Cambridge: Cambridge University Press, pp. 7992.Google Scholar
Ortner, D. (2003). Identification of Pathological Conditions in Human Skeletal Remains, 2nd edition, San Diego: Academic Press.Google Scholar
Oxenham, M.; Tayles, N. (eds.) (2006). Bioarchaeology of Southeast Asia, Cambridge: Cambridge University Press.Google Scholar
Oxenham, M. F.; Nguyen, K. T.; Nguyen, L. C. (2005). Skeletal evidence for the emergence of infectious disease in Bronze and Iron Age northern Vietnam, American Journal of Physical Anthropology, 126: 359376.Google Scholar
Paine, R. R.; Vargiu, R.; Signoretti, C.; Coppa, A. (2009). A health assessment for imperial Roman burials recovered from the necropolis of San Donato and Bivio CH, Urbino, Italy, Journal of Anthropological Sciences, 87: 193210.Google Scholar
Papathanasiou, A. (2011). Health, diet and social implication in Neolithic Greece from the study of human osteological material. In: Pinhasi, R.; Stock, J. (eds.), Human Bioarchaeology of the Transition to Agriculture, New York: John Wiley & Sons, pp. 87106.Google Scholar
Perzigiani, A. J.; Tench, P. A.; Braun, D. J. (1984). Prehistoric health in the Ohio River Health. In: Cohen, M. N.; Armelagos, G. J. (eds.), Paleopathology at the Origins of Agriculture, Orlando: Academic Press, pp. 347366.Google Scholar
Pietrusewsky, M.; Douglas, M. T. (2002). Ban Chiang: A Prehistoric Village Site in Northeast Thailand I – The Human Skeletal Remains, Philadelphia: University of Pennsylvania Press.Google Scholar
Pinhasi, R.; Bourbou, C. (2008). How representative are human skeletal assemblages for population analysis. In: Pinhasi, R.; Mays, S. (eds.), Advances in Human Palaeopathology, Chichester: John Wiley & Sons, pp. 3144.Google Scholar
Pinhasi, R.; Timpson, A.; Thomas, M.; Šlaus, M. (2014). Bone growth, limb proportions and non-specific stress in archaeological populations from Croatia, Annals of Human Biology, 41: 127137.Google Scholar
Pinheiro, J.; Cunha, E.; Cordeiro, C.; Vieira, D. N. (2004). Bridging the gap between forensic anthropology and osteoarchaeology: a case of vascular pathology, International Journal of Osteoarchaeology, 14: 137144.Google Scholar
Pitts, M.; Griffin, R. (2012). Exploring health and social well-being in late Roman Britain: an intercemetery approach, American Journal of Archaeology, 116: 253276.Google Scholar
Rana, R. S.; Wu, J. S.; Eisenberg, R. L. (2009). Periosteal reaction, American Journal of Roentgenology, 193: W259W272.Google Scholar
Redfern, R. C.; DeWitte, S. N.; Pearce, J.; et al. (2015). Urban–rural differences in Roman Dorset, England: a bioarchaeological perspective on Roman settlements. American Journal of Physical Anthropology, 157: 107120.Google Scholar
Reitsema, L. J.; McIlvaine, B. K. (2014). Reconciling “stress” and “health” in physical anthropology: what can bioarchaeologists learn from the other subdisciplines? American Journal of Physical Anthropology, 155: 181185.Google Scholar
Reshef, N.; Guelich, D. R. (2012). Medial tibial stress syndrome, Clinics in Sports Medicine, 31: 273290.CrossRefGoogle ScholarPubMed
Resnick, D. (1996). Enostosis, hyperosyosis and periostitis. In: Resnick, D. (ed.), Bone and joint Imaging, 2nd edition, Philadelphia: W.B. Saunders, pp. 12111231.Google Scholar
Robb, J. (1994). Skeletal signs of activity in the Italian Metal Ages: methodological and interpretative notes, Human Evolution, 9: 215229.Google Scholar
Roberts, C. A.; Cox, M. (2003). Health & Disease in Britain: from Prehistory to the Present Day, Stroud: Sutton Publishing, Ltd.Google Scholar
Robling, A. G.; Castillo, A. B.; Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling, Annual Review of Biomedical Engineering, 8: 455498.Google Scholar
Rose, J. C.; Hartnady, P. (1991). Interpretation of infectious skeletal lesions from a historic Afro-American cemetery. In: Ortner, D.; Aufderheide, A. (eds.), Human Paleopathology: Current Syntheses and Future Options, Washington: Smithsonian Institution Press, pp. 119127.Google Scholar
Scheidel, W. (2009). Economy and Quality of Life in the Roman World, Stanford: Stanford University.Google Scholar
Schnell, L. M. (2014). Culture, urbanism and changing human biology, Global Bioethics, 25: 147154.CrossRefGoogle Scholar
Seeger, L. L.; Yao, L.; Eckardt, J. J. (1998). Surface lesions of bone, Radiology, 206: 1733.Google Scholar
Šlaus, M. (2008). Osteological and dental markers of health in the transition from the Late Antique to the Early Medieval period in Croatia, American Journal of Physical Anthropology, 136: 4569.Google Scholar
Šlaus, M.; Kollmann, D.; Novak, S. A.; Novak, M. (2002). Temporal trends in demographic profiles and stress levels in medieval (6th–13th century) population samples from continental Croatia, Croatian Medical Journal, 43: 598605.Google ScholarPubMed
Steckel, R. (2004). Net nutrition over the past millennium: methodology and some results for northern Europe, Social Science History, 28: 211229.Google Scholar
Steckel, R. H.; Rose, J. C. (eds.) (2002), The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press.Google Scholar
Steckel, R. H.; Sciulli, P. W.; Rose, J. C. (2002). A health index from skeletal remains. In: Steckel, R. H.; Rose, J. C. (eds.), The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press, pp. 6193.Google Scholar
Stephensen, C. (1999). Burden of infection on growth failure, Journal of Nutrition, 129: 53455385.Google Scholar
Storto, C.; Eggers, S.; Lahr, M. M. (1999). Estudo preliminar das paleopatologias da população do sambaqui Jaboticabeira II, Jaguaruna, SC, Revista do Museu de Arqueologia e Etnologia, 9: 6171.Google Scholar
Straub, R. H.; Schradin, C. (2016). Chronic inflammatory systemic diseases: an evolutionary trade-off between acutely beneficial but chronically harmful programs, Evolution, Medicine, and Public Health, 1: 3751.Google Scholar
Takayanagi, H. (2007). Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems, Nature Reviews Immunology, 7: 292304.Google Scholar
Tanner, S. (2014). Health and disease: exploring the relation between parasitic infections, child nutrition status, and markets, American Journal of Physical Anthropology, 155: 221228.CrossRefGoogle ScholarPubMed
Temple, D. H. (2007). Human Biological Variation During the Agricultural Transition in Prehistoric Japan, PhD dissertation, The Ohio State University.Google Scholar
Tisoncik, J. R.; Korth, M. J.; Simmons, C. P.; et al. (2012). Into the eye of the cytokine storm, Microbiology and Molecular Biology Reviews, 76: 1632.Google Scholar
Tulchinsky, T. H.; Varavikova, E. A. (2014). A history of public health. In: Varavikova, E. A.; Tulchinsky, T. H. (eds.), The New Public Health, 3rd ediiton, San Diego: Academic Press, pp. 142.Google Scholar
Ubelaker, D. H. (1984). Prehistoric human biology of Ecuador: possible temporal trends and cultural correlations. In: Cohen, M. N.; Armelagos, G. J. (eds.), Paleopathology at the Origins of Agriculture, Orlando: Academic Press, pp. 491513.Google Scholar
Vercellotti, G.; Piperata, B. A.; Agnew, A. M.; et al. (2014). Exploring the multidimensionality of stature variation in the past through comparisons of archaeological and living populations, American Journal of Physical Anthropology, 155: 229242.Google Scholar
Verhulst, A. (2003). The Rise of Cities in North-West Europe, Cambridge: Cambridge University Press.Google Scholar
Virtanen, S. V.; Notkola, V.; Luukkonen, R.; et al. (2003). Work injuries among Finnish farmers: a national register linkage study, American Journal of Industrial Medicine, 43: 314325.CrossRefGoogle ScholarPubMed
Waldron, T. (2009). Palaeopathology, Cambridge: Cambridge University Press.Google Scholar
Walsh, M. C.; Kim, N.; Kadono, Y.; et al. (2006). Osteoimmunology: interplay between the immune system and bone metabolism, Annual Review of Immunology, 24: 3363.Google Scholar
Watts, M.; Meisel, E. M. (2011). Cattle associated trauma: a one year prospective study of all injuries, Injury, 42: 10841087.Google Scholar
Wenaden, A. E. T.; Szyszko, T. A.; Saifuddin, A. (2005). Imaging of periosteal reactions associated with focal lesions of bone, Clinical Radiology, 60: 439456.CrossRefGoogle ScholarPubMed
Weston, D. A. (2008). Investigating the specificity of periosteal reactions in pathology museum specimens, American Journal of Physical Anthropology, 137: 4859.Google Scholar
Weston, D. A. (2009). Brief communication: paleohistopathological analysis of pathology museum specimens – can periosteal reaction microstructure explain lesion etiology? American Journal of Physical Anthropology, 140: 186193.Google Scholar
Weston, D. A. (2012). Nonspecific infection in paleopathology: interpreting periosteal reactions. In: Grauer, A. L. (ed.), A Companion to Paleopathology, Chichester: Blackwell, pp. 492512.Google Scholar
Wolfe, N. D.; Dunavan, C. P.; Diamond, J. (2007). Origins of major human infectious diseases, Nature, 447: 279283.Google Scholar
Wood, J. W.; Milner, G. R.; Harpending, H. C.; et al. (1992). The osteological paradox: problems in inferring prehistoric health from skeletal samples [and comments and reply]. Current Anthropology, 33: 343370.Google Scholar
Zhang, H.; Merrett, D. C.; Jing, Z.; et al. (2016). Osteoarchaeological studies of human systemic stress of early urbanization in Late Shang at Anyang, China, PLoS ONE, 11: e0151854.Google Scholar
Zuckerman, M. K.; Harper, K. N.; Barrett, R.; et al. (2014). The evolution of disease: anthropological perspectives on epidemiologic transitions, Global Health Action, 7: 23303, http://doi.org/10.3402/gha.v7.23303Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×