Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-9f75d Total loading time: 0 Render date: 2025-12-09T13:15:23.695Z Has data issue: false hasContentIssue false

3 - Respiratory mechanics 2: Dynamic properties, factors affecting resistance

from Part 3b - Physiology: the respiratory system

Published online by Cambridge University Press:  13 August 2009

Sylva Dolenska
Affiliation:
William Harvey Hospital, Kent
Get access

Summary

Airway (non-elastic) resistance

Airway (non-elastic) resistance depends on the pattern of airflow (laminar or turbulent – see the relevant chapters), the rate of breathing and the radius and length of the airway, as described in the Hagen–Poiseuille formula. Remember that resistance is independent of flow in laminar flow but it rises linearly with flow in turbulent flow. Much higher pressures have to be achieved in turbulent flow to pass the same flow. (See also the chapter on flow for Reynolds number and the influence of viscosity and density.)

The radius decreases as the airways branch; the nasopharynx and larynx account for half of the total airway resistance, and the trachea and smaller airways constitute the other half. Airways smaller than 2 mm internal diameter contribute very little (see Figure 106). This is because their total cross-sectional area is large, and airflows in the small airways are lower, therefore laminar.

Factors affecting airway resistance are those which alter the diameter of the airway:

  • Body size: the diameters of the larynx and trachea account for the large part of total resistance. Airway resistance is highest in neonates (30 cm l −1 per s) and declines with increasing body size until a functional residual capacity of 2500 is reached. Thereafter, the diameter of the airways and airways resistance does not change substantially as shown in Figure 107.

  • Thickness of bronchial mucosa, e.g. swelling or secretions.

  • Bronchial muscle tone: constriction due to parasympathetic stimuli, histamine release, irritant gases, dilatation produced by sympathetic stimuli or parasympathetic block.

  • […]

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×