Skip to main content Accessibility help
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Looi, Jeffrey CL Walterfang, Mark Velakoulis, Dennis Macfarlane, Matthew D Svensson, Leif Anders and Wahlund, Lars-Olof 2012. Frontotemporal dementia as a frontostriatal disorder: Neostriatal morphology as a biomarker and structural basis for an endophenotype. Australian & New Zealand Journal of Psychiatry, Vol. 46, Issue. 5, p. 422.

    Looi, Jeffrey CL Rajagopalan, Priya Walterfang, Mark Madsen, Sarah K Thompson, Paul M Macfarlane, Matthew D Ching, Chris Chua, Phyllis and Velakoulis, Dennis 2012. Differential putaminal morphology in Huntington’s disease, frontotemporal dementia and Alzheimer’s disease. Australian & New Zealand Journal of Psychiatry, Vol. 46, Issue. 12, p. 1145.

    ×
  • Print publication year: 2009
  • Online publication date: July 2009

11 - Neuropathology of dementia

Summary

Introduction

Age-related neurodegenerative diseases represent an increasing public health crisis. In the USA, individuals 85 years of age or older are the fastest growing segment of society, projected to exceed 10 million citizens before 2050. The risk of developing Alzheimer's disease (AD) doubles every five years after age 65, suggesting that the prevalence of dementia will escalate dramatically in the next 40 years.

Major advances in neuroimaging, genetics, molecular biology and neuropathology have begun to refine our understanding of the dementias, providing hope for new therapies. Structural and functional imaging studies now map dementia-related regional and network-level dysfunction in unprecedented detail, and transgenic animals provide testable disease models, bringing new insights into dementia pathogenesis. Genetic studies have identified numerous disease-causing mutations and provide a foothold for understanding the molecular pathology of dementia. Conversely, careful separation of patients with dementia into pathologically homogeneous groupings has accelerated the search for new causative mutations. Accurate prediction of pathology will become even more critical when molecule-specific treatments emerge.

With new discoveries and shifts in opinion, diagnostic frameworks for dementia have evolved rapidly. Formal clinical and pathological diagnostic research criteria for the dementias continue to be revised, with the goal of optimizing clinical–pathological correlations. However, even among patients seen at dementia referral centers, clinical and pathological diagnoses remain discordant in a significant minority of patients. Necessarily, neuropathology remains the gold standard for dementia diagnosis.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

The Behavioral Neurology of Dementia
  • Online ISBN: 9780511581410
  • Book DOI: https://doi.org/10.1017/CBO9780511581410
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
References
Hebert, , Scherr, PA, Bienias, JL, Bennett, DA, Evans, DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003;60(8):1119–22.
Bachman, DL, Wolf, PA, Linn, RTet al. Incidence of dementia and probable Alzheimer's disease in a general population: the Framingham Study. Neurology 1993;43(3 Pt 1):515–19.
Knopman, DS, Boeve, BF, Parisi, JEet al. Antemortem diagnosis of frontotemporal lobar degeneration. Ann Neurol 2005;57(4):480–8.
Forman, MS, Farmer, J, Johnson, JKet al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol 2006;59(6):952–62.
Brun, A, Gustafson, L. Limbic lobe involvement in presenile dementia. Arch Psychiatr Nervenkr 1978;226(2):79–93.
Brun, A, Liu, X, Erikson, C. Synapse loss and gliosis in the molecular layer of the cerebral cortex in Alzheimer's disease and in frontal lobe degeneration. Neurodegeneration 1995;4(2):171–7.
Mesulam, MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 1990;28(5):597–613.
Ritchie, K, Lovestone, S. The dementias. Lancet 2002;360(9347):1759–66.
Kukull, WA, Higdon, R, Bowen, JDet al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol 2002;59(11):1737–46.
Braak, H, Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995;16(3):271–284.
Hyman, BT, Damasio, AR. Hierarchical vulnerability of the entorhinal cortex and the hippocampal formation to Alzheimer neuropathological changes: a semiquantitative study. Neurology 1990;40:403.
Hyman, BT, Damasio, AR, Hoesen, GW, Barnes, CL. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 1984;298:83–95.
Reiman, EM, Caselli, RJ, Yun, LS, Chen, Ket al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996;334(12):752–8.
Gorno-Tempini, ML, Dronkers, NF, Rankin, KPet al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55(3):335–46.
Galton, CJ, Patterson, K, Xuereb, JH, Hodges, JR. Atypical and typical presentations of Alzheimer's disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain 2000;123 Pt 3:484–98.
Zakzanis, KK, Boulos, MI. Posterior cortical atrophy. Neurologist 2001;7(6):341–9.
Johnson, J, Head, E, Kim, Ret al. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol 1999;56(10):1233–9.
Brun, A, Gustafson, L. Distribution of cerebral degeneration in Alzheimer's disease. A clinico-pathological study. Arch Psychiatr Nervenkr 1976;223(1):15–33.
Alzheimer, A. Uber einen eigenartigen, schweren Erkrankungsprozess der Hirnrinde. Neurol Zbl 1906;25:1134.
Dickson, DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol 1997;56(4):321–39.
Goedert, M. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci 1993;16(11):460–5.
Arnold, SE, Hyman, BT, Flory, J, Damasio, AR, Hoesen, GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients in Alzheimer's disease. Cerebral Cortex 1991;1(1):103–16.
Arriagada, PV, Growdon, JH, Hedley-Whyte, ET, Hyman, BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 1992;42(3 Pt 1):631–9.
Ball, MJ. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol (Berl) 1977;37(2):111–8.
Vinters, HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987;18(2):311–24.
Gibson, PH, Tomlinson, BE. Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer's disease. J Neurol Sci 1977;33(1–2):199–206.
Itagaki, S, McGeer, PL, Akiyama, H, Zhu, S, Selkoe, D.Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 1989;24(3):173–82.
Mirra, S, Heyman, A, McKeel, Det al. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 1991;41(4):479–486.
Braak, H, Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82(4):239–59.
Hyman, BT, Trojanowski, JQ. Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 1997;56(10):1095–7.
Bigio, EH, Hynan, LS, Sontag, E, Satumtira, S, White, CL.Synapse loss is greater in presenile than senile onset Alzheimer disease: implications for the cognitive reserve hypothesis. Neuropathol Appl Neurobiol 2002;28(3):218–27.
Marshall, GA, Fairbanks, , Tekin, S, Vinters, HV, Cummings, JL. Early-onset Alzheimer's disease is associated with greater pathologic burden. J Geriatr Psychiatry Neurol 2007;20(1):29–33.
Kim, EJ, Cho, SS, Jeong, Yet al. Glucose metabolism in early onset versus late onset Alzheimer's disease: an SPM analysis of 120 patients. Brain 2005;128(Pt 8):1790–801.
Frisoni, GB, Pievani, M, Testa, Cet al. The topography of grey matter involvement in early and late onset Alzheimer's disease. Brain 2007;130(Pt 3):720–30.
Hardy, JA, Higgins, GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992;256(5054):184–5.
Goedert, M, Spillantini, MG, Cairns, NJ, Crowther, RA. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 1992;8(1):159–68.
Farrer, , Myers, RH, Cupples, et al. Transmission and age-at-onset patterns in familial Alzheimer's disease: evidence for heterogeneity. Neurology 1990;40(3 Pt 1):395–403.
St George-Hyslop, PH, Tanzi, RE, Polinsky, RJ. The Genetic Defect Causing Familial Alzheimer's Disease Maps on Chromosome 21. Science 1987;235:885–90.
Schellenberg, GD, Bird, TD, Wijsman, EMet al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 1992;258:68–671.
Levy-Lahad, E, Wasco, W, Poorkaj, Pet al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995;269(5226):973–7.
Schmitt, FA, Davis, DG, Wekstein, DRet al. “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology 2000;55(3):370–6.
Ratnavalli, E, Brayne, C, Dawson, K, Hodges, JR. The prevalence of frontotemporal dementia. Neurology 2002;58(11):1615–21.
Knopman, DS, Petersen, RC, Edland, SD, Cha, RH, Rocca, WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology 2004;62(3):506–8.
Neary, D, Snowden, JS, Gustafson, Let al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51(6):1546–54.
Schroeter, ML, Raczka, K, Neumann, J, Cramon, DY. Neural networks in frontotemporal dementia: a meta-analysis. Neurobiol Aging 2006;29(3):418–26.
Seeley, WW, Crawford, R, Rascovsky, Ket al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol 2008;65(2):249–55.
Perry, RJ, Graham, A, Williams, Get al. Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dement Geriatr Cogn Disord 2006;22(4):278–87.
Broe, M, Hodges, JR, Schofield, Eet al. Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 2003;60(6):1005–11.
Hodges, JR, Patterson, K, Oxbury, S, Funnell, E. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain 1992;115 (Pt 6):1783–806.
Snowden, J. Semantic dementia. 2nd edition ed. New York: Oxford University Press; 2000.
Seeley, WW, Bauer, AM, Miller, BLet al. The natural history of temporal variant frontotemporal dementia. Neurology 2005;64(8):1384–90.
Thompson, SA, Patterson, K, Hodges, JR. Left/right asymmetry of atrophy in semantic dementia: behavioral–cognitive implications. Neurology 2003;61(9):1196–203.
Neary, D, Snowden, JS, Mann, DMet al. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry 1990;53(1):23–32.
Munoz, DG, Dickson, DW, Bergeron, Cet al. The neuropathology and biochemistry of frontotemporal dementia. Ann Neurol 2003;54(Suppl 5):S24–8.
Mackenzie, IR, Neumann, M, Bigio, EHet al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 2009;117(1):15–8.
Forman, MS, Lee, VM, Trojanowski, JQ. New insights into genetic and molecular mechanisms of brain degeneration in tauopathies. J Chem Neuroanat 2000;20(3–4):225–44.
Bigio, EH, Lipton, AM, Yen, SHet al. Frontal lobe dementia with novel tauopathy: sporadic multiple system tauopathy with dementia. J Neuropathol Exp Neurol 2001;60(4):328–41.
Dickson, DW. Pick's disease: a modern approach. Brain Pathol 1998;8(2):339–54.
Probst, A, Tolnay, M, Langui, D, Goedert, M, Spillantini, MG. Pick's disease: hyperphosphorylated tau protein segregates to the somatoaxonal compartment. Acta Neuropathol (Berl) 1996;92(6):588–96.
Feany, MB, Mattiace, , Dickson, DW. Neuropathologic overlap of progressive supranuclear palsy, Pick's disease and corticobasal degeneration. J Neuropathol Exp Neurol 1996;55(1):53–67.
Wilhelmsen, K, Lynch, T, Pavlou, Eet al. Localization of disinhibition–dementia–parkinsonism–amyotrophy complex to 17q21-22. Am J Hum Genet 1994;6:1159–65.
Hutton, M, Lendon, CL, Rizzu, Pet al. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998;393(6686):702–5.
Foster, NL, Wilhelmsen, K, Sima, AAet al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Annals of Neurology 1997;41(6):706–15.
Bird, TD, Wijsman, EM, Nochlin, Det al. Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD. Neurology 1997;48(4):949–54.
Heutink, P, Stevens, M, Rizzu, Pet al. Hereditary frontotemporal dementia is linked to chromosome 17q21-q22: a genetic and clinicopathological study of three Dutch families. Ann Neurol 1997;41(2):150–9.
Lipton, AM, White, CL, Bigio, EH. Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathol (Berl) 2004;108(5):379–85.
Mackenzie, IR, Baborie, A, Pickering-Brown, Set al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 2006;112(5):539–49.
Sampathu, DM, Neumann, M, Kwong, LKet al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 2006;169(4):1343–52.
Mackenzie, IR, Baker, M, Pickering-Brown, Set al. The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 2006;129(Pt 11):3081–90.
Jackson, M, Lennox, G, Lowe, J. Motor neurone disease–inclusion dementia. Neurodegeneration 1996;5(4):339–50.
Sreedharan, J, Blair, IP, Tripathi, VBet al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008;319(5870):1668–72.
Cairns, NJ, Grossman, M, Arnold, SEet al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 2004;63(8):1376–84.
Neumann, M, Sampathu, DM, Kwong, LKet al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314(5796):130–3.
Cairns, NJ, Zhukareva, V, Uryu, Ket al. alpha-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol 2004;164(6):2153–61.
Josephs, KA, Uchikado, H, McComb, RDet al. Extending the clinicopathological spectrum of neurofilament inclusion disease. Acta Neuropathol (Berl) 2005;109(4):427–32.
Knopman, DS, Mastri, AR, Frey, WHdet al. Dementia lacking distinctive histologic features: a common non-Alzheimer degenerative dementia. Neurology 1990;40(2):251–6.
Josephs, KA, Jones, AG, Dickson, DW. Hippocampal sclerosis and ubiquitin-positive inclusions in dementia lacking distinctive histopathology. Dement Geriatr Cogn Disord 2004;17(4):342–5.
Holm, IE, Englund, E, Mackenzie, IRet al. A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol 2007;66(10):884–91.
Mackenzie, IR, Foti, D, Woulfe, J, Hurwitz, TA. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 2008;131(Pt 5):1282–93.
Josephs, KA, Lin, WL, Ahmed, Zet al. Frontotemporal lobar degeneration with ubiquitin-positive, but TDP-43-negative inclusions. Acta Neuropathol 2008;116(2):159–67.
Baker, M, Mackenzie, IR, Pickering-Brown, SMet al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006;442:916–19.
Cruts, M, Gijselinck, I, Zee, Jet al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 2006;442:920–4.
Mukherjee, O, Pastor, P, Cairns, NJet al. HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol 2006;60(3):314–22.
Schymick, JC, Yang, Y, Andersen, PMet al. Progranulin mutations and amyotrophic lateral sclerosis or amyotrophic lateral sclerosis-frontotemporal dementia phenotypes. J Neurol Neurosurg Psychiatry 2007;78(7):754–6.
Gass, J, Cannon, A, Mackenzie, IRet al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 2006;15(20):2988–3001.
Seeley, WW, Carlin, DA, Allman, JMet al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol 2006;60(6):660–7.
Seeley, WW, Menon, V, Schatzberg, AFet al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27(9):2349–56.
Hof, PR, Gucht, E. Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec A Discov Mol Cell Evol Biol 2006.
Hakeem, AY, Sherwood, CC, Bonar, CJet al. Von Economo neurons in the elephant brain. Anat Rec (Hoboken) 2009;292(2):242–8.
Hodges, JR, Davies, RR, Xuereb, JHet al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol 2004;56(3):399–406.
Knibb, JA, Xuereb, JH, Patterson, K, Hodges, JR. Clinical and pathological characterization of progressive aphasia. Ann Neurol 2006;59(1):156–65.
Davies, RR, Hodges, JR, Kril, JJet al. The pathological basis of semantic dementia. Brain 2005;128(Pt 9):1984–95.
Josephs, KA, Duffy, JR, Strand, EAet al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129(Pt 6):1385–98.
Gorno-Tempini, ML, Murray, RC, Rankin, KPet al. Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: a case report. Neurocase 2004;10(6):426–36.
Mahapatra, RK, Edwards, MJ, Schott, JM, Bhatia, KP. Corticobasal degeneration. Lancet Neurol 2004;3(12):736–43.
Rinne, JO, Lee, MS, Thompson, PD, Marsden, CD. Corticobasal degeneration. A clinical study of 36 cases. Brain 1994;117 (Pt 5):1183–96.
Wenning, GK, Litvan, I, Jankovic, Jet al. Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. J Neurol Neurosurg Psychiatry 1998;64(2):184–9.
Riley, , Lang, AE. Clinical diagnostic criteria. Adv Neurol 2000;82:29–34.
Graham, NL, Bak, TH, Hodges, JR. Corticobasal degeneration as a cognitive disorder. Mov Disord 2003;18(11):1224–32.
Kompoliti, K, Goetz, CG, Boeve, BFet al. Clinical presentation and pharmacological therapy in corticobasal degeneration. Arch Neurol 1998;55(7):957–61.
Grimes, DA, Lang, AE, Bergeron, CB. Dementia as the most common presentation of cortical-basal ganglionic degeneration. Neurology 1999;53(9):1969–74.
Murray, R, Neumann, M, Forman, MSet al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 2007;68(16):1274–83.
Feany, MB, Dickson, DW. Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol 1995;146(6):1388–96.
Litvan, I, Agid, Y, Calne, Det al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996;47(1):1–9.
Nath, U, Ben-Shlomo, Y, Thomson, RGet al. The prevalence of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) in the UK. Brain 2001;124(Pt 7):1438–49.
Lantos, PL. The neuropathology of progressive supranuclear palsy. J Neural Transm Suppl 1994;42:137–52.
Komori, T, Arai, N, Oda, Met al. Astrocytic plaques and tufts of abnormal fibers do not coexist in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol (Berl) 1998;96(4):401–8.
Pillon, B, Blin, J, Vidailhet, Met al. The neuropsychological pattern of corticobasal degeneration: comparison with progressive supranuclear palsy and Alzheimer's disease. Neurology 1995;45(8):1477–83.
Spillantini, MG, Goedert, M. Tau mutations in familial frontotemporal dementia. Brain 2000;123(Pt 5):857–9.
Houlden, H, Baker, M, Morris, HRet al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 2001;56(12):1702–6.
Lang, AE, Bergeron, C. Corticobasal degeneration and PSP: the same disease?Mov Disord 2002;17:1404–5.
Nasreddine, ZS, Loginov, M, Clark, LNet al. From genotype to phenotype: a clinical pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP-17) caused by the P301L tau mutation. Ann Neurol 1999;45(6):704–15.
McKeith, I, Galasko, D, Kosaka, Ket al. Consensus guidleines for the clinical and pathologic diagnosis of dementia with Lewy Bodies. Neurology 1996;47:1113–24.
Holmes, C, Cairns, N, Lantos, P, Mann, A. Validity of current clinical criteria for Alzheimer's disease, vascular dementia, and dementia with Lewy bodies. Br J Psychiatry 1999;174:45–51.
Lim, A, Tsuang, D, Kukull, Wet al. Clinico-neuropathological correlation of Alzheimer's disease in a community-based case series. J Am Geriatr Soc 1999;47(5):564–9.
Ransmayr, G. Dementia with Lewy bodies: prevalence, clinical spectrum and natural history. J Neural Transm Suppl 2000(60):303–14.
McKeith, IG, Dickson, DW, Lowe, Jet al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65(12):1863–72.
Double, KL, Halliday, GM, McRitchie, DAet al. Regional brain atrophy in idiopathic parkinson's disease and diffuse Lewy body disease. Dementia 1996;7(6):304–13.
Perry, RH, Irving, D, Blessed, G, Fairbairn, A, Perry, EK. Senile dementia of Lewy body type. A clinically and neuropathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci 1990;95:119–139.
Rezaie, P, Cairns, NJ, Chadwick, A, Lantos, PL. Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease. Neurosci Lett 1996;212(2):111–4.
Gomez-Tortosa, E, Newell, K, Irizarry, MCet al. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology 1999;53(6):1284–91.
Giasson, B, M-Y Lee, V, Trojanowski, JQ. Parkinson's disease, dementia with lewy bodies, multiple system atrophy and the spectrum of disease with alpha synuclein inclusions. 2nd edn. New York: Cambridge University Press; 2004.
Dickson, DW, Ruan, D, Crystal, Het al. Hippocampal degeneration differentiates diffuse Lewy body disease(DLBD) from Alzheimer's disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 1991;41(9):1402–9.
Dickson, D, Schmidt, M, Lee, Vet al. Immunoreactivity profile of hippocampal Ca2/3 neurites in diffuse Lewy body disease. Acta Neuropathologica 1994;87:269–276.
Spillantini, MG, Crowther, RA, Jakes, R, Hasegawa, M, Goedert, M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc Natl Acad Sci USA 1998;95(11):6469–73.
Kosaka, K. Diffuse Lewy body disease. Neuropathology 2000;20(Suppl):S73–8.
Merdes, AR, Hansen, , Jeste, DVet al. Influence of Alzheimer pathology on clinical diagnostic accuracy in dementia with Lewy bodies. Neurology 2003;60(10):1586–90.
Del Ser, T, Hachinski, V, Merskey, H, Munoz, DG. Clinical and pathologic features of two groups of patients with dementia with Lewy bodies: effect of coexisting Alzheimer-type lesion load. Alzheimer Dis Assoc Disord 2001;15(1):31–44.
Lopez, OL, Becker, JT, Kaufer, DIet al. Research evaluation and prospective diagnosis of dementia with Lewy bodies. Arch Neurol 2002;59(1):43–6.
Schrag, A, Ben-Shlomo, Y, Quinn, NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 1999;354(9192):1771–5.
Wenning, GK, Colosimo, C, Geser, F, Poewe, W. Multiple system atrophy. Lancet Neurol 2004;3(2):93–103.
Wenning, GK, Tison, F, Ben Shlomo, Y, Daniel, SE, Quinn, NP. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 1997;12(2):133–47.
Gilman, S, Low, PA, Quinn, Net al. Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 1999;163(1):94–8.
Robbins, TW, James, M, Owen, AMet al. Cognitive deficits in progressive supranuclear palsy, Parkinson's disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry 1994;57(1):79–88.
Meco, G, Gasparini, M, Doricchi, F. Attentional functions in multiple system atrophy and Parkinson's disease. J Neurol Neurosurg Psychiatry 1996;60(4):393–8.
Burk, K, Daum, I, Rub, U. Cognitive function in multiple system atrophy of the cerebellar type. Mov Disord 2006;21(6):772–6.
Sato, K, Kaji, R, Matsumoto, S, Goto, S. Cell type-specific neuronal loss in the putamen of patients with multiple system atrophy. Mov Disord 2007;22(5):738–42.
Wenning, GK, Tison, F, Elliott, L, Quinn, NP, Daniel, SE. Olivopontocerebellar pathology in multiple system atrophy. Mov Disord 1996;11(2):157–62.
Gai, WP, Power, JH, Blumbergs, PC, Blessing, WW. Multiple-system atrophy: a new alpha-synuclein disease?Lancet 1998;352(9127):547–8.
Tu, PH, Galvin, JE, Baba, M, Giasson, Bet al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 1998;44(3):415–22.
Lantos, PL. The definition of multiple system atrophy: a review of recent developments. J Neuropathol Exp Neurol 1998;57(12):1099–111.
Duda, JE, Giasson, BI, Gur, TLet al. Immunohistochemical and biochemical studies demonstrate a distinct profile of alpha-synuclein permutations in multiple system atrophy. J Neuropathol Exp Neurol 2000;59(9):830–41.
Lin, WL, DeLucia, MW, Dickson, DW. Alpha-synuclein immunoreactivity in neuronal nuclear inclusions and neurites in multiple system atrophy. Neurosci Lett 2004;354(2):99–102.
Polymeropoulos, M, Lavedan, C, Leroy, Eet al. Mutation in the alpha-synuclein gene identified in families with Parkinson's diseae. Science 1997;276:2045–8.
Soma, H, Yabe, I, Takei, Aet al. Heredity in multiple system atrophy. J Neurol Sci 2006;240(1–2):107–10.
Hara, K, Momose, Y, Tokiguchi, Set al. Multiplex families with multiple system atrophy. Arch Neurol 2007;64(4):545–51.
Folstein, S. Huntington's Disease: A Disorder of Families. Baltimore: Johns Hopkins University Press; 1989.
Feigin, A, Kieburtz, K, Bordwell, Ket al. Functional decline in Huntington's disease. Mov Disord 1995;10(2):211–4.
Zakzanis, KK. The subcortical dementia of Huntington's disease. J Clin Exp Neuropsychol 1998;20(4):565–78.
Mendez, MF. Huntington's disease: update and review of neuropsychiatric aspects. Int J Psychiatry Med 1994;24(3):189–208.
Berrios, GE, Wagle, AC, Markova, ISet al. Psychiatric symptoms in neurologically asymptomatic Huntington's disease gene carriers: a comparison with gene negative at risk subjects. Acta Psychiatr Scand 2002;105(3):224–30.
Vonsattel, JP, DiFiglia, M. Huntington disease. J Neuropathol Exp Neurol 1998;57(5):369–84.
Graveland, GA, Williams, RS, DiFiglia, M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science 1985;227(4688):770–3.
Vonsattel, J-P, Myers, RH, Stevens, TJet al. Neuropathological classification of Huntington's disease. J Neuropath Exp Neurology 1985;44:559–77.
,The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993;72:971–83.
Brandt, J, Bylsma, FW, Gross, Ret al. Trinucleotide repeat length and clinical progression in Huntington's disease. Neurology 1996;46(2):527–31.
Persichetti, F, Srinidhi, J, Kanaley, Let al. Huntington's disease CAG trinucleotide repeats in pathologically confirmed post-mortem brains. Neurobiol Dis 1994;1(3):159–66.
Busch, A, Engemann, S, Lurz, Ret al. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease. J Biol Chem 2003;278(42):41452–61.
Zuccato, C, Liber, D, Ramos, Cet al. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery. Pharmacol Res 2005;52(2):133–9.
Mackenzie, IR, Bigio, EH, Ince, PGet al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 2007;61(5):427–34.