Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T07:12:05.476Z Has data issue: false hasContentIssue false

24 - DNA delivery for regeneration

from Part IV - Biological factor delivery

Published online by Cambridge University Press:  05 February 2015

Stephanie K. Seidlits
Affiliation:
Northwestern University
Kelan Hlavaty
Affiliation:
Northwestern University
Lonnie D. Shea
Affiliation:
Northwestern University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

The delivery of nucleic acids is a powerful technique to regulate cellular processes that has profound implications for regenerative medicine. Nucleic acid delivery is most widely thought of as delivery of a gene to induce expression of a specific factor. This approach is highly versatile, insofar as it can readily target secreted factors (e.g. growth factors), membranous proteins (e.g. receptors), or intracellular proteins (e.g. transcription factors). Expression can potentially be modulated through the promoter, with control provided by soluble, inductive factors, or be restricted to specific cell populations. The alternative to delivering nucleic acids to induce expression of target genes is to reduce or block expression. The discovery of RNA interference (RNAi) has identified a powerful mechanism for nucleic acid delivery to catalyze the degradation of target mRNA. Similarly, oligonucleotides can bind to a complementary strand of mRNA (antisense) to terminate translation or act as decoys that bind to transcription factors and limit their ability to influence transcription. The delivery of nucleic acids has the potential to either promote or inhibit virtually any cell process; however, a major challenge to capitalizing on this potential lies in the need for effective delivery systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jang, J. H., Houchin, T. L. and Shea, L. D. 2004. Gene delivery from polymer scaffolds for tissue engineering. Expert Rev. Med. Dev., 1(1), 127–38.CrossRefGoogle ScholarPubMed
Nishikawa, M. and Huang, L. 2001. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Human Gene Ther., 12(8), 861–70.CrossRefGoogle ScholarPubMed
Pannier, A. K. and Shea, L. D. 2004. Controlled release systems for DNA delivery. Molec. Ther., 10(1), 19–26.CrossRefGoogle ScholarPubMed
Loser, P., Huser, A., Hillgenberg, M. et al. 2002. Advances in the development of non-human viral DNA-vectors for gene delivery. Curr. Gene Ther., 2(2), 161–71.CrossRefGoogle ScholarPubMed
Dull, T., Zufferey, R., Kelly, M. et al. 1998. A third-generation lentivirus vector with a conditional packaging system. J. Virol., 72(11), 8463–71.Google ScholarPubMed
Kootstra, N. A. and Verma, I. M. 2003. Gene therapy with viral vectors. Ann. Rev. Pharm. Toxicol., 43, 413–39.CrossRefGoogle ScholarPubMed
Kay, M. A., Manno, C. S., Ragni, M. V. et al. 2000. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genetics, 24(3), 257–61.CrossRefGoogle ScholarPubMed
Kaplitt, M. G., Feigin, A., Tang, C. et al. 2007. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet, 369(9579), 2097–105.CrossRefGoogle Scholar
Maguire, A. M., Simonelli, F., Pierce, E. A. et al. 2008. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. New Engl. J. Med., 358(21), 2240–8.CrossRefGoogle ScholarPubMed
Cartier, N., Hacein-Bey-Abina, S., Bartholomae, C. C. et al. 2009. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science, 326(5954), 818–23.CrossRefGoogle ScholarPubMed
Maguire, A. M., High, K. A., Auricchio, A. et al. 2009. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet, 374(9701), 1597–605.CrossRefGoogle ScholarPubMed
Muramatsu, S., Fujimoto, K., Kato, S. et al. 2010. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Molec. Ther., 18(9), 1731–5.CrossRefGoogle ScholarPubMed
Sailaja, G., HogenEsch, H., North, A., Hays, J. and Mittal, S. K. 2002. Encapsulation of recombinant adenovirus into alginate microspheres circumvents vector-specific immune response. Gene Ther., 9(24), 1722–9.CrossRefGoogle ScholarPubMed
Shea, L. D., Smiley, E., Bonadio, J. and Mooney, D. J. 1999. DNA delivery from polymer matrices for tissue engineering. Nature Biotechnol., 17(6), 551–4.CrossRefGoogle ScholarPubMed
De Laporte, L. and Shea, L. D. 2007. Matrices and scaffolds for DNA delivery in tissue engineering. Adv. Drug Del. Rev., 59(4–5), 292–307.CrossRefGoogle ScholarPubMed
Huang, R., Liu, S., Shao, K. et al. 2010. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors. Nanotechnology, 21, 265101.CrossRefGoogle ScholarPubMed
Shin, S., Tuinstra, H. M., Salvay, D. M. and Shea, L. D. 2010. Phosphatidylserine immobilization of lentivirus for localized gene transfer. Biomaterials, 31(15), 4353–9.CrossRefGoogle ScholarPubMed
Langer, R. 1998. Drug delivery and targeting. Nature, 392(6679 Suppl.), 5–10.Google ScholarPubMed
Rives, C. B., des Rieux, A., Zelivyanskaya, M. et al. 2009. Layered PLG scaffolds for in vivo plasmid delivery. Biomaterials, 30(3), 394–401.CrossRefGoogle ScholarPubMed
Aviles, M. O., Lin, C. H., Zelivyanskaya, M. et al. 2010. The contribution of plasmid design and release to in vivo gene expression following delivery from cationic polymer modified scaffolds. Biomaterials, 31(6), 1140–7.CrossRefGoogle ScholarPubMed
Huang, Y. C., Riddle, K., Rice, K. G. and Mooney, D. J. 2005. Long-term in vivo gene expression via delivery of PEI–DNA condensates from porous polymer scaffolds. Human Gene Ther., 16(5), 609–17.CrossRefGoogle ScholarPubMed
Jang, J. H. and Shea, L. D. 2006. Intramuscular delivery of DNA releasing microspheres: microsphere properties and transgene expression. J. Controll. Rel., 112(1), 120–8.CrossRefGoogle ScholarPubMed
Saul, J. M., Linnes, M. P., Ratner, B. D., Giachelli, C. M. and Pun, S. H. 2007. Delivery of non-viral gene carriers from sphere-templated fibrin scaffolds for sustained transgene expression. Biomaterials, 28(31), 4705–16.CrossRefGoogle ScholarPubMed
Salvay, D. M., Zelivyanskaya, M. and Shea, L. D. 2010. Gene delivery by surface immobilization of plasmid to tissue-engineering scaffolds. Gene Ther., 17(9), 1134–41.CrossRefGoogle ScholarPubMed
Shin, S., Salvay, D. M. and Shea, L. D. 2010. Lentivirus delivery by adsorption to tissue engineering scaffolds. J. Biomed. Mater. Res. A, 93(4), 1252–9.Google ScholarPubMed
Aviles, M. O. and Shea, L. D. 2011. Hydrogels to modulate lentivirus delivery in vivo from microporous tissue engineering scaffolds. Drug Del. Transl. Res., 1(1), 91–101.CrossRefGoogle ScholarPubMed
Bryant, S. J. and Anseth, K. S. 2002. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res., 59(1), 63–72.CrossRefGoogle ScholarPubMed
Burdick, J. A., Chung, C., Jia, X., Randolph, M. A. and Langer, R. 2005. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules, 6(1), 386–91.CrossRefGoogle ScholarPubMed
Banerjee, A., Arha, M., Choudhary, S. et al. 2009. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials, 30(27), 4695–9.CrossRefGoogle ScholarPubMed
Seidlits, S. K., Khaing, Z. Z., Petersen, R. R. et al. 2010. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials, 31(14), 3930–40.CrossRefGoogle ScholarPubMed
Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. 2006. Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–89.CrossRefGoogle ScholarPubMed
Kong, H. J., Liu, J., Riddle, K. et al. 2005. Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nature Mater., 4(6), 460–4.CrossRefGoogle ScholarPubMed
Scherer, F., Schillinger, U., Putz, U., Stemberger, A. and Plank, C. 2002. Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo. J. Gene Med., 4(6), 634–43.CrossRefGoogle ScholarPubMed
Shepard, J. A., Huang, A., Shikanov, A. and Shea, L. D. 2010. Balancing cell migration with matrix degradation enhances gene delivery to cells cultured three-dimensionally within hydrogels. J. Controll. Rel., 146(1), 128–35.CrossRefGoogle ScholarPubMed
Shin, S. and Shea, L. D. 2010. Lentivirus immobilization to nanoparticles for enhanced and localized delivery from hydrogels. Molec. Ther., 18(4), 700–6.CrossRefGoogle ScholarPubMed
Shepard, J. A., Wesson, P. J., Wang, C. E. et al. 2011. Gene therapy vectors with enhanced transfection based on hydrogels modified with affinity peptides. Biomaterials, 32(22), 5092–9.CrossRefGoogle ScholarPubMed
Putnam, A. J. and Mooney, D. J. 1996. Tissue engineering using synthetic extracellular matrices. Nature Med., 2(7), 824–6.CrossRefGoogle ScholarPubMed
Kim, B. S. and Mooney, D. J. 1998. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol., 16(5), 224–30.CrossRefGoogle ScholarPubMed
Hill, E., Boontheekul, T. and Mooney, D. J. 2006. Regulating activation of transplanted cells controls tissue regeneration. Proc. Nat. Acad. Sci. USA, 103(8), 2494–9.CrossRefGoogle ScholarPubMed
Smith, M. K., Riddle, K. W. and Mooney, D. J. 2006. Delivery of hepatotrophic factors fails to enhance longer-term survival of subcutaneously transplanted hepatocytes. Tissue Eng., 12(2), 235–44.CrossRefGoogle ScholarPubMed
Salvay, D. M., Rives, C. B., Zhang, X. et al. 2008. Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation. Transplantation, 85(10), 1456–64.CrossRefGoogle ScholarPubMed
Richardson, T. P., Peters, M. C., Ennett, A. B. and Mooney, D. J. 2001. Polymeric system for dual growth factor delivery. Nature Biotechnol., 19(11), 1029–34.CrossRefGoogle ScholarPubMed
Salvay, D. M. and Shea, L. D. 2005. Inductive tissue engineering with protein and DNA-releasing scaffolds. Molec. BioSyst., 2(1), 36–48.CrossRefGoogle ScholarPubMed
Ma, P. X. 2004. Scaffolds for tissue fabrication. Mater. Today, 7(5), 30–40.CrossRefGoogle Scholar
Annabi, N., Nichol, J. W., Zhong, X. et al. 2010. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. B, 16(4), 371–83.CrossRefGoogle ScholarPubMed
Bhatia, S. K. 2010. Tissue engineering for clinical applications. Biotech. J., 5(12), 1309–23.CrossRefGoogle ScholarPubMed
Owen, S. C. and Shoichet, M. S. 2010. Design of three dimensional biomimetic scaffolds. J. Biomed. Mater. Res. A, 94(4), 1321–31.Google ScholarPubMed
Huang, N. F. and Li, S. 2011. Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine. Ann. Biomed. Eng., 39(4), 1201–14.CrossRefGoogle ScholarPubMed
Mallapragada, S. K. and Agarwal, A. 2008. Synthetic sustained gene delivery systems. Curr. Top. Med. Chem., 8(4), 311–30.CrossRefGoogle Scholar
Mok, H., Park, J. W. and Park, T. G. 2007. Microencapsulation of PEGylated adenovirus within PLGA microspheres for enhanced stability and gene transfection efficiency. Pharm. Res., 24(12), 2263–9.CrossRefGoogle ScholarPubMed
Gary, D. J., Lee, H., Sharma, R. et al. 2011. Influence of nano-carrier architecture on in vitro siRNA delivery performance and in vivo biodistribution: polyplexes vs micelleplexes. ACS Nano, 5(5), 3493–505.CrossRefGoogle ScholarPubMed
des Rieux, A., Shikanov, A. and Shea, L. D. 2009. Fibrin hydrogels for non-viral vector delivery in vitro. J. Controll. Rel., 136(2), 148–54.CrossRefGoogle ScholarPubMed
Jang, J. H. and Shea, L. D. 2003. Controllable delivery of non-viral DNA from porous scaffolds. J. Controll. Rel., 86(1), 157–68.CrossRefGoogle ScholarPubMed
Jang, J. H., Rives, C. B. and Shea, L. D. 2005. Plasmid delivery in vivo from porous tissue-engineering scaffolds: transgene expression and cellular transfection. Molec. Ther., 12(3), 475–83.CrossRefGoogle ScholarPubMed
Choi, S. and Murphy, W. L. 2010. Sustained plasmid DNA release from dissolving mineral coatings. Acta Biomater., 6(9), 3426–35.CrossRefGoogle ScholarPubMed
Shmueli, R. B., Anderson, D. G. and Green, J. J. 2010. Electrostatic surface modifications to improve gene delivery. Expert Opin. Drug Del., 7(4), 535–50.CrossRefGoogle ScholarPubMed
Segura, T., Anderson, B. C., Chung, P. H. et al. 2005. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials, 26(4), 359–71.CrossRefGoogle ScholarPubMed
Zhang, L. H., Luo, T., Zhang, C. et al. 2011. Anti-DNA antibody modified coronary stent for plasmid gene delivery: results obtained from a porcine coronary stent model. J. Gene Med., 13(1), 37–45.CrossRefGoogle ScholarPubMed
Padmashali, R. M. and Andreadis, S. T. 2011. Engineering fibrinogen-binding VSV-G envelope for spatially- and cell-controlled lentivirus delivery through fibrin hydrogels. Biomaterials, 32(12), 3330–9.CrossRefGoogle ScholarPubMed
Young, S., Wong, M., Tabata, Y. and Mikos, A. G. 2005. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Controll. Rel., 109(1–3), 256–74.CrossRefGoogle ScholarPubMed
Kasper, F. K., Kushibiki, T., Kimura, Y., Mikos, A. G. and Tabata, Y. 2005. In vivo release of plasmid DNA from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres. J. Controll. Rel., 107(3), 547–61.CrossRefGoogle ScholarPubMed
Yang, Y., Laporte, L. D., Zelivyanskaya, M. L. et al. 2009. Multiple channel bridges for spinal cord injury: cellular characterization of host response. Tissue Eng. A, 15(11), 3283–95.CrossRefGoogle ScholarPubMed
Riddle, K. W., Kong, H. J., Leach, J. K. et al. 2007. Modifying the proliferative state of target cells to control DNA expression and identifying cell types transfected in vivo. Molec. Ther., 15(2), 361–8.CrossRefGoogle ScholarPubMed
de Laporte, L, Huang, A., Ducommun, M. M. et al. 2010. Patterned transgene expression in multiple-channel bridges after spinal cord injury. Acta Biomater., 6(8), 2889–97.CrossRefGoogle ScholarPubMed
De Laporte, L., Yang, Y., Zelivyanskaya, M. L. et al. 2008. Plasmid releasing multiple channel bridges for transgene expression after spinal cord injury. Molec. Ther., 17(2), 318–26.CrossRefGoogle ScholarPubMed
Carson, A. E. and Barker, T. H. 2009. Emerging concepts in engineering extracellular matrix variants for directing cell phenotype. Regen. Med., 4(4), 593–600.CrossRefGoogle ScholarPubMed
Dutta, R. C. and Dutta, A. K. 2010. Comprehension of ECM-cell dynamics: a prerequisite for tissue regeneration. Biotechnol. Adv., 28(6), 764–9.CrossRefGoogle ScholarPubMed
Pradhan, S. and Farach-Carson, M. C. 2010. Mining the extracellular matrix for tissue engineering applications. Regen. Med., 5(6), 961–70.CrossRefGoogle ScholarPubMed
Bengali, Z., Rea, J. C. and Shea, L. D. 2007. Gene expression and internalization following vector adsorption to immobilized proteins: dependence on protein identity and density. J. Gene Med., 9(8), 668–78.CrossRefGoogle ScholarPubMed
Chang, K. L., Higuchi, Y., Kawakami, S., Yamashita, F. and Hashida, M. 2010. Efficient gene transfection by histidine-modified chitosan through enhancement of endosomal escape. Bioconj. Chem., 21(6), 1087–95.CrossRefGoogle ScholarPubMed
Kong, H. J., Hsiong, S. and Mooney, D. J. 2007. Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. Nano Lett., 7(1), 161–6.CrossRefGoogle ScholarPubMed
Kay, M. A. 2011. State-of-the-art gene-based therapies: the road ahead. Nature Rev. Genetics, 12(5), 316–28.CrossRefGoogle ScholarPubMed
Partridge, K., Yang, X., Clarke, N. M. P. et al. 2002. Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds. Biochem. Biophys. Res. Commun., 292(1), 144–52.CrossRefGoogle ScholarPubMed
Kasper, F. K., Seidlits, S. K., Tang, A. et al. 2005. In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. J. Controll. Rel., 104(3), 521–39.CrossRefGoogle ScholarPubMed
Jabbarzadeh, E., Starnes, T., Khan, Y. M. et al. 2008. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy in cell transplantation approach. Proc. Nat. Acad. Sci. USA, 105(32), 11099–104.CrossRefGoogle ScholarPubMed
Zhang, Y., Shi, B., Li, C. et al. 2009. The synergetic bone-forming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds. J. Controll. Rel., 136(3), 172–8.CrossRefGoogle ScholarPubMed
Kyriakides, T. R., Hartzel, T., Huynh, G. and Bornstein, P. 2001. Regulation of angiogenesis and matrix remodeling by localized, matrix-mediated antisense gene delivery. Molec. Ther., 3(6), 842–9.CrossRefGoogle ScholarPubMed
Kasahara, H., Tanaka, E., Fukuyama, N. et al. 2003. Biodegradable gelatin hydrogel potentiates the angiogenic effect of fibroblast growth factor 4 plasmid in rabbit hindlimb ischemia. J. Am. Coll. Cardiol., 41(6), 1056–62.CrossRefGoogle ScholarPubMed
Mao, Z., Shi, H., Guo, R. et al. 2009. Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor. Acta Biomater., 5(8), 2983–94.CrossRefGoogle ScholarPubMed
Berry, M., Gonzalez, A. M., Clarke, W. et al. 2001. Sustained effects of gene-activated matrices after CNS injury. Molec. Cell Neurosci., 17(4), 706–16.CrossRefGoogle ScholarPubMed
De Laporte, L., Yang, L. A. and Shea, L. D. 2009. Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials, 30(12), 2361–8.CrossRefGoogle ScholarPubMed
Houchin-Ray, T., Zelivyanskaya, M., Huang, A. and Shea, L. D. 2009. Non-viral gene delivery transfection profiles influence neuronal architecture in an in vitro co-culture model. Biotechnol. Bioeng., 103(5), 1023–33.CrossRefGoogle Scholar
Ozawa, C. R., Banfi, A., Glazer, N. L. et al. 2004. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest., 113(4), 516–27.CrossRefGoogle Scholar
Houchin-Ray, T., Swift, L. A., Jang, J. H. and Shea, L. D. 2007. Patterned PLG substrates for localized DNA delivery and directed neurite extension. Biomaterials, 28(16), 2603–11.CrossRefGoogle ScholarPubMed
Houchin-Ray, T., Huang, A., West, E. R., Zelivyanskaya, M. and Shea, L. D. 2009. Spatially patterned gene expression for guided neurite extension. J. Neurosci. Res., 87(4), 844–56.CrossRefGoogle ScholarPubMed
Zhao, Z., Zhao, M., Xiao, G. and Franceschi, R. T. 2005. Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo. Molec. Ther., 12(2), 247–53.CrossRefGoogle ScholarPubMed
Jo, J. and Tabata, Y. 2008. Non-viral gene transfection technologies for genetic engineering of stem cells. Eur. J. Pharmaceutics Biopharmaceutics, 68(1), 90–104.CrossRefGoogle ScholarPubMed
Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. and Mooney, D. J. 2009. Infection-mimicking materials to program dendritic cells in situ. Nature Mater., 8(2), 151–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×