Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T16:29:18.914Z Has data issue: false hasContentIssue false

6 - The hematopoietic stem cell niche

from Part I - Introduction to stem cells and regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Aparna Venkatraman
Affiliation:
Stowers Institute for Medical Research
Meng Zhao
Affiliation:
Stowers Institute for Medical Research
Linheng Li
Affiliation:
Stowers Institute for Medical Research
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, L. and Clevers, H. 2010. Coexistence of quiescent and active adult stem cells in mammals. Science, 327, 542–5.CrossRefGoogle ScholarPubMed
Taichman, R. S. and Emerson, S. G. 1994. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J. Exp. Med., 179, 1677–82.CrossRefGoogle ScholarPubMed
Taichman, R. S. and Emerson, S. G. 1998. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells, 16, 7–15.CrossRefGoogle ScholarPubMed
Taichman, R. S., Reilly, M. J. and Emerson, S. G. 1996. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood, 87, 518–24.Google ScholarPubMed
Zhang, J., Niu, C., Ye, L. et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425, 836–41.CrossRefGoogle ScholarPubMed
Calvi, L. M., Adams, G. B., Weibrecht, K. W. et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–6.CrossRefGoogle ScholarPubMed
Visnjic, D., Kalajzic, I., Gronowicz, G. et al. 2001. Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J. Bone Miner. Res., 16, 2222–31.CrossRefGoogle ScholarPubMed
Visnjic, D., Kalajzic, Z., Rowe, D. W. et al. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood, 103, 3258–64.CrossRefGoogle ScholarPubMed
Kiel, M. J., Acar, M., Radice, G. L. and Morrison, S. J. 2009. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell, 4(2), 170–179.CrossRefGoogle Scholar
Sugimura, R., He, X. C., Venkatraman, A. et al. 2012. Noncanonical wnt signaling maintains hematopoietic stem cells in the niche. Cell, 150, 351–65.CrossRefGoogle ScholarPubMed
Jung, Y., Wang, J., Schneider, A. et al. 2006. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone, 38, 497–508.CrossRefGoogle ScholarPubMed
Arai, F., Hirao, A., Ohmura, M. et al. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118, 149–61.CrossRefGoogle ScholarPubMed
Adams, G. B., Chabner, K. T., Alley, I. R. et al. 2006. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature, 439, 599–603.CrossRefGoogle ScholarPubMed
Zhang, H., Li, X. J., Martin, D. B. and Aebersold, R. 2003. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature Biotechnol., 21, 660–6.CrossRefGoogle ScholarPubMed
Qian, H., Buza-Vidas, N., Hyland, C. D. et al. 2007. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell, 1, 671–84.CrossRefGoogle ScholarPubMed
Yoshihara, H., Arai, F., Hosokawa, K. et al. 2007. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell, 1, 685–97.CrossRefGoogle ScholarPubMed
Fleming, H. E., Janzen, V., Lo Celso, C. et al. 2008. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell, 2, 274–83.CrossRefGoogle ScholarPubMed
Nilsson, S. K., Johnston, H. M., Whitty, G. A. et al. 2005. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–9.CrossRefGoogle ScholarPubMed
Stier, S., Ko, Y., Forkert, R. et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med., 201, 1781–91.CrossRefGoogle ScholarPubMed
Nakamura, Y., Arai, F., Iwasaki, H. et al. 2010. Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood, 116, 1422–32.CrossRefGoogle ScholarPubMed
Mancini, S. J., Mantei, N., Dumortier, A. et al. 2005. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood, 105, 2340–2.CrossRefGoogle ScholarPubMed
Staal, F. J. and Luis, T. C. 2010. Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J. Cell Biochem., 109, 844–9.Google ScholarPubMed
Visnjic, D., Kalajzic, Z., Rowe, D. W. et al. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood, 103, 3258–64.CrossRefGoogle ScholarPubMed
Zhu, J., Garrett, R., Jung, Y. et al. 2007. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood, 109, 3706–12.CrossRefGoogle ScholarPubMed
Chan, C. K., Chen, C. C., Luppen, C. A. 2009. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature, 457, 490–4.CrossRefGoogle ScholarPubMed
Sacchetti, B., Funari, A., Michienzi, S. et al. 2007. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–36.CrossRefGoogle ScholarPubMed
Chitteti, B. R., Cheng, Y. H., Poteat, B. et al. 2010. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood, 115, 3239–48.CrossRefGoogle ScholarPubMed
Chitteti, B. R., Cheng, Y. H., Streicher, D. A. et al. 2010. Osteoblast lineage cells expressing high levels of Runx2 enhance hematopoietic progenitor cell proliferation and function. J. Cell Biochem., 111, 284–94.CrossRefGoogle ScholarPubMed
Cheng, Y. H., Chitteti, B. R., Streicher, D. A. et al. 2011. Impact of osteoblast maturational status on their ability to enhance the hematopoietic function of stem and progenitor cells. J. Bone Miner. Res., 26(5), 1111–21.CrossRefGoogle ScholarPubMed
Raaijmakers, M. H., Mukherjee, S., Guo, S. et al. 2010. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464, 852–7.CrossRefGoogle ScholarPubMed
Cumano, A. and Godin, I. 2007. Ontogeny of the hematopoietic system. Ann. Rev. Immunol., 25, 745–85.CrossRefGoogle ScholarPubMed
Orkin, S. H. and Zon, L. I. 2008. SnapShot: hematopoiesis. Cell, 132, 712.CrossRefGoogle ScholarPubMed
Orkin, S. H. and Zon, L. I. 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell, 132, 631–44.CrossRefGoogle ScholarPubMed
Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. and Morrison, S. J. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–21.CrossRefGoogle ScholarPubMed
Ding, L., Saunders, T. L., Enikolopov, G. and Morrison, S. J. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481, 457–62.CrossRefGoogle ScholarPubMed
Broudy, V. C. 1997. Stem cell factor and hematopoiesis. Blood, 90, 1345–64.Google ScholarPubMed
Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. and Morrison, S. J. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–21.CrossRefGoogle ScholarPubMed
Sugiyama, T., Kohara, H., Noda, M. and Nagasawa, T. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25, 977–88.CrossRefGoogle ScholarPubMed
Omatsu, Y., Sugiyama, T., Kohara, H. et al. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity, 33, 387–99.CrossRefGoogle ScholarPubMed
Mendez-Ferrer, S., Michurina, T. V., Ferraro, F. et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466, 829–34.CrossRefGoogle Scholar
Mendez-Ferrer, S., Lucas, D., Battista, M. and Frenette, P. S. 2008. Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 452, 442–7.CrossRefGoogle ScholarPubMed
Spiegel, A., Kalinkovich, A., Shivtiel, S., Kollet, O. and Lapidot, T. 2008. Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell, 3, 484–92.CrossRefGoogle ScholarPubMed
Spiegel, A., Shivtiel, S., Kalinkovich, A. et al. 2007. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nature Immunol., 8, 1123–31.CrossRefGoogle ScholarPubMed
Naveiras, O., Nardi, V., Wenzel, P. L. et al. 2009. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature, 460, 259–63.CrossRefGoogle ScholarPubMed
Pietramaggiori, G., Scherer, S. S., Alperovich, M. et al. 2009. Improved cutaneous healing in diabetic mice exposed to healthy peripheral circulation. J. Investigative Dermatol., 129, 2265–74.CrossRefGoogle ScholarPubMed
Claycombe, K., King, L. E. and Fraker, P. J. 2008. A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Nat. Acad. Sci. USA, 105, 2017–21.CrossRefGoogle ScholarPubMed
Chow, A., Lucas, D., Hidalgo, A. et al. 2011. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med., 208, 261–71.CrossRefGoogle ScholarPubMed
Winkler, I. G., Sims, N. A., Pettit, A. R. et al. 2010. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 116, 4815–28.CrossRefGoogle ScholarPubMed
Kollet, O., Dar, A., Shivtiel, S. et al. 2006. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Med., 12, 657–64.CrossRefGoogle ScholarPubMed
Grassinger, J., Haylock, D. N., Williams, B., Olsen, G. H. and Nilsson, S. K. 2010. Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential. Blood, 116, 3185–96.CrossRefGoogle ScholarPubMed
Simsek, T., Kocabas, F., Zheng, J. et al. 2010. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 7, 380–90.CrossRefGoogle Scholar
Mohyeldin, A., Garzon-Muvdi, T. and Quinones-Hinojosa, A. 2010. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 7, 150–61.CrossRefGoogle ScholarPubMed
Xie, Y., Yin, T., Wiegraebe, W. et al. 2009. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature, 457, 97–101.CrossRefGoogle ScholarPubMed
Lo Celso, C., Fleming, H. E., Wu, J. W. et al. 2009. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature, 457, 92–6.CrossRefGoogle ScholarPubMed
Fujisaki, J., Wu, J., Carlson, A. L. et al. 2011. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature, 474, 216–19.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×