Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T09:33:28.737Z Has data issue: false hasContentIssue false

5 - Using biomaterials for fetal stem cell isolation, expansion and directed-differentiation

from Part I - Introduction to stem cells and regenerative medicine

Published online by Cambridge University Press:  05 February 2015

David Mack
Affiliation:
University of Washington
Aleksander Skardal
Affiliation:
The Wake Forest Institute for Regenerative Medicine
Shay Soker
Affiliation:
The Wake Forest Institute for Regenerative Medicine
Anthony Atala
Affiliation:
The Wake Forest Institute for Regenerative Medicine
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Stem cells are defined by their unique ability to self-renew and produce progeny that differentiate into specialized cells. Naturally occurring stem cells are usually broken down into three principal categories. Embryonic stem cells (ESCs) are derived from the inner cell mass of a preimplantation embryo and are considered pluripotent, meaning able to produce cell types of all three germ layers. Second, adult somatic stem cells exist at a very low frequency in almost all tissues and organs of the body and are usually considered lineage-restricted to the subset of cell types that make up their tissue of origin. Lastly, fetal stem cells can be obtained from various fetal tissues, including primordial germ cells, blood, liver, bone marrow and amniotic fluid, as well as extra-embryonic tissues such as the placenta and umbilical cord. In terms of multipotentiality these fetal stem cells lie somewhere between ESCs and more committed adult somatic stem cells. A new fourth, artificially generated type of stem cell now exists, namely the so-called induced pluripotent stem (iPS) cell, which results from the transcriptional reprogramming of a terminally differentiated somatic cell. Each one of these stem cell types has advantages and disadvantages in cell-based therapies and undoubtedly no one cell type will fit all applications. For example, ES cells are attractive because of their inherent plasticity, but their derivation elicits ethical concerns and the likelihood of forming teratomas after transplantation makes them, for now, a therapeutic dead end. Adult somatic stem cells, like bone marrow mesenchymal stromal cells (BM-MSCs) are being used clinically [45, 62], but their applications are restricted by limited proliferative capacity in culture and a predisposition to differentiate down primarily mesenchymal lineages. iPS cells have been shown to be genetically unstable and also have the potential to form teratomas after transplantation [33], especially if the efficiency of the differentiation protocols is not optimized. Fetal stem cells can be isolated from two distinct sources, the fetus proper and the extra-embryonic support tissues such as the amniotic fluid, placenta, and umbilical cord (especially Wharton’s jelly) [1]. Isolating stem cells from the fetus is replete with moral, ethical, and legal concerns and will therefore not be discussed further here. The use of fetal stem cells from extra-embryonic tissues, on the other hand, elicits no ethical or moral concerns because their isolation does not put a developing fetus at risk.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulrazzak, H., Moschidou, D., Jones, G. and Guillot, P. V. 2010. Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J. R. Soc. Interface, 7(Suppl. 6), S689–706.CrossRefGoogle ScholarPubMed
Ahmed, T. A., Dare, E. V. and Hincke, M. 2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev., 14(2), 199–215.CrossRefGoogle ScholarPubMed
Allison, D. D. and Grande-Allen, K. J. 2006. Hyaluronan: a powerful tissue engineering tool. Tissue Eng., 12(8), 2131–40.CrossRefGoogle ScholarPubMed
Banerjee, A., Arha, M., Choudhary, S. et al. 2009. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials, 30(27), 4695–9.CrossRefGoogle ScholarPubMed
Barakat, O., Abbasi, S., Rodriguez, G. et al. 2012. Use of decellularized porcine liver for engineering humanized liver organ. J. Surg. Res., 173(1), e11–25.CrossRefGoogle ScholarPubMed
Barrila, J., Radtke, A. L., Crabbe, A. et al. 2010. Organotypic 3D cell culture models: using the rotating wall vessel to study host–pathogen interactions. Nature Rev. Microbiol., 8(11), 791–801.CrossRefGoogle ScholarPubMed
Barsotti, M. C., Magera, A., Armani, C. et al. 2011. Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells. Cell Prolif., 44(1), 33–48.CrossRefGoogle ScholarPubMed
Becker, J. L. and Blanchard, D. K. 2007. Characterization of primary breast carcinomas grown in three-dimensional cultures. J. Surg. Res., 142(2), 256–62.CrossRefGoogle ScholarPubMed
Begley, C. M. and Kleis, S. J. 2000. The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotechnol. Bioeng., 70(1), 32–40.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Bian, L., Zhai, D. Y., Mauck, R. L. and Burdick, J. A. 2011. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng. Part A, 17(7–8), 1137–45.CrossRefGoogle ScholarPubMed
Bidarra, S. J., Barrias, C. C., Barbosa, M. A., Soares, R. and Granja, P. L. 2010. Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. Biomacromolecules, 11(8), 1956–64.CrossRefGoogle ScholarPubMed
Blin, G., Lablack, N., Louis-Tisserand, M. et al. 2010. Nano-scale control of cellular environment to drive embryonic stem cells selfrenewal and fate. Biomaterials, 31(7), 1742–50.CrossRefGoogle ScholarPubMed
Burdick, J. A. and Prestwich, G. D. 2011. Hyaluronic acid hydrogels for biomedical applications. Adv Mater., 23(12), H41–H56.CrossRefGoogle ScholarPubMed
Burdick, J. A. and Vunjak-Novakovic, G. 2009. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. Part A, 15(2), 205–19.CrossRefGoogle ScholarPubMed
Calderon, L., Collin, E., Velasco-Bayon, D. et al. 2010. Type II collagen-hyaluronan hydrogel – a step towards a scaffold for intervertebral disc tissue engineering. Eur. Cell Mater., 20, 134–48.CrossRefGoogle ScholarPubMed
Caplan, A. I. 2007. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol., 213(2), 341–7.CrossRefGoogle ScholarPubMed
Chandler, E. M., Berglund, C. M., Lee, J. S. et al. 2011. Stiffness of photocrosslinked RGD-alginate gels regulates adipose progenitor cell behavior. Biotechnol. Bioeng., 108(7), 1683–92.CrossRefGoogle ScholarPubMed
Choi, J. H., Bellas, E., Vunjak-Novakovic, G. and Kaplan, D. L. 2011. Adipogenic differentiation of human adipose-derived stem cells on 3D silk scaffolds. Methods Mol. Biol., 702, 319–30.CrossRefGoogle ScholarPubMed
Chu, C., Schmidt, J. J., Carnes, K. et al. 2009. Three-dimensional synthetic niche components to control germ cell proliferation. Tissue Eng. Part A, 15(2), 255–62.CrossRefGoogle ScholarPubMed
Chung, C. and Burdick, J. 2009. Influence of three-dimensional hyaluronic acid microenvironment on mesechymal stem cell chondrogenesis. Tissue Eng. Part A, 15, 243–54.CrossRefGoogle Scholar
Cohen, J., Zaleski, K. L., Nourissat, G. et al. 2011. Survival of porcine mesenchymal stem cells over the alginate recovered cellular method. J. Biomed. Mater. Res. A, 96(1), 93–9.CrossRefGoogle ScholarPubMed
Crapo, P. M., Medberry, C. J., Reing, J. E. et al. 2012. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials, 33(13), 3539–47.CrossRefGoogle ScholarPubMed
Dahl, L. B., Kimpton, W. G., Cahill, R. N., Brown, T. J. and Fraser, R. E. 1989. The origin and fate of hyaluronan in amniotic fluid. J. Dev. Physiol., 12(4), 209–18.Google ScholarPubMed
Dainese, L., Guarino, A., Burba, I. et al. 2012. Heart valve engineering: decellularized aortic homograft seeded with human cardiac stromal cells. J. Heart Valve Dis., 21(1), 125–34.Google ScholarPubMed
De Coppi, P., Bartsch, G., Siddiqui, M. M. et al. 2007. Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnol., 25(1), 100–6.CrossRefGoogle ScholarPubMed
Dellatore, S. M., Garcia, A. S. and Miller, W. M. 2008. Mimicking stem cell niches to increase stem cell expansion. Curr. Opin. Biotechnol., 19(5), 534–40.CrossRefGoogle ScholarPubMed
Discher, D. E., Mooney, D. J. and Zandstra, P. W. 2009. Growth factors, matrices, and forces combine and control stem cells. Science, 324(5935), 1673–77.CrossRefGoogle ScholarPubMed
Egawa, E. Y., Kato, K., Hiraoka, M., Nakaji-Hirabayashi, T. and Iwata, H. 2011. Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor. Biomaterials, 32(21), 4737–43.CrossRefGoogle Scholar
Elia, R., Fuegy, P. W., VanDelden, A. et al. 2010. Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials, 31(17), 4630–8.CrossRefGoogle ScholarPubMed
Ellis, S. J. and Tanentzapf, G. 2010. Integrin-mediated adhesion and stem-cell-niche interactions. Cell Tissue Res., 339(1), 121–30.CrossRefGoogle ScholarPubMed
Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. 2006. Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–89.CrossRefGoogle ScholarPubMed
Flynn, L., Prestwich, G. D., Semple, J. L. and Woodhouse, K. A. 2009. Adipose tissue engineering in vivo with adipose-derived stem cells on naturally derived scaffolds. J. Biomed. Mater. Res. A, 89(4), 929–41.CrossRefGoogle ScholarPubMed
Fu, X. and Xu, Y. 2012. Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med., 4(6), 55.CrossRefGoogle ScholarPubMed
Galler, K. M., Cavender, A. C., Koeklue, U. et al. 2011. Bioengineering of dental stem cells in a PEGylated fibrin gel. Regen Med., 6(2), 191–200.CrossRefGoogle Scholar
Galus, R., Antiszko, M. and Włodarski, P. 2006. Clinical applications of hyaluronic acid. Pol. Merkur Lek., 20(119), 606–8.Google ScholarPubMed
Gao, H., Ayyaswamy, P. S. and Ducheyne, P. 1997. Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel. Microgravity Sci. Technol., 10(3), 154–65.Google ScholarPubMed
Gerecht, S., Burdick, J. A., Ferreira, L. S. et al. 2007. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Nat. Acad. Sci. USA, 104(27), 11298–303.CrossRefGoogle ScholarPubMed
Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E. et al. 2010. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 329(5995), 1078–81.CrossRefGoogle ScholarPubMed
Guvendiren, M. and Burdick, J. A. 2010. The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials, 31(25), 6511–18.CrossRefGoogle ScholarPubMed
Haider, M., Cappello, J., Ghandehari, H. and Leong, K. W. 2007. In vitro chondrogenesis of mesenchymal stem cells in recombinant silk-elastinlike hydrogels. Pharm. Res., 25(3), 692–9.CrossRefGoogle ScholarPubMed
Ho, S. T., Cool, S. M., Hui, J. H. and Hutmacher, D. W. 2010. The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 31(1), 38–47.CrossRefGoogle ScholarPubMed
Holst, J., Watson, S., Lord, M. S. et al. 2010. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nature Biotechnol., 28(10), 1123–8.CrossRefGoogle ScholarPubMed
Jukes, J. M., van der Aa, L. J., Hiemstra, C. et al. 2010. A newly developed chemically crosslinked dextran poly(ethylene glycol) hydrogel for cartilage tissue engineering. Tissue Eng. Part A, 16(2), 565–73.CrossRefGoogle ScholarPubMed
Jung, H. H., Park, K. and Han, D. K. 2010. Preparation of TGF-β1-conjugated biodegradable pluronic F127 hydrogel and its application with adipose-derived stem cells. J. Controll. Release, 147(1), 84–91.CrossRefGoogle ScholarPubMed
Keating, A. 2012. Mesenchymal stromal cells: new directions. Cell Stem Cell, 10(6), 709–16.CrossRefGoogle ScholarPubMed
Keung, A. J., Healy, K. E., Kumar, S. and Schaffer, D. V. 2010. Biophysics and dynamics of natural and engineered stem cell microenvironments. Wiley Interdiscip. Rev. Syst. Biol. Med., 2(1), 49–64.CrossRefGoogle ScholarPubMed
Khetan, S. and Burdick, J. A. 2010. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials, 31(32), 8228–34.CrossRefGoogle ScholarPubMed
Kiel, M. J., Acar, M., Radice, G. L. and Morrison, S. J. 2009. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell, 4(2), 170–9.CrossRefGoogle Scholar
Kirker, K. R., Luo, Y., Morris, S. E., Shelby, J. and Prestwich, G. D. 2004. Glycosaminoglycan hydrogels as supplemental wound dressings for donor sites. J. Burn Care Rehabil., 25(3), 276–86.CrossRefGoogle ScholarPubMed
Knudson, C. B. and Knudson, W. 2001. Cartilage proteoglycans. Semin. Cell. Dev. Biol., 12(2), 69–78.CrossRefGoogle ScholarPubMed
Kuo, J. W. 2006. Practical Aspects of Hyaluronan Based Medical Products. Boca Raton, FL: CRC/Taylor & Francis.Google Scholar
Kurpinski, K., Chu, J., Hashi, C. and Li, S. 2006. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Nat. Acad. Sci. USA, 103(44), 16095–100.CrossRefGoogle ScholarPubMed
Lee, Y. B., Polio, S., Lee, W. et al. 2010. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol., 223(2), 645–52.CrossRefGoogle ScholarPubMed
Lei, Y., Gojgini, S., Lam, J. and Segura, T. 2011. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32(1), 39–47.CrossRefGoogle ScholarPubMed
Leipzig, N. D. and Shoichet, M. S. 2009. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials, 30(36), 6867–78.CrossRefGoogle ScholarPubMed
Li, C. L., Tian, T., Nan, K. J. et al. 2008. Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro. Oncol. Rep., 20(6), 1465–71.Google ScholarPubMed
Liu, Y., Shu, X. Z. and Prestwich, G. D. 2007. Tumor engineering: orthotopic cancer models in mice using cell-loaded, injectable, cross-linked hyaluronan-derived hydrogels. Tissue Eng., 13(5), 1091–101.CrossRefGoogle ScholarPubMed
Ma, W., Tavakoli, T., Derby, E. et al. 2008. Cell–extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev. Biol., 8, 90.CrossRefGoogle ScholarPubMed
Marcus, A. J. and Woodbury, D. 2008. Fetal stem cells from extra-embryonic tissues: do not discard. J. Cell Mol. Med., 12(3), 730–42.CrossRefGoogle Scholar
Miki, D., Dastgheib, K., Kim, T. et al. 2002. A photopolymerized sealant for corneal lacerations. Cornea, 21(4), 393–9.CrossRefGoogle ScholarPubMed
Moorefield, E. C., McKee, E. E., Solchaga, L. et al. 2011. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One, 6(10), e26535.CrossRefGoogle ScholarPubMed
Mulder, G. D., Lee, D. K. and Jeppesen, N. S. 2012. Comprehensive review of the clinical application of autologous mesenchymal stem cells in the treatment of chronic wounds and diabetic bone healing. Int. Wound J., 9(6), 595–600.CrossRefGoogle ScholarPubMed
Naito, H., Tojo, T., Kimura, M. et al. 2011. Engineering bioartificial tracheal tissue using hybrid fibroblast–mesenchymal stem cell cultures in collagen hydrogels. Interact. Cardiovasc. Thorac. Surg., 12(2), 156–61.CrossRefGoogle ScholarPubMed
Natesan, S., Baer, D. G., Walters, T. J., Babu, M. and Christy, R. J. 2010. Adipose-derived stem cell delivery into collagen gels using chitosan microspheres. Tissue Eng. Part A, 16(4), 1369–84.CrossRefGoogle ScholarPubMed
Natesan, S., Zhang, G., Baer, D. G. et al. 2011. A bilayer construct controls adipose-derived stem cell differentiation into endothelial cells and pericytes without growth factor stimulation. Tissue Eng. Part A, 17(7–8), 941–53.CrossRefGoogle ScholarPubMed
Navran, S. 2008. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. Biotechnol. Annu. Rev., 14, 275–96.CrossRefGoogle ScholarPubMed
Nguyen, L. H., Kudva, A. K., Guckert, N. L., Linse, K. D. and Roy, K. 2011. Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage. Biomaterials, 32(5), 1327–38.CrossRefGoogle Scholar
Nickerson, C. A. and Ott, C. M. 2004. A new dimension in modeling infectious disease. ASM News, 70(4), 169–75.Google Scholar
Nilsson, S. K. and Simmons, P. J. 2004. Transplantable stem cells: home to specific niches. Curr. Opin. Hematol., 11(2), 102–6.CrossRefGoogle ScholarPubMed
Nomi, M., Atala, A., Coppi, P. D. and Soker, S. 2002. Principals of neovascularization for tissue engineering. Mol. Aspects Med., 23(6), 463–83.CrossRefGoogle ScholarPubMed
Nomi, M., Miyake, H., Sugita, Y., Fujisawa, M. and Soker, S. 2006. Role of growth factors and endothelial cells in therapeutic angiogenesis and tissue engineering. Curr. Stem Cell Res. Ther., 1(3), 333–43.CrossRefGoogle ScholarPubMed
Nuttelman, C. R., Rice, M. A., Rydholm, A. E. et al. 2008. Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Prog. Polym. Sci., 33(2), 167–79.CrossRefGoogle ScholarPubMed
Nuttelman, C. R., Tripodi, M. C. and Anseth, K. S. 2005. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol., 24(3), 208–18.CrossRefGoogle ScholarPubMed
Opara, E. C., Mirmalek-Sani, S. H., Khanna, O., Moya, M. L. and Brey, E. M. 2010. Design of a bioartificial pancreas. J. Investig. Med., 58(7), 831–7.CrossRefGoogle ScholarPubMed
Orive, G., De Castro, M., Kong, H. J. et al. 2009. Bioactive cell–hydrogel microcapsules for cell-based drug delivery. J. Controll. Release, 135(3), 203–10.CrossRefGoogle ScholarPubMed
Peattie, R. A., Nayate, A. P., Firpo, M. A. et al. 2004. Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials, 25(14), 2789–98.CrossRefGoogle ScholarPubMed
Peattie, R. A., Rieke, E. R., Hewett, E. M. et al. 2006. Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials, 27(9), 1868–75.CrossRefGoogle ScholarPubMed
Pike, D. B., Cai, S., Pomraning, K. R. et al. 2006. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials, 27(30), 5242–51.CrossRefGoogle ScholarPubMed
Poellmann, M. J., Harrell, P. A., King, W. P. and Wagoner Johnson, A. J. 2010. Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates. Acta Biomater., 6(9), 3514–23.CrossRefGoogle ScholarPubMed
Prestwich, G. D. and Kuo, J. W. 2008. Chemically-modified HA for therapy and regenerative medicine. Curr. Pharm. Biotechnol., 9(4), 242–5.CrossRefGoogle ScholarPubMed
Riley, C. M., Fuegy, P. W., Firpo, M. A. et al. 2006. Stimulation of in vivo angiogenesis using dual growth factor-loaded crosslinked glycosaminoglycan hydrogels. Biomaterials, 27(35), 5935–43.CrossRefGoogle ScholarPubMed
Salinas, C. N., Cole, B. B., Kasko, A. M. and Anseth, K. S. 2007. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)–arginine–glycine–aspartic acid–serine thiol–methacrylate mixed-mode networks. Tissue Eng., 13(5), 1025–34.CrossRefGoogle ScholarPubMed
Santos, E., Zarate, J., Orive, G., Hernandez, R. M. and Pedraz, J. L. 2010. Biomaterials in cell microencapsulation. Adv. Exp. Med. Biol., 670, 5–21.CrossRefGoogle ScholarPubMed
Schiavinato, A., Finesso, M., Cortivo, R. and Abatangelo, G. 2002. Comparison of the effects of intra-articular injections of hyaluronan and its chemically cross-linked derivative (Hylan G-F20) in normal rabbit knee joints. Clin. Exp. Rheumatol., 20(4), 445–54.Google Scholar
Schmelzer, E., Triolo, F., Turner, M. E. et al. 2010. Three-dimensional perfusion bioreactor culture supports differentiation of human fetal liver cells. Tissue Eng. Part A, 16(6), 2007–16.CrossRefGoogle ScholarPubMed
Serban, M. A., Liu, Y. and Prestwich, G. D. 2008. Effects of extracellular matrix analogues on primary human fibroblast behavior. Acta Biomater., 4(1), 67–75.CrossRefGoogle ScholarPubMed
Sharma, B., Williams, C. G., Khan, M., Manson, P. and Elisseeff, J. H. 2007. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast. Reconstr. Surg., 119(1), 112–20.CrossRefGoogle Scholar
Skardal, A. 2010. Hyaluronan and Gelatin Biomaterials for Bioprinting Engineered Tissues. Salt Lake City, UT: Department of Bioengineering University of Utah.Google Scholar
Skardal, A., Mack, D., Kapetanovic, E. et al. 2012. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med., 1(11), 792–802.CrossRefGoogle ScholarPubMed
Skardal, A., Mack, D.Atala, A. and Soker, S. 2013. Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. J. Mech. Behav. Biomed. Mater., 17, 307–16.CrossRefGoogle ScholarPubMed
Skardal, A., Sarker, S. F., Crabbe, A., Nickerson, C. A. and Prestwich, G. D. 2010. The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials, 31(32), 8426–35.CrossRefGoogle ScholarPubMed
Skardal, A., Zhang, J., McCoard, L., Oottamasathien, S. and Prestwich, G. D. 2010. Dynamically crosslinked gold nanoparticle–hyaluronan hydrogels. Adv. Mater., 22(42), 4736–40.CrossRefGoogle ScholarPubMed
Skardal, A., Zhang, J., McCoard, L. et al. 2010. Photocrosslinkable hyaluronan–gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A, 16(8), 2675–85.CrossRefGoogle ScholarPubMed
Skardal, A., Zhang, J. and Prestwich, G. D. 2010. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24), 6173–81.CrossRefGoogle ScholarPubMed
Syedain, Z. H., Meier, L. A., Bjork, J. W., Lee, A. and Tranquillo, R. T. 2011. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials, 32(3), 714–22.CrossRefGoogle ScholarPubMed
Tanentzapf, G., Devenport, D., Godt, D. and Brown, N. H. 2007. Integrin-dependent anchoring of a stem-cell niche. Nature Cell Biol., 9(12), 1413–18.CrossRefGoogle ScholarPubMed
Tigli, R. S., Cannizaro, C., Gumusderelioglu, M. and Kaplan, D. L. 2011. Chondrogenesis in perfusion bioreactors using porous silk scaffolds and hESC-derived MSCs. J. Biomed. Mater. Res. A, 96(1), 21–8.CrossRefGoogle ScholarPubMed
Unsworth, B. R. and Lelkes, P. I. 1998. Growing tissues in microgravity. Nature Med., 4(8), 901–7.CrossRefGoogle ScholarPubMed
Vanderhooft, J. L., Alcoutlabi, M., Magda, J. J. and Prestwich, G. D. 2009. Rheological properties of cross-linked hyaluronan–gelatin hydrogels for tissue engineering. Macromol. Biosci., 9(1), 20–8.CrossRefGoogle ScholarPubMed
Vashi, A. V., Keramidaris, E., Abberton, K. M. et al. 2008. Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials, 29(5), 573–9.CrossRefGoogle ScholarPubMed
Wang, D. A., Williams, C. G., Yang, F. et al. 2005. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng., 11(1–2), 201–13.CrossRefGoogle ScholarPubMed
Williams, C. G., Kim, T. K., Taboas, A. et al. 2003. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng., 9(4), 679–88.CrossRefGoogle Scholar
Yamamoto, K., Sokabe, T., Watabe, T. et al. 2005. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am. J. Physiol. Heart Circ. Physiol., 288(4), H1915–24.CrossRefGoogle ScholarPubMed
Zhang, J., Skardal, A. and Prestwich, G. D. 2008. Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials, 29(34), 4521–31.CrossRefGoogle ScholarPubMed
Zhao, J., Zhang, N., Prestwich, G. D. and Wen, X. 2008. Recruitment of endogenous stem cells for tissue repair. Macromol. Biosci., 8(9), 836–42.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×