Skip to main content Accessibility help
×
Home
Bose–Einstein Condensation in Dilute Gases
  • Cited by 314
  • C. J. Pethick, Nordic Institute for Theoretical Physics, Copenhagen, H. Smith, University of Copenhagen
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

In 1925 Einstein predicted that at low temperatures particles in a gas could all reside in the same quantum state. This gaseous state, a Bose–Einstein condensate, was produced in the laboratory for the first time in 1995 and investigating such condensates has become one of the most active areas in contemporary physics. The study of Bose–Einstein condensates in dilute gases encompasses a number of different subfields of physics, including atomic, condensed matter, and nuclear physics. The authors of this graduate-level textbook explain this exciting new subject in terms of basic physical principles, without assuming detailed knowledge of any of these subfields. Chapters cover the statistical physics of trapped gases, atomic properties, cooling and trapping atoms, interatomic interactions, structure of trapped condensates, collective modes, rotating condensates, superfluidity, interference phenomena, and trapped Fermi gases. Problem sets are also included in each chapter.

Reviews

‘Bose–Einstein Condensation in Dilute Gases is an excellent and much-needed text of the theory of these condensates … Although progress continues at a cracking pace, there is now a set of basic notions that it is sensible to teach postgraduates, including the way that condensates are made and their physical properties as macroscopic quantum systems. This book is an excellent source of information on this topic, and is accessible to a wide range of physicists and chemists … likely to be a best seller in its category. This well-produced book is a ‘must buy’ for anyone wanting to get started in this field.’

Keith Burnett Source: Nature

'It is an excellent text, a broad survey with some in-depth discussions. The book is meant to be introductory, but the authors - world experts in transport phenomena - offer sophisticated discussions of such nonequilibrium processes as evaporative cooling.'

Source: Physics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.