Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T16:25:17.555Z Has data issue: false hasContentIssue false

Part I - Biomedical Aspects

Published online by Cambridge University Press:  10 January 2019

Rocío Fernández-Ballesteros
Affiliation:
Universidad Autónoma de Madrid
Athanase Benetos
Affiliation:
Université de Lorraine and Institut national de la santé et de la recherche médicale (INSERM) Nancy
Jean-Marie Robine
Affiliation:
INSERM
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Acosta, J. C., Banito, A., Wuestefeld, T., et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. août 2013; 15(8): 978–90.CrossRefGoogle ScholarPubMed
Aguilaniu, H., Gustafsson, L., Rigoulet, M., and Nyström, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science. 14 mars 2003; 299(5613): 1751–3.CrossRefGoogle ScholarPubMed
Akiyama, H., Barger, S., Barnum, S., et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 1 mai 2000; 21(3): 383421.CrossRefGoogle ScholarPubMed
Aoshiba, K., Nagai, A. Senescence hypothesis for the pathogenetic mechanism of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 1 déc 2009; 6(7): 596601.CrossRefGoogle ScholarPubMed
Asbell, P. A., Dualan, I., Mindel, J., et al. Age-related cataract. The Lancet. 12 févr 2005; 365(9459): 599609.CrossRefGoogle ScholarPubMed
Babizhayev, M. A., Vishnyakova, K. S., Yegorov, Y. E. Telomere-dependent senescent phenotype of lens epithelial cells as a biological marker of aging and cataractogenesis: the role of oxidative stress intensity and specific mechanism of phospholipid hydroperoxide toxicity in lens and aqueous. Fundam Clin Pharmacol. 1 avr 2011; 25(2): 139–62.CrossRefGoogle ScholarPubMed
Baker, D. J., Jeganathan, K. B., Malureanu, L., et al. Early aging-associated phenotypes in Bub3/Rae1 haplo insufficient mice. J Cell Biol. 13 févr 2006; 172(4): 529–40.CrossRefGoogle Scholar
Baker, D. J., Weaver, R. L., van Deursen, J. M. p21 both attenuates and drives senescence and aging in BubR1 progeroid mice. Cell Rep. 25 avr 2013; 3(4): 1164–74.CrossRefGoogle ScholarPubMed
Baker, D. J., Wijshake, T., Tchkonia, T., et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2 nov 2011; 479(7372): 232–6.CrossRefGoogle ScholarPubMed
Baxter, M. A., Wynn, R. F., Jowitt, S. N., et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 1 sept 2004; 22(5): 675–82.CrossRefGoogle ScholarPubMed
Benisch, P., Schilling, T., Klein-Hitpass, L., et al. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS ONE. 24 sept 2012; 7(9): e45142.CrossRefGoogle ScholarPubMed
Bhat, R., Crowe, E. P., Bitto, A., et al. Astrocyte senescence as a component of Alzheimer's disease. PLoS ONE. 12 sept 2012; 7(9): e45069.CrossRefGoogle ScholarPubMed
Bitto, A., Sell, C., Crowe, E., et al. Stress-induced senescence in human and rodent astrocytes. Exp Cell Res. 15 oct 2010; 316(17): 2961–8.CrossRefGoogle ScholarPubMed
Blagosklonny, M. V. Revisiting the antagonistic pleiotropy theory of aging: TOR-driven program and quasi-program. Cell Cycle. 15 août 2010; 9(16): 3171–6.CrossRefGoogle ScholarPubMed
Blagosklonny, M. V. Answering the ultimate question What is the Proximal Cause of Aging? Aging. 30 déc 2012; 4(12): 861–77.CrossRefGoogle ScholarPubMed
Borie, R., Tabèze, L., Thabut, G., et al. Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. Eur Respir J. 1 déc 2016; 48(6): 1721–31.CrossRefGoogle ScholarPubMed
Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 25 févr 2005; 120(4): 513–22.CrossRefGoogle ScholarPubMed
Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 1 nov 2001; 11(11): S2731.CrossRefGoogle ScholarPubMed
Campisi, J., Andersen, J. K., Kapahi, P., Melov, S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol. déc 2011; 21(6): 354–9.Google ScholarPubMed
Chen, H.-Z., Wang, F., Gao, P., et al. Age-associated Sirtuin 1 reduction in vascular smooth muscle links vascular senescence and inflammation to abdominal aortic aneurysm novelty and significance. Circ Res. 28 oct 2016; 119(10): 1076–88.CrossRefGoogle Scholar
Chen, J., Brodsky, S. V., Goligorsky, D. M., et al. Glycated collagen I induces premature senescence-like phenotypic changes in endothelial cells. Circ Res. 28 juin 2002; 90(12): 1290–8.CrossRefGoogle ScholarPubMed
Chen, Q., Liu, K., Robinson, A. R., et al. DNA damage drives accelerated bone aging via an NF-κB-dependent mechanism. J Bone Miner Res. 1 mai 2013; 28(5): 1214–28.CrossRefGoogle ScholarPubMed
Collado, M., Serrano, M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer. janv 2010; 10(1): 51–7.CrossRefGoogle ScholarPubMed
Coppé, J.-P., Patil, C. K., Rodier, F., et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. déc 2008; 6(12): e301.CrossRefGoogle ScholarPubMed
Falandry, C., Bonnefoy, M., Freyer, G., Gilson, E. Biology of cancer and aging: a complex association with cellular senescence. J Clin Oncol. 20 août 2014; 32(24): 2604–10.CrossRefGoogle ScholarPubMed
Gosselin, K., Martien, S., Pourtier, A., et al. Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res. 15 oct 2009; 69(20): 7917–25.CrossRefGoogle ScholarPubMed
Harman, D. Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology. juill 1956; 11(3): 298300.CrossRefGoogle ScholarPubMed
Hayflick, L., Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25: 585621.CrossRefGoogle ScholarPubMed
Hoare, M., Ito, Y., Kang, T.-W., et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. sept 2016; 18(9): 979–92.CrossRefGoogle ScholarPubMed
Hoare, M., Narita, M. Transmitting senescence to the cell neighbourhood. Nat Cell Biol. août 2013; 15(8): 887–9.CrossRefGoogle Scholar
Hsiao, R., Sharma, H. W., Ramakrishnan, S., Keith, E., Narayanan, R. Telomerase activity in normal human endothelial cells. Anticancer Res. avr 1997; 17(2A): 827–32.Google ScholarPubMed
Hubackova, S., Krejcikova, K., Bartek, J., Hodny, Z. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine “Bystander senescence.” Aging. 30 déc 2012; 4(12): 932–51.CrossRefGoogle ScholarPubMed
Kang, T.-W., Yevsa, T., Woller, N., et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 24 nov 2011; 479(7374): 547–51.CrossRefGoogle ScholarPubMed
Kassem, M., Marie, P. J. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell. 1 avr 2011; 10(2): 191–7.CrossRefGoogle ScholarPubMed
Kirkwood, T. B., Holliday, R. The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci. 21 sept 1979; 205(1161): 531–46.Google ScholarPubMed
Kitada, M., Ogura, Y., Koya, D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging. 15 oct 2016; 8(10): 2290–307.CrossRefGoogle ScholarPubMed
Krizhanovsky, V., Yon, M., Dickins, R. A., et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 22 août 2008; 134(4): 657–67.CrossRefGoogle ScholarPubMed
Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.-Y.,Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci. 10 sept 2001; 98(21): 120727.CrossRefGoogle ScholarPubMed
Kuwano, K., Araya, J., Hara, H., et al. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig. 1 nov 2016; 54(6): 397406.CrossRefGoogle ScholarPubMed
Lambers, C., Hacker, S., Posch, M., et al. T cell senescence and contraction of T cell repertoire diversity in patients with chronic obstructive pulmonary disease. Clin Exp Immunol. 1 mars 2009; 155(3): 466–75.CrossRefGoogle ScholarPubMed
Maier, J. A. M., Barenghi, L., Bradamante, S., Pagani, F. Induction of human endothelial cell growth by mildly oxidized low density lipoprotein. Atherosclerosis. 1 juin 1996; 123(1): 115–21.CrossRefGoogle ScholarPubMed
Markowski, D. N., Thies, H. W., Gottlieb, A., et al. HMGA2 expression in white adipose tissue linking cellular senescence with diabetes. Genes Nutr. 1 sept 2013; 8(5): 449–56.CrossRefGoogle ScholarPubMed
Matsushita, H., Chang, E., Glassford, A. J., et al. eNOS activity is reduced in senescent human endothelial cells. Circ Res. 26 oct 2001; 89(9): 793–8.CrossRefGoogle ScholarPubMed
Medawar, P. B. Unsolved Problems of Biology. London: H.K. Lewis; 1952.Google Scholar
Minagawa, S., Araya, J., Numata, T., et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am J Physiol – Lung Cell Mol Physiol. 1 mars 2011; 300(3): L391401.CrossRefGoogle ScholarPubMed
Minamino, T., Komuro, I. Vascular cell senescence. Circ Res. 5 janv 2007; 100(1): 1526.CrossRefGoogle ScholarPubMed
Minamino, T., Mitsialis, S. A., Kourembanas, S. Hypoxia extends the life span of vascular smooth muscle cells through telomerase activation. Mol Cell Biol. mai 2001; 21(10): 3336–42.CrossRefGoogle ScholarPubMed
Minamino, T., Miyauchi, H., Yoshida, T., et al. Endothelial cell senescence in human atherosclerosis. Circulation. 2 avr 2002; 105(13): 1541–4.CrossRefGoogle ScholarPubMed
Mitri, D. D., Alimonti, A. Non-cell-autonomous regulation of cellular senescence in cancer. Trends Cell Biol. 1 mars 2016; 26(3): 215–26.CrossRefGoogle ScholarPubMed
Perry, V. H., Nicoll, J. A. R., Holmes, C. Microglia in neurodegenerative disease. Nat Rev Neurol. avr 2010; 6(4): 193201.CrossRefGoogle ScholarPubMed
Prieur, A., Peeper, D. S. Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol. avr 2008; 20(2): 150–5.CrossRefGoogle ScholarPubMed
Saeed, H., Abdallah, B. M., Ditzel, N., et al. Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res. 1 juill 2011; 26(7): 1494–505.CrossRefGoogle ScholarPubMed
Salminen, A., Ojala, J., Kaarniranta, K., et al. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci. 1 juill 2011; 34(1): 311.CrossRefGoogle ScholarPubMed
Schott, J. M., Revesz, T. Inflammation in Alzheimer's disease: insights from immunotherapy. Brain. 1 sept 2013; 136(9): 2654–6.CrossRefGoogle ScholarPubMed
Shi, S., Gronthos, S., Chen, S., et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol. juin 2002; 20(6): 587–91.CrossRefGoogle ScholarPubMed
Stout, M. B., Tchkonia, T., Pirtskhalava, T., et al. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging. 20 juill 2014; 6(7): 575–86.CrossRefGoogle ScholarPubMed
Tsuji, T., Aoshiba, K., Nagai, A. Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respir Int Rev Thorac Dis. 2010; 80(1): 5970.Google ScholarPubMed
Tyner, S. D., Venkatachalam, S., Choi, J., et al. p53 mutant mice that display early ageing-associated phenotypes. Nature. 3 janv 2002; 415(6867): 4553.CrossRefGoogle ScholarPubMed
Wang, J., Uryga, A. K., Reinhold, J., et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability: clinical perspective. Circulation. 17 nov 2015; 132(20): 1909–19.Google Scholar
Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution. 1957; 11: 398411.CrossRefGoogle Scholar
Xu, S., Cai, Y., Wei, Y., et al. mTOR signaling from cellular senescence to organismal aging. Aging Dis. 4 nov 2014; 5(4): 263–73.Google ScholarPubMed
Xue, W., Zender, L., Miething, C., et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 8 févr 2007; 445(7128): 656–60.CrossRefGoogle ScholarPubMed
Yudoh, K., Nishioka, K. Telomerized presenescent osteoblasts prevent bone mass loss in vivo. Gene Ther. 1 avr 2004; 11(11): 909–15.CrossRefGoogle ScholarPubMed
Zhou, S., Greenberger, J. S., Epperly, M. W., et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 1 juin 2008; 7(3): 335–43.CrossRefGoogle ScholarPubMed

References

Ahmed, R., Roger, L., Costa Del Amo, P., et al. Human stem cell-like memory T cells are maintained in a state of dynamic flux. Cell Rep. 2016 Dec 13; 17(11): 2811–18.CrossRefGoogle Scholar
Albright, J. M., Dunn, R. C., Shults, J. A., et al. Advanced age alters monocyte and macrophage responses. Antioxid Redox Signal. 2016 Nov 20; 25(15): 805–15.CrossRefGoogle ScholarPubMed
Appay, V., Fastenackels, S., Katlama, C., et al. Old age and anti-cytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients. AIDS. 2011; 25: 1813–22.CrossRefGoogle ScholarPubMed
Arai, Y., Martin-Ruiz, C. M., Takayama, M., et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine. 2015 Jul 29; 2(10): 1549–58.CrossRefGoogle Scholar
Arulselvan, P., Fard, M. T., Tan, W. S., et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016; 2016: 5276130.CrossRefGoogle ScholarPubMed
van Baarle, D., Tsegaye, A., Miedema, F., Akbar, A. Significance of senescence for virus-specific memory T cell responses: rapid ageing during chronic stimulation of the immune system. Immunol Lett. 2005; 97: 1929.CrossRefGoogle ScholarPubMed
Bandaranayake, T., Shaw, A. C. Host resistance and immune aging. Clin Geriatr Med. 2016 Aug; 32(3): 415–32.CrossRefGoogle ScholarPubMed
Bauer, M. E., Fuente Mde, L. The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev. 2016 Sep; 158: 2737.CrossRefGoogle ScholarPubMed
Byun, H. O., Lee, Y. K., Kim, J. M., Yoon, G. From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep. 2015 Oct; 48(10): 549–58.CrossRefGoogle ScholarPubMed
Cannizzo, E. S., Clement, C. C., Sahu, R., Follo, C., Santambrogio, L. Oxidative stress, inflamm-aging and immunosenescence. J Proteomics. 2011 Oct 19; 74(11): 2313–23.CrossRefGoogle ScholarPubMed
Catakovic, K., Klieser, E., Neureiter, D., Geisberger, R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017 Jan 5; 15(1): 1.CrossRefGoogle ScholarPubMed
Chandrasekaran, A., Idelchik, M. D., Melendez, J. A. Redox control of senescence and age-related disease. Redox Biol. 2017 Apr; 11: 91102.CrossRefGoogle ScholarPubMed
Cohen, A. A., Milot, E., Li, Q., et al. Detection of a novel, integrative aging process suggests complex physiological integration. PLoS One. 2015 Mar 11; 10(3): e0116489.Google ScholarPubMed
Effros, R. B. Replicative senescence of CD8 T cells: effect on human ageing. Exp Gerontol. 2004 Apr; 39(4): 517–24.Google ScholarPubMed
Fortin, C. F., McDonald, P. P., Lesur, O., Fülöp, T., Jr. Aging and neutrophils: there is still much to do. Rejuvenation Res. 2008 Oct; 11(5): 873–82.CrossRefGoogle ScholarPubMed
Fougère, B., Boulanger, E., Nourhashémi, F., Guyonnet, S., Cesari, M. Chronic inflammation: accelerator of biological aging. J Gerontol A Biol Sci Med Sci. 2017 Sep 1; 72(9): 1218–25.CrossRefGoogle ScholarPubMed
Franceschi, C., Bonafè, M., Valensin, S., et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000 Jun; 908: 244–54.CrossRefGoogle ScholarPubMed
Franceschi, C., Garagnani, P. Suggestions from geroscience for the genetics of age-related diseases. PLoS Genet. 2016 Nov 10; 12(11): e1006399.CrossRefGoogle ScholarPubMed
Frasca, D., Diaz, A., Romero, M., Blomberg, B. B. The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine. 2016 May 27; 34(25): 2834–40.CrossRefGoogle Scholar
Fried, L. P., Tangen, C. M., Walston, J., et al. Frailty in older adults: evidence for a phenotype. J Gerontol Ser A Biol Sci Med Sci. 2001; 56: M14657.CrossRefGoogle ScholarPubMed
Fulop, T., Dupuis, G., Baehl, S., et al. From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology. 2016 Feb; 17(1): 147–57.CrossRefGoogle ScholarPubMed
Fülöp, T., Dupuis, G., Witkowski, J. M., Larbi, A. The role of immunosenescence in the development of age-related diseases. Rev Invest Clin. 2016 Mar–Apr; 68(2): 8491.Google ScholarPubMed
Fulop, T., Larbi, A., Douziech, N., et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004 Aug; 3(4): 217–26.CrossRefGoogle ScholarPubMed
Fulop, T., Larbi, A., Witkowski, J. M., et al. Aging, frailty and age-related diseases. Biogerontology. 2010 Oct; 11(5): 547–63.CrossRefGoogle ScholarPubMed
Fulop, T., Larbi, A., Witkowski, J. M., et al. Immunosenescence and cancer. Crit Rev Oncog. 2013; 18(6): 489513.CrossRefGoogle ScholarPubMed
Fulop, T., McElhaney, J., Pawelec, G., et al. Frailty, inflammation and immunosenescence. Interdiscip Top Gerontol Geriatr. 2015; 41: 2640.CrossRefGoogle ScholarPubMed
Fulop, T., Witkowski, J. M., Pawelec, G., Cohen, A., Larbi, A. On the immunological theory of aging. Interdiscip Top Gerontol. 2014; 39: 163–76.CrossRefGoogle ScholarPubMed
Gabrielli, S., Ortolani, C., Del Zotto, G., et al. The memories of NK cells: innate–adaptive immune intrinsic crosstalk. J Immunol Res. 2016; 2016: 1376595.CrossRefGoogle ScholarPubMed
Henson, S. M., Macaulay, R., Riddell, N. E., Nunn, C. J., Akbar, A. N. Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8(+) T-cell proliferation by distinct pathways. Eur J Immunol. 2015; 45: 1441–51.CrossRefGoogle ScholarPubMed
Herranz, N., Gallage, S., Mellone, M., et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol. 2015 Sep; 17(9): 1205–17.Google ScholarPubMed
Holcar, M., Goropevšek, A., Ihan, A., Avčin, T. Age-related differences in percentages of regulatory and effector T lymphocytes and their subsets in healthy individuals and characteristic STAT1/STAT5 signalling response in helper T lymphocytes. J Immunol Res. 2015; 2015: 352934.CrossRefGoogle ScholarPubMed
Jha, S., Brickey, W. J., Ting, J. P. Inflammasomes in myeloid cells: warriors within. Microbiol Spectr. 2017 Jan; 5(1). doi: 10.1128/microbiolspec.MCHD-0049-2016.CrossRefGoogle Scholar
Kaufmann, S. H., Dorhoi, A. Molecular determinants in phagocyte–bacteria interactions. Immunity. 2016 Mar 15; 44(3): 476–91.CrossRefGoogle ScholarPubMed
Kleinnijenhuis, J., Quintin, J., Preijers, F., et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012; 109: 1753742.CrossRefGoogle ScholarPubMed
Lal, H., Cunningham, A. L., Godeaux, O., et al. ZOE-50 Study Group. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 2015 May 28; 372(22): 2087–96.CrossRefGoogle ScholarPubMed
Larbi, A., Fulop, T. From “truly naïve” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A. 2014 Jan; 85(1): 2535.CrossRefGoogle Scholar
Lasry, A., Ben-Neriah, Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 2015 Apr; 36(4): 217–28.CrossRefGoogle Scholar
Le Saux, S1, Weyand, C. M., Goronzy, J. J. Mechanisms of immunosenescence: lessons from models of accelerated immune aging. Ann N Y Acad Sci. 2012 Jan; 1247: 6982.CrossRefGoogle ScholarPubMed
Leandro, M. J. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res Ther. 2013; 15 (Suppl 1): S3.CrossRefGoogle ScholarPubMed
Lipsky, M. S, King, M., Biological theories of aging. Disease-a-Month. 61 (2015) 460–66.CrossRefGoogle ScholarPubMed
Magrone, T., Jirillo, E. Disorders of innate immunity in human ageing and effects of nutraceutical administration. Endocr Metab Immune Disord Drug Targets. 2014; 14(4): 272–82.CrossRefGoogle ScholarPubMed
Marandu, T. F., Oduro, J. D., Borkner, L., et al. Immune Protection against virus challenge in aging mice is not affected by latent herpesviral infections. J Virol. 2015 Nov; 89(22): 1171517.CrossRefGoogle Scholar
Montgomery, R. R., Shaw, A. C. Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol. 2015 Dec; 98(6): 937–43.CrossRefGoogle ScholarPubMed
Müller, L., Fülöp, T., Pawelec, G. Immunosenescence in vertebrates and invertebrates. Immun Ageing. 2013 Apr 2; 10(1): 12.CrossRefGoogle ScholarPubMed
Pawelec, G. Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing. 2012 Jul 25; 9(1): 15.CrossRefGoogle ScholarPubMed
Pawelec, G. Immunosenenescence: role of cytomegalovirus. Exp Gerontol. 2014 Jun; 54: 15.CrossRefGoogle ScholarPubMed
Pawelec, G., Akbar, A., Caruso, C., et al. Human immunosenescence: is it infectious? Immunol Rev. 2005; 205: 257–68.CrossRefGoogle ScholarPubMed
Pawelec, G., Derhovanessian, E., Larbi, A., Strindhall, J., Wikby, A. Cytomegalovirus and human immunosenescence. Rev Med Virol. 2009 Jan; 19(1): 4756.CrossRefGoogle ScholarPubMed
Pawelec, G., McElhaney, J. E., Aiello, A. E. Derhovanessian E: the impact of CMV infection on survival in older humans. Curr Opin Immunol. 2012; 24: 507–11.CrossRefGoogle ScholarPubMed
Pera, A., Campos, C., López, N., et al. Immunosenescence: implications for response to infection and vaccination in older people. Maturitas. 2015 Sep; 82(1): 50–5.CrossRefGoogle ScholarPubMed
Pinti, M., Appay, V., Campisi, J., et al. Aging of the immune system: focus on inflammation and vaccination. Eur J Immunol. 2016 Oct; 46(10): 2286–301.CrossRefGoogle ScholarPubMed
Ponnappan, S., Ponnappan, U. Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal. 2011 Apr 15; 14(8): 1551–85.CrossRefGoogle ScholarPubMed
Qi, Q., Zhang, D. W., Weyand, C. M., Goronzy, J. J. Mechanisms shaping the naïve T cell repertoire in the elderly – thymic involution or peripheral homeostatic proliferation? Exp Gerontol. 2014; 54: 71–4.CrossRefGoogle ScholarPubMed
Qian, F., Wang, X., Zhang, L., et al. Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis. 2011; 203: 1415–24.CrossRefGoogle ScholarPubMed
Robert, L., Fulop, T. Longevity and its regulation: centenarians and beyond. Interdiscip Top Gerontol. 2014; 39: 198211.CrossRefGoogle ScholarPubMed
Rockwood, K., Andrew, M., Mitnitski, A. A comparison of two approaches to measuring frailty in elderly people. J Gerontol Ser A Biol Sci Med Sci. 2007; 62: 738–43.CrossRefGoogle ScholarPubMed
Rivera, A., Siracusa, M. C., Yap, G. S., Gause, W. C. Innate cell communication kick-starts pathogen-specific immunity. Nat Immunol. 2016 Apr; 17(4): 356–63.CrossRefGoogle ScholarPubMed
Salvioli, S., Monti, D., Lanzarini, C., et al. Immune system, cell senescence, aging and longevity – inflamm-aging reappraised. Curr Pharm Des. 2013; 19(9): 1675–9.Google ScholarPubMed
Satoh, T., Akira, S. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr. 2016 Dec; 4(6). doi: 10.1128/microbiolspec.MCHD-0040-2016.CrossRefGoogle ScholarPubMed
Seidler, S., Zimmermann, H. W., Bartneck, M., Trautwein, C., Tacke, F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010 Jun 21; 11: 30.CrossRefGoogle ScholarPubMed
Smallwood, H. S., López-Ferrer, D., Squier, T. C. Aging enhances the production of reactive oxygen species and bactericidal activity in peritoneal macrophages by upregulating classical activation pathways. Biochemistry. 2011 Nov 15; 50(45): 9911–22.CrossRefGoogle ScholarPubMed
Söderberg-Nauclér, C., Fornara, O., Rahbar, A. Cytomegalovirus driven immunosenescence – an immune phenotype with or without clinical impact? Mech Ageing Dev. 2016 Sep; 158: 313.CrossRefGoogle ScholarPubMed
Solana, R., Tarazona, R., Aiello, A. E., et al. CMV and immunosenescence: from basics to clinics. Immun Ageing 2012; 9: 23.CrossRefGoogle ScholarPubMed
Solana, R., Tarazona, R., Gayoso, I., et al. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012 Oct; 24(5): 331–41.CrossRefGoogle ScholarPubMed
Sonntag, W. E., Ungvari, Z. GeroScience: understanding the interaction of processes of aging and chronic diseases. Age (Dordr). 2016 Dec; 38(5–6): 377–8.CrossRefGoogle ScholarPubMed
Tu, W., Rao, S. Mechanisms underlying T cell immunosenescence: aging and cytomegalovirus infection. Front Microbiol. 2016 Dec 27; 7: 2111.CrossRefGoogle ScholarPubMed
Weinberger, B. Immunosenescence: the importance of considering age in health and disease. Clin Exp Immunol. 2017 Jan; 187(1): 13.CrossRefGoogle ScholarPubMed
Weltevrede, M., Eilers, R., de Melker, H. E., van Baarle, D. Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: a systematic review. Exp Gerontol. 2016 May; 77: 8795.CrossRefGoogle ScholarPubMed
Weyand, C. M., Goronzy, J. J. Aging of the immune system: mechanisms and therapeutic targets. Ann Am Thorac Soc. 2016 Dec; 13 (Suppl 5): S422–8.CrossRefGoogle ScholarPubMed
Wherry, E. J., Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015 Aug; 15(8): 486–99.CrossRefGoogle ScholarPubMed
Wilson, D., Jackson, T., Sapey, E., Lord, J. M. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev. 2017; 36: 110.CrossRefGoogle ScholarPubMed
Xia, S., Zhang, X., Zheng, S., et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016; 2016: 8426874.CrossRefGoogle ScholarPubMed

References

Adaikalakoteswari, A., Balasubramanyam, M., Mohan, V. Telomere shortening occurs in Asian Indian Type 2 diabetic patients. Diabet Med. 2005; 22(9): 1151–6.CrossRefGoogle ScholarPubMed
Ahmad, S., Heraclides, A., Sun, Q., et al. Telomere length in blood and skeletal muscle in relation to measures of glycaemia and insulinaemia. Diabet Med. 2012; 29(10): e37781.CrossRefGoogle ScholarPubMed
Al Khaldi, R., Mojiminiyi, O., AlMulla, F., Abdella, N. Associations of TERC single nucleotide polymorphisms with human leukocyte telomere length and the risk of Type 2 diabetes mellitus. PloS One. 2015; 10(12): e0145721.CrossRefGoogle ScholarPubMed
Al-Attas, O. S., Al-Daghri, N. M., Alokail, M. S., et al. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin. Eur J Endocrinol. 2010; 163(4): 601–7.CrossRefGoogle ScholarPubMed
Alder, J. K., Stanley, S. E., Wagner, C. L., Hamilton, M., Hanumanthu, V. S., Armanios, M. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest. 2015; 147(5): 1361–8.CrossRefGoogle Scholar
Arem, H., Moore, S. C., Patel, A., et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015; 175(6): 959–67.CrossRefGoogle ScholarPubMed
Armanios, M. Telomerase and idiopathic pulmonary fibrosis. Mutat Res. 2012; 730(1–2): 52–8.CrossRefGoogle ScholarPubMed
Armanios, M., Blackburn, E.H. The telomere syndromes. Nat Rev Genet. 2012; 13(10): 693704.CrossRefGoogle ScholarPubMed
Armanios, M. Y., Chen, J. J.-L., Cogan, J. D., et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007; 356(13): 1317–26.CrossRefGoogle ScholarPubMed
Artandi, S. E., DePinho, R. A. Telomeres and telomerase in cancer. Carcinogenesis. 2010; 31(1): 918.CrossRefGoogle ScholarPubMed
Aubert, G., Baerlocher, G. M., Vulto, I., Poon, S. S., Lansdorp, P. M. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012; 8(5): e1002696.CrossRefGoogle ScholarPubMed
Aviv, A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res. 2012; 730(1–2): 6874.CrossRefGoogle ScholarPubMed
Aviv, A., Hunt, S. C., Lin, J., Cao, X., Kimura, M., Blackburn, E. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res. 2011; 39(20): e134.CrossRefGoogle ScholarPubMed
Aviv, A., Valdes, A., Gardner, J. P., Swaminathan, R., Kimura, M., Spector, T. D. Menopause modifies the association of leukocyte telomere length with insulin resistance and inflammation. J Clin Endocrinol Metab. 2006; 91(2): 635–40.CrossRefGoogle ScholarPubMed
Babizhayev, M. A., Vishnyakova, K. S., Yegorov, Y. E. Oxidative damage impact on aging and age-related diseases: drug targeting of telomere attrition and dynamic telomerase activity flirting with imidazole-containing dipeptides. Recent Pat Drug Deliv Formul. 2014; 8(3): 163–92.CrossRefGoogle ScholarPubMed
Baird, D. M., Kipling, D. The extent and significance of telomere loss with age. Ann N Y Acad Sci. 2004; 1019: 265–8.CrossRefGoogle ScholarPubMed
Bakaysa, S. L., Mucci, L. A., Slagboom, P. E., et al. Telomere length predicts survival independent of genetic influences. Aging Cell. 2007; 6(6): 769–74.CrossRefGoogle ScholarPubMed
Baker, D. J., Childs, B. G., Durik, M., et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016; 530(7589): 184–9.CrossRefGoogle ScholarPubMed
Baker, D. J., Wijshake, T., Tchkonia, T., et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479(7372): 232–6.CrossRefGoogle ScholarPubMed
Ballew, B. J., Savage, S. A. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol. 2013; 6(3): 327–37.CrossRefGoogle ScholarPubMed
Barbieri, M., Paolisso, G., Kimura, M., et al. Higher circulating levels of IGF-1 are associated with longer leukocyte telomere length in healthy subjects. Mech Ageing Dev. 2009; 130(11–12): 771–6.CrossRefGoogle ScholarPubMed
Bayne, S., Jones, M. E. E., Li, H., Liu, J.-P. Potential roles for estrogen regulation of telomerase activity in aging. Ann N Y Acad Sci. 2007; 1114: 4855.CrossRefGoogle ScholarPubMed
Bekaert, S., De Meyer, T., Rietzschel, E. R., et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 2007; 6(5): 639–47.CrossRefGoogle Scholar
Benetos, A., Aviv, A. Ancestry, telomere length, and atherosclerosis risk. Circ Cardiovasc Genet. 2017; 10(3): e001718.CrossRefGoogle ScholarPubMed
Benetos, A., Dalgård, C., Labat, C., et al. Sex difference in leukocyte telomere length is ablated in opposite-sex co-twins. Int J Epidemiol. 2014; 43(6): 1799–805.CrossRefGoogle ScholarPubMed
Benetos, A., Gardner, J. P., Zureik, M., et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension. 2004; 43(2): 182–5.CrossRefGoogle ScholarPubMed
Benetos, A., Kark, J. D., Susser, E., et al. Tracking and fixed ranking of leukocyte telomere length across the adult life course. Aging Cell. 2013; 12(4): 615–21.CrossRefGoogle ScholarPubMed
Benetos, A., Kimura, M., Labat, C., et al. A model of canine leukocyte telomere dynamics. Aging Cell. 2011; 10(6): 991–5.CrossRefGoogle Scholar
Benetos, A., Okuda, K., Lajemi, M., et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension. 2001; 37(2 Pt 2): 381–5.CrossRefGoogle ScholarPubMed
Bennett, M. R., Evan, G. I., Schwartz, S. M. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest. 1995; 95(5): 2266–74.CrossRefGoogle ScholarPubMed
Blackburn, E. H. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 2005; 579(4): 859–62.CrossRefGoogle ScholarPubMed
Blackburn, E. H., Epel, E. S., Lin, J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015; 350(6265): 1193–8.CrossRefGoogle ScholarPubMed
Blasco, M. A. Telomere length, stem cells and aging. Nat Chem Biol. 2007; 3(10): 640–9.CrossRefGoogle ScholarPubMed
Boonekamp, J. J., Simons, M. J. P., Hemerik, L., Verhulst, S. Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell. 2013; 12(2): 330–2.CrossRefGoogle ScholarPubMed
Broer, L., Codd, V., Nyholt, D. R., et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013; 21(10): 1163–8.CrossRefGoogle Scholar
Brouilette, S., Singh, R. K., Thompson, J. R., Goodall, A. H., Samani, N. J. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003; 23(5): 842–6.CrossRefGoogle ScholarPubMed
Burnett-Hartman, A. N., Fitzpatrick, A. L., Kronmal, R. A., et al. Telomere-associated polymorphisms correlate with cardiovascular disease mortality in Caucasian women: The Cardiovascular Health Study. Mech Ageing Dev. 2012; 133(5): 275–81.CrossRefGoogle ScholarPubMed
Butler, M. G., Tilburt, J., DeVries, A., et al. Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages. Cancer Genet Cytogenet. 1998; 105(2): 138144.CrossRefGoogle ScholarPubMed
Cai, Z., Yan, L.-J., Ratka, A. Telomere shortening and Alzheimer's disease. NeuroMolecular Med. 2012; 15(1): 2548.CrossRefGoogle ScholarPubMed
Caini, S., Raimondi, S., Johansson, H., et al. Telomere length and the risk of cutaneous melanoma and non-melanoma skin cancer: a review of the literature and meta-analysis. J Dermatol Sci. 2015; 80(3): 168–74.CrossRefGoogle ScholarPubMed
Calado, R. T., Young, N. S. Telomere diseases. N Engl J Med. 2009; 361(24): 2353–65.CrossRefGoogle ScholarPubMed
Calado, R. T., Regal, J. A., Kleiner, D. E., et al. A spectrum of severe familial liver disorders associate with telomerase mutations. PloS One. 2009; 4(11): e7926.CrossRefGoogle ScholarPubMed
Calvert, P. A., Liew, T.-V., Gorenne, I., et al. Leukocyte telomere length is associated with high-risk plaques on virtual histology intravascular ultrasound and increased proinflammatory activity. Arterioscler Thromb Vasc Biol. 2011; 31(9): 2157–64.CrossRefGoogle ScholarPubMed
Campa, D., Mergarten, B., De Vivo, I., et al. Leukocyte telomere length in relation to pancreatic cancer risk: a prospective study. Cancer Epidemiol Biomark Prev. 2014; 23(11): 2447–54.CrossRefGoogle ScholarPubMed
Candore, G., Balistreri, C. R., Listì, F., et al. Immunogenetics, gender, and longevity. Ann N Y Acad Sci. 2006; 1089: 516–37.CrossRefGoogle ScholarPubMed
Carter, B. D., Abnet, C. C., Feskanich, D., et al. Smoking and mortality – beyond established causes. N Engl J Med. 2015; 372(7): 631–40.CrossRefGoogle ScholarPubMed
Cassidy, A., De Vivo, I., Liu, Y., et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010; 91(5): 1273–80.CrossRefGoogle ScholarPubMed
Cattan, V., Mercier, N., Gardner, J. P., et al. Chronic oxidative stress induces a tissue-specific reduction in telomere length in CAST/Ei mice. Free Radic Biol Med. 2008; 44(8): 1592–8.CrossRefGoogle ScholarPubMed
Cawthon, R. M., Smith, K. R., O'Brien, E., Sivatchenko, A., Kerber, R. A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003; 361(9355): 393–5.CrossRefGoogle ScholarPubMed
Chang, J., Wang, Y., Shao, L., et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016; 22(1): 7883.CrossRefGoogle ScholarPubMed
Chen, S., Lin, J., Matsuguchi, T., et al. Short leukocyte telomere length predicts incidence and progression of carotid atherosclerosis in American Indians: the Strong Heart Family Study. Aging. 2014; 6(5): 414–27.Google ScholarPubMed
Chen, W., Kimura, M., Kim, S., et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011; 66A(3): 312–19.CrossRefGoogle Scholar
Cherkas, L. F., Hunkin, J. L., Kato, B. S., et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008; 168(2): 154–8.CrossRefGoogle ScholarPubMed
Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., van Deursen, J. M. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016; 354(6311): 472–7.CrossRefGoogle ScholarPubMed
Codd, V., Nelson, C. P., Albrecht, E., et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013; 45(4): 422–7, 427 e12.CrossRefGoogle ScholarPubMed
Cogan, J. D., Kropski, J. A., Zhao, M., et al. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am J Respir Crit Care Med. 2015; 191(6): 646–55.CrossRefGoogle ScholarPubMed
Coppé, J.-P., Patil, C. K., Rodier, F., et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol. 2008; 6(12): e301.CrossRefGoogle ScholarPubMed
d'Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003; 426(6963): 194–8.Google ScholarPubMed
D'Mello, M. J. J., Ross, S. A., Briel, M., Anand, S. S., Gerstein, H., Paré, G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet. 2015; 8(1): 8290.CrossRefGoogle ScholarPubMed
Dalgård, C., Benetos, A., Verhulst, S., et al. Leukocyte telomere length dynamics in women and men: menopause vs age effects. Int J Epidemiol. 2015; 44(5): 1688–95.CrossRefGoogle ScholarPubMed
Daniali, L., Benetos, A., Susser, E., et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013; 4: 1597.CrossRefGoogle ScholarPubMed
de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005; 19(18): 2100–10.CrossRefGoogle ScholarPubMed
de Lange, T. How telomeres solve the end-protection problem. Science. 2009; 326(5955): 948–52.CrossRefGoogle ScholarPubMed
De Meyer, T., Rietzschel, E. R., De Buyzere, M. L., et al. Paternal age at birth is an important determinant of offspring telomere length. Hum Mol Genet. 2007; 16(24): 3097–102.CrossRefGoogle ScholarPubMed
De Meyer, T., Rietzschel, E. R., De Buyzere, M. L., et al. Systemic telomere length and preclinical atherosclerosis: the Asklepios Study. Eur Heart J. 2009; 30(24): 3074–81.CrossRefGoogle ScholarPubMed
Deelen, J., Beekman, M., Codd, V., et al. Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int J Epidemiol. 2014; 43(3): 878–86.CrossRefGoogle ScholarPubMed
Dei Cas, A., Spigoni, V., Franzini, L., et al. Lower endothelial progenitor cell number, family history of cardiovascular disease and reduced HDL-cholesterol levels are associated with shorter leukocyte telomere length in healthy young adults. Nutr Metab Cardiovasc Dis. 2013; 23(3): 272–8.CrossRefGoogle ScholarPubMed
Demissie, S., Levy, D., Benjamin, E. J., et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell. 2006; 5(4): 325–30.CrossRefGoogle ScholarPubMed
Ding, H., Chen, C., Shaffer, J. R., et al. Telomere length and risk of stroke in Chinese. Stroke. 2012; 43(3): 658–63.CrossRefGoogle ScholarPubMed
Dokal, I. Inherited aplastic anaemia. Hematol J Off J Eur Haematol Assoc. 2003; 4(1): 39.Google ScholarPubMed
Dong, X., Milholland, B., Vijg, J. Evidence for a limit to human lifespan. Nature. 2016; 538(7624): 257–9.CrossRefGoogle ScholarPubMed
Driver, J. A., Djoussé, L., Logroscino, G., Gaziano, J. M., Kurth, T. Incidence of cardiovascular disease and cancer in advanced age: prospective cohort study. BMJ. 2008; 337: a2467.CrossRefGoogle ScholarPubMed
Du, M., Prescott, J., Kraft, P., et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012; 175(5): 414–22.CrossRefGoogle ScholarPubMed
Eerola, J., Kananen, L., Manninen, K., Hellström, O., Tienari, P. J., Hovatta, I. No evidence for shorter leukocyte telomere length in Parkinson's disease patients. J Gerontol A Biol Sci Med Sci. 2010; 65(11): 1181–4.Google ScholarPubMed
Entringer, S., Epel, E. S., Kumsta, R., et al. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A. 2011; 108(33): E513–18.CrossRefGoogle ScholarPubMed
Factor-Litvak, P., Susser, E., Kezios, K., et al. Leukocyte telomere length in newborns: implications for the role of telomeres in human disease. Pediatrics. 2016; 137(4): e20153927.CrossRefGoogle ScholarPubMed
Fedarko, N. S. The biology of aging and frailty. Clin Geriatr Med. 2011; 27(1): 2737.CrossRefGoogle ScholarPubMed
Fernández-Alvira, J. M., Fuster, V., Dorado, B., et al. Short telomere load, telomere length, and subclinical atherosclerosis: The PESA Study. J Am Coll Cardiol. 2016; 67(21): 2467–76.CrossRefGoogle ScholarPubMed
Fitzpatrick, A. L., Kronmal, R. A., Kimura, M., et al. Leukocyte telomere length and mortality in the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 2011; 66(4): 421–9.Google ScholarPubMed
Fogarty, P. F., Yamaguchi, H., Wiestner, A., et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet. 2003; 362(9396): 1628–30.CrossRefGoogle ScholarPubMed
Fyhrquist, F., Saijonmaa, O., Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013; 10(5): 274–83.CrossRefGoogle ScholarPubMed
García-Calzón, S., Martínez-González, M. A., Razquin, C., et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr Edinb Scotl. 2016; 35(6): 1399–405.Google ScholarPubMed
Gardner, J. P., Li, S., Srinivasan, S. R., et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005; 111(17): 2171–7.CrossRefGoogle ScholarPubMed
Gavrilov, L. A., Gavrilova, N. Interview with Leonid A. Gavrilov, Ph.D.and Natalia Gavrilova, Ph.D. Rejuvenation Res. 2009; 12(5): 371–4.Google ScholarPubMed
Glousker, G., Touzot, F., Revy, P., Tzfati, Y., Savage, S. A. Unraveling the pathogenesis of Hoyeraal-Hreidarsson syndrome, a complex telomere biology disorder. Br J Haematol. 2015; 170(4): 457–71.CrossRefGoogle ScholarPubMed
Greider, C. W., Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985; 43(2 Pt 1): 405–13.CrossRefGoogle ScholarPubMed
Griffith, J. D., Comeau, L., Rosenfield, S., et al. Mammalian telomeres end in a large duplex loop. Cell. 1999; 97(4): 503–14.CrossRefGoogle Scholar
Grodstein, F., van Oijen, M., Irizarry, M. C., et al. Shorter telomeres may mark early risk of dementia: preliminary analysis of 62 participants from the nurses’ health study. PloS One. 2008; 3(2): e1590.CrossRefGoogle Scholar
Guan, J. Z., Maeda, T., Sugano, M., et al. A percentage analysis of the telomere length in Parkinson's disease patients. J Gerontol A Biol Sci Med Sci. 2008; 63(5): 467–73.CrossRefGoogle ScholarPubMed
Guan, J.-Z., Guan, W.-P., Maeda, T., Makino, N. Effect of vitamin E administration on the elevated oxygen stress and the telomeric and subtelomeric status in Alzheimer's disease. Gerontology. 2012; 58(1): 62–9.CrossRefGoogle ScholarPubMed
Hägg, S., Zhan, Y., Karlsson, R., et al. Short telomere length is associated with impaired cognitive performance in European ancestry cohorts. Transl Psychiatry. 2017; 7(4): e1100.CrossRefGoogle ScholarPubMed
Hammadah, M., Al Mheid, I., Wilmot, K., et al. Telomere shortening, regenerative capacity, and cardiovascular outcomes. Circ Res. 2017; 120(7): 1130–8.CrossRefGoogle ScholarPubMed
Hansen, M. E. B., Hunt, S. C., Stone, R. C., et al. Shorter telomere length in Europeans than in Africans due to polygenetic adaptation. Hum Mol Genet. 2016; 25(11): 2324–30.CrossRefGoogle ScholarPubMed
Harley, C. B., Futcher, A. B., Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature. 1990; 345(6274): 458–60.CrossRefGoogle ScholarPubMed
Hashimoto, M., Asai, A., Kawagishi, H., et al. Elimination of p19ARF-expressing cells enhances pulmonary function in mice. JCI Insight. 2016; 1(12): e87732.CrossRefGoogle ScholarPubMed
Haycock, P. C., Burgess, S., Nounu, A., et al. Association between telomere length and risk of cancer and non-neoplastic diseases: A Mendelian Randomization Study. JAMA Oncol. 2017; 3(5): 636–51.CrossRefGoogle Scholar
Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A., Willeit, P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014; 349: g4227.CrossRefGoogle ScholarPubMed
Hayflick, L. Biological aging is no longer an unsolved problem. Ann N Y Acad Sci. 2007; 1100: 113.CrossRefGoogle ScholarPubMed
Hayflick, L., Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25: 585621.CrossRefGoogle ScholarPubMed
Hill, J. M., Zalos, G., Halcox, J. P. J., et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348(7): 593600.CrossRefGoogle ScholarPubMed
Hjelmborg, J. B., Dalgård, C., Möller, S., et al. The heritability of leucocyte telomere length dynamics. J Med Genet. 2015a; 52(5): 297302.CrossRefGoogle ScholarPubMed
Hjelmborg, J. B., Dalgård, C., Mangino, M., et al. Paternal age and telomere length in twins: the germ stem cell selection paradigm. Aging Cell. 2015b; 14(4): 701–3.CrossRefGoogle ScholarPubMed
Hochstrasser, T., Marksteiner, J., Humpel, C. Telomere length is age-dependent and reduced in monocytes of Alzheimer patients. Exp Gerontol. 2012; 47(2): 160–3.CrossRefGoogle ScholarPubMed
Honig, L. S., Kang, M. S., Cheng, R., et al. Heritability of telomere length in a study of long-lived families. Neurobiol Aging. 2015; 36(10): 2785–90.CrossRefGoogle Scholar
Honig, L. S., Kang, M. S., Schupf, N., Lee, J. H., Mayeux, R. Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol. 2012; 69(10): 1332–9.CrossRefGoogle ScholarPubMed
Houben, J. M. J., Moonen, H. J. J., van Schooten, F. J., Hageman, G. J. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med. 2008; 44(3): 235–46.CrossRefGoogle ScholarPubMed
Hovatta, I., de Mello, V. D. F., Kananen, L., et al. Leukocyte telomere length in the Finnish Diabetes Prevention Study. PloS One. 2012; 7(4): e34948.CrossRefGoogle ScholarPubMed
Hunt, S. C., Chen, W., Gardner, J. P., et al. Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell. 2008; 7(4): 451–8.CrossRefGoogle ScholarPubMed
Hunt, S. C., Kimura, M., Hopkins, P. N., et al. Leukocyte telomere length and coronary artery calcium. Am J Cardiol. 2015; 116(2): 214–18.CrossRefGoogle ScholarPubMed
Huzen, J., Peeters, W., de Boer, R. A., et al. Circulating leukocyte and carotid atherosclerotic plaque telomere length: interrelation, association with plaque characteristics, and restenosis after endarterectomy. Arterioscler Thromb Vasc Biol. 2011; 31(5): 1219–25.CrossRefGoogle ScholarPubMed
Iles, M. M., Bishop, D. T., Taylor, J. C., et al. The effect on melanoma risk of genes previously associated with telomere length. J Natl Cancer Inst. 2014; 106(10): dju267.CrossRefGoogle ScholarPubMed
Ilmonen, P., Kotrschal, A., Penn, D. J. Telomere attrition due to infection. PloS One. 2008; 3(5): e2143.CrossRefGoogle ScholarPubMed
Jaskelioff, M., Muller, F. L., Paik, J.-H., et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011; 469(7328): 102–06.CrossRefGoogle ScholarPubMed
Jeanclos, E., Schork, N. J., Kyvik, K. O., Kimura, M., Skurnick, J. H., Aviv, A. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension. 2000; 36(2): 195200.CrossRefGoogle ScholarPubMed
Jenkins, E. C., Velinov, M. T., Ye, L., et al. Telomere shortening in T lymphocytes of older individuals with Down syndrome and dementia. Neurobiol Aging. 2006; 27(7): 941–5.CrossRefGoogle Scholar
Julin, B., Shui, I., Heaphy, C. M., et al. Circulating leukocyte telomere length and risk of overall and aggressive prostate cancer. Br J Cancer. 2015; 112(4): 769–76.CrossRefGoogle ScholarPubMed
Kark, J. D., Goldberger, N., Kimura, M., Sinnreich, R., Aviv, A. Energy intake and leukocyte telomere length in young adults. Am J Clin Nutr. 2012; 95(2): 479–87.CrossRefGoogle ScholarPubMed
Kimura, M., Hjelmborg, J. V. B., Gardner, J. P., et al. Telomere length and mortality: a study of leukocytes in elderly Danish twins. Am J Epidemiol. 2008a; 167(7): 799806.CrossRefGoogle ScholarPubMed
Kimura, M., Cherkas, L. F., Kato, B. S., et al. Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet. 2008b; 4(2): e37.CrossRefGoogle ScholarPubMed
Kurz, D. J., Kloeckener-Gruissem, B., Akhmedov, A., et al. Degenerative aortic valve stenosis, but not coronary disease, is associated with shorter telomere length in the elderly. Arterioscler Thromb Vasc Biol. 2006; 26(6): e114–17.CrossRefGoogle Scholar
Kurz, D. J., Decary, S., Hong, Y., Trivier, E., Akhmedov, A., Erusalimsky, J. D. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004; 117(Pt 11): 2417–26.CrossRefGoogle ScholarPubMed
Lee, H. W., Blasco, M. A., Gottlieb, G. J., Horner, J. W., Greider, C. W., DePinho, R. A. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998; 392(6676): 569–74.CrossRefGoogle ScholarPubMed
Lindsey, J., McGill, N. I., Lindsey, L. A., Green, D. K., Cooke, H. J. In vivo loss of telomeric repeats with age in humans. Mutat Res. 1991; 256(1): 45–8.Google ScholarPubMed
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., Kroemer, G. The hallmarks of aging. Cell. 2013; 153(6): 1194–217.CrossRefGoogle ScholarPubMed
Luciani, F., Valensin, S., Vescovini, R., et al. A stochastic model for CD8(+)T cell dynamics in human immunosenescence: implications for survival and longevity. J Theor Biol. 2001; 213(4): 587–97.CrossRefGoogle ScholarPubMed
Lukens, J. N., Van Deerlin, V., Clark, C. M., Xie, S. X., Johnson, F. B. Comparisons of telomere lengths in peripheral blood and cerebellum in Alzheimer's disease. Alzheimers Dement. 2009; 5(6): 463–9.CrossRefGoogle ScholarPubMed
Lummaa, V., Pettay, J. E., Russell, A. F. Male twins reduce fitness of female co-twins in humans. Proc Natl Acad Sci U S A. 2007; 104(26): 1091520.CrossRefGoogle ScholarPubMed
Lundberg, A. K., Jönsson, S., Stenmark, J., Kristenson, M., Jonasson, L. Stress-induced release of matrix metalloproteinase-9 in patients with coronary artery disease: the possible influence of cortisol. Psychoneuroendocrinology. 2016; 73: 117–24.CrossRefGoogle ScholarPubMed
Lynch, S. M., Major, J. M., Cawthon, R., et al. A prospective analysis of telomere length and pancreatic cancer in the alpha-tocopherol beta-carotene cancer (ATBC) prevention study. Int J Cancer. 2013; 133(11): 2672–80.Google ScholarPubMed
Lynch, S. M., Peek, M. K., Mitra, N., et al. Race, ethnicity, psychosocial factors, and telomere length in a multicenter setting. PloS One. 2016; 11(1): e0146723.CrossRefGoogle Scholar
Ma, L., Li, Y., Wang, J. Telomeres and essential hypertension. Clin Biochem. 2015; 48(16–17): 1195–9.CrossRefGoogle ScholarPubMed
Machiela, M. J., Hsiung, C. A., Shu, X.-O., et al. Genetic variants associated with longer telomere length are associated with increased lung cancer risk among never-smoking women in Asia: a report from the female lung cancer consortium in Asia. Int J Cancer. 2015; 137(2): 311–19.CrossRefGoogle Scholar
Maeda, T., Guan, J. Z., Koyanagi, M., Higuchi, Y., Makino, N. Aging-associated alteration of telomere length and subtelomeric status in female patients with Parkinson's disease. J Neurogenet. 2012; 26(2): 245–51.CrossRefGoogle ScholarPubMed
Mainous, A. G., Codd, V., Diaz, V. A., et al. Leukocyte telomere length and coronary artery calcification. Atherosclerosis. 2010; 210(1): 262–7.CrossRefGoogle ScholarPubMed
Malaquin, N., Martinez, A., Rodier, F. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol. 2016; 82: 3949.CrossRefGoogle ScholarPubMed
Marión, R. M., Blasco, M. A. Telomeres and telomerase in adult stem cells and pluripotent embryonic stem cells. Adv Exp Med Biol. 2010; 695: 118–31.CrossRefGoogle ScholarPubMed
Matthews, C., Gorenne, I., Scott, S., et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res. 2006; 99(2): 156–64.CrossRefGoogle ScholarPubMed
Metcalfe, N. B., Monaghan, P. Compensation for a bad start: grow now, pay later? Trends Ecol Evol. 2001; 16(5): 254–60.CrossRefGoogle ScholarPubMed
Metcalfe, N. B., Monaghan, P. Growth versus lifespan: perspectives from evolutionary ecology. Exp Gerontol. 2003; 38(9): 935–40.CrossRefGoogle ScholarPubMed
Minamino, T., Miyauchi, H., Yoshida, T., Ishida, Y., Yoshida, H., Komuro, I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002; 105(13): 1541–4.CrossRefGoogle ScholarPubMed
Mirabello, L., Huang, W.-Y., Wong, J. Y. Y., et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009; 8(4): 405–13.CrossRefGoogle ScholarPubMed
Monickaraj, F., Aravind, S., Gokulakrishnan, K., et al. Accelerated aging as evidenced by increased telomere shortening and mitochondrial DNA depletion in patients with type 2 diabetes. Mol Cell Biochem. 2012; 365(1–2): 343–50.CrossRefGoogle ScholarPubMed
Morrison, S. J., Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006; 441(7097): 1068–74.CrossRefGoogle ScholarPubMed
Mozaffarian, D., Benjamin, E. J., Go, A. S., et al. Heart disease and stroke statistics-2016 update: A Report From the American Heart Association. Circulation. 2016; 133(4): e38360.Google ScholarPubMed
Müezzinler, A., Zaineddin, A. K., Brenner, H. A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev. 2013; 12(2): 509–19.CrossRefGoogle ScholarPubMed
Nawrot, T. S., Staessen, J. A., Gardner, J. P., Aviv, A. Telomere length and possible link to X chromosome. Lancet. 2004; 363(9408): 507–10.CrossRefGoogle ScholarPubMed
Nawrot, T. S., Staessen, J. A., Holvoet, P., et al. Telomere length and its associations with oxidized-LDL, carotid artery distensibility and smoking. Front Biosci (Elite Ed). 2010; 2: 1164–8.Google ScholarPubMed
Nilsson, P. M., Tufvesson, H., Leosdottir, M., Melander, O. Telomeres and cardiovascular disease risk: an update 2013. Transl Res. 2013; 162(6): 371–80.CrossRefGoogle ScholarPubMed
Nordfjäll, K., Eliasson, M., Stegmayr, B., Lundin, S., Roos, G., Nilsson, P. M. Increased abdominal obesity, adverse psychosocial factors and shorter telomere length in subjects reporting early ageing; the MONICA Northern Sweden Study. Scand J Soc Med. 2008; 36(7): 744–52.Google ScholarPubMed
Nzietchueng, R., Elfarra, M., Nloga, J., et al. Telomere length in vascular tissues from patients with atherosclerotic disease. J Nutr Health Aging. 2011; 15(2): 153–6.CrossRefGoogle ScholarPubMed
O'Donnell, C. J., Demissie, S., Kimura, M., et al. Leukocyte telomere length and carotid artery intimal medial thickness: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2008; 28(6): 1165–71.Google ScholarPubMed
O'Donovan, G., Lee, I.-M., Hamer, M., Stamatakis, E. Association of “Weekend Warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality. JAMA Intern Med. 2017; 177(3): 335–42.Google ScholarPubMed
O'Rourke, M. F., Hashimoto, J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007; 50(1): 113.CrossRefGoogle ScholarPubMed
Okuda, K, Bardeguez, A, Gardner, JP, et al. Telomere length in the newborn. Pediatr Res. 2002; 52(3): 377–81.CrossRefGoogle ScholarPubMed
Olovnikov, AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973; 41(1): 181–90.Google ScholarPubMed
Ornish, D, Lin, J, Chan, JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013; 14(11): 1112–20.CrossRefGoogle ScholarPubMed
Panayiotou, A. G., Nicolaides, A. N., Griffin, M., et al. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis. 2010; 211(1): 176–81.CrossRefGoogle ScholarPubMed
Panossian, L. A., Porter, V. R., Valenzuela, H. F., et al. Telomere shortening in T cells correlates with Alzheimer's disease status. Neurobiol Aging. 2003; 24(1): 7784.CrossRefGoogle Scholar
Rafie, N., Golpour Hamedani, S., Barak, F., Safavi, S. M., Miraghajani, M. Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr. 2017; 71(2): 151–8.CrossRefGoogle ScholarPubMed
Raymond, A. R., Brooksbank, R. L., Millen, A. M. E., et al. Telomere length, endothelial activation and carotid atherosclerosis in black and white African patients with rheumatoid arthritis. Clin Exp Rheumatol. 2016; 34(5): 864–71.Google ScholarPubMed
Ribeiro, D. C., Brook, A. H., Hughes, T. E., Sampson, W. J., Townsend, G. C. Intrauterine hormone effects on tooth dimensions. J Dent Res. 2013; 92(5): 425–31.CrossRefGoogle ScholarPubMed
Rizvi, S., Raza, S. T., Mahdi, F. Telomere length variations in aging and age-related diseases. Curr Aging Sci. 2015; 7(3): 161–7.CrossRefGoogle Scholar
Rode, L., Bojesen, S. E., Weischer, M., Nordestgaard, B. G. High tobacco consumption is causally associated with increased all-cause mortality in a general population sample of 55,568 individuals, but not with short telomeres: a Mendelian randomization study. Int J Epidemiol. 2014; 43(5): 1473–83.CrossRefGoogle Scholar
Rode, L., Nordestgaard, B. G., Bojesen, S. E. Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. J Natl Cancer Inst. 2015; 107(6): djv074.CrossRefGoogle Scholar
Rodier, F., Campisi, J. Four faces of cellular senescence. J Cell Biol. 2011; 192(4): 547–56.CrossRefGoogle ScholarPubMed
Ross, R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999; 138(5, Supplement):S419–S420.CrossRefGoogle ScholarPubMed
Rudolph, K. L., Chang, S., Lee, H. W., et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999; 96(5): 701–12.CrossRefGoogle ScholarPubMed
Saliques, S., Teyssier, J.-R., Vergely, C., et al. Circulating leukocyte telomere length and oxidative stress: a new target for statin therapy. Atherosclerosis. 2011; 219(2): 753–60.CrossRefGoogle ScholarPubMed
Salpea, K. D., Talmud, P. J., Cooper, J. A., et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010; 209(1): 4250.CrossRefGoogle ScholarPubMed
Samani, N. J., Boultby, R., Butler, R., Thompson, J. R., Goodall, A. H. Telomere shortening in atherosclerosis. Lancet. 2001; 358(9280): 472–3.CrossRefGoogle ScholarPubMed
Samper, E., Flores, J. M., Blasco, M. A. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep. 2001; 2(9): 800–7.CrossRefGoogle ScholarPubMed
Sanchez-Espiridion, B., Chen, M., Chang, J. Y., et al. Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res. 2014; 74(9): 2476–86.CrossRefGoogle Scholar
Savage, S. A., Alter, B. P. The role of telomere biology in bone marrow failure and other disorders. Mech Ageing Dev. 2008; 129(1–2): 3547.CrossRefGoogle ScholarPubMed
Savage, S. A., Gadalla, S. M., Chanock, S. J. The long and short of telomeres and cancer association studies. J Natl Cancer Inst. 2013; 105(7): 448–9.CrossRefGoogle Scholar
Savage, S. A., Giri, N., Baerlocher, G. M., Orr, N., Lansdorp, P. M., Alter, B. P. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008; 82(2): 501–9.CrossRefGoogle ScholarPubMed
Saxena, R., Bjonnes, A., Prescott, J., et al. Genome-wide association study identifies variants in Casein Kinase II (CSNK2A2) to be associated with leukocyte telomere length in a Punjabi Sikh Diabetic Cohort. Circ Cardiovasc Genet. 2014; 7(3): 287–95.CrossRefGoogle Scholar
Scheller Madrid, A., Rode, L., Nordestgaard, B. G., Bojesen, S. E. Short telomere length and ischemic heart disease: observational and genetic studies in 290 022 individuals. Clin Chem. 2016; 62(8): 1140–9.CrossRefGoogle ScholarPubMed
Schürks, M., Buring, J., Dushkes, R., Gaziano, J. M., Zee, R. Y. L., Kurth, T. Telomere length and Parkinson's disease in men: a nested case-control study. Eur J Neurol. 2014; 21(1): 93–9.CrossRefGoogle Scholar
Seluanov, A., Chen, Z., Hine, C., et al. Telomerase activity coevolves with body mass not lifespan. Aging Cell. 2007; 6(1): 4552.CrossRefGoogle Scholar
Seow, W. J., Cawthon, R. M., Purdue, M. P., et al. Telomere length in white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res. 2014; 74(15): 4090–8.Google ScholarPubMed
Sharpless, N. E., DePinho, R. A. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol. 2007; 8(9): 703–3.CrossRefGoogle ScholarPubMed
Shay, J. W., Wright, W. E. Telomerase activity in human cancer. Curr Opin Oncol. 1996; 8(1): 6671.CrossRefGoogle ScholarPubMed
Shay, J. W., Wright, W. E. Telomeres and telomerase: implications for cancer and aging. Radiat Res. 2001; 155(1 Pt 2): 188–93.CrossRefGoogle ScholarPubMed
Shay, J. W., Wright, W. E., Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta. 1991; 1072(1): 17.Google ScholarPubMed
Sjögren, P., Fisher, R., Kallings, L., Svenson, U., Roos, G., Hellénius, M.-L. Stand up for health – avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014; 48(19): 1407–9.CrossRefGoogle ScholarPubMed
Smith, D. W. Cancer mortality at very old ages. Cancer. 1996; 77(7): 1367–72.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Spigoni, V., Aldigeri, R., Picconi, A., et al. Telomere length is independently associated with subclinical atherosclerosis in subjects with type 2 diabetes: a cross-sectional study. Acta Diabetol. 2016; 53(4): 661–7.CrossRefGoogle ScholarPubMed
Spyridopoulos, I., Haendeler, J., Urbich, C., et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation. 2004; 110(19): 3136–42.CrossRefGoogle ScholarPubMed
Stanley, S. E., Armanios, M. The short and long telomere syndromes: paired paradigms for molecular medicine. Curr Opin Genet Dev. 2015; 33: 19.CrossRefGoogle Scholar
Stanley, S. E., Chen, J. J. L., Podlevsky, J. D., et al. Telomerase mutations in smokers with severe emphysema. J Clin Invest. 2015; 125(2): 563–70.CrossRefGoogle ScholarPubMed
Steenstrup, T., Hjelmborg, J. V. B., Kark, J. D., Christensen, K., Aviv, A. The telomere lengthening conundrum – artifact or biology? Nucleic Acids Res. 2013; 41(13): e131.CrossRefGoogle ScholarPubMed
Steenstrup, T., Kark, J. D., Verhulst, S., et al. Telomeres and the natural lifespan limit in humans. Aging. 2017; 9(4): 1130–42.CrossRefGoogle ScholarPubMed
Stone, R. C., Horvath, K., Kark, J. D., Susser, E., Tishkoff, S. A., Avi, A. Telomere length and the cancer-atherosclerosis trade-off. PLoS Genet. 2016; 12(7): e1006144.CrossRefGoogle ScholarPubMed
Strandberg, T. E., Saijonmaa, O., Tilvis, R. S., et al. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011; 66(7): 815–20.Google ScholarPubMed
Stuart, B. D., Choi, J., Zaidi, S., et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet. 2015; 47(5): 512–17.CrossRefGoogle ScholarPubMed
Swiers, G., Speck, N. A., de Bruijn, M. F. T. R. Visualizing blood cell emergence from aortic endothelium. Cell Stem Cell. 2010; 6(4): 289–90.CrossRefGoogle ScholarPubMed
Tapp, A. L., Maybery, M. T., Whitehouse, A. J. O. Evaluating the twin testosterone transfer hypothesis: a review of the empirical evidence. Horm Behav. 2011; 60(5): 713–22.CrossRefGoogle ScholarPubMed
Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J., Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013; 123(3): 966–72.CrossRefGoogle ScholarPubMed
Tentolouris, N., Nzietchueng, R., Cattan, V., et al. White blood cells telomere length is shorter in males with type 2 diabetes and microalbuminuria. Diabetes Care. 2007; 30(11): 2909–15.CrossRefGoogle ScholarPubMed
Testa, R., Olivieri, F., Sirolla, C., et al. Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med. 2011; 28(11): 1388–94.CrossRefGoogle ScholarPubMed
Thomas, P., O’ Callaghan, N. J., Fenech, M. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer's disease. Mech Ageing Dev. 2008; 129(4): 183–90.CrossRefGoogle ScholarPubMed
Toupance, S., Labat, C., Temmar, M., et al. Short telomeres, but not telomere attrition rates, are associated with carotid atherosclerosis. Hypertension 2017; 70(2): 420–5.CrossRefGoogle Scholar
Tzanetakou, I. P., Mikhailidis, D. P., Perrea, D.N. Nutrition during pregnancy and the effect of carbohydrates on the offspring's metabolic profile: in search of the “Perfect Maternal Diet”. Open Cardiovasc Med J. 2011; 5: 103–9.CrossRefGoogle Scholar
Unryn, B. M., Cook, L. S., Riabowol, K. T. Paternal age is positively linked to telomere length of children. Aging Cell. 2005; 4(2): 97101.CrossRefGoogle ScholarPubMed
Uryga, A. K., Bennett, M. R. Ageing induced vascular smooth muscle cell senescence in atherosclerosis. J Physiol. 2016; 594(8): 2115–24.CrossRefGoogle ScholarPubMed
Valdes, A. M., Andrew, T., Gardner, J. P., et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005; 366(9486): 662–4.CrossRefGoogle ScholarPubMed
van der Harst, P., van der Steege, G., de Boer, R. A., et al. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol. 2007; 49(13): 1459–64.CrossRefGoogle ScholarPubMed
van Deursen, J. M. The role of senescent cells in ageing. Nature. 2014; 509(7501): 439–46.CrossRefGoogle ScholarPubMed
Vasan, R. S., Demissie, S., Kimura, M., et al. Association of leukocyte telomere length with circulating biomarkers of the renin-angiotensin-aldosterone system: the Framingham Heart Study. Circulation. 2008; 117(9): 1138–44.CrossRefGoogle ScholarPubMed
Vemparala, K., Roy, A., Bahl, V. K., et al. Early accelerated senescence of circulating endothelial progenitor cells in premature coronary artery disease patients in a developing country – a case control study. BMC Cardiovasc Disord. 2013; 13: 104.CrossRefGoogle Scholar
von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002; 27(7): 339–44.CrossRefGoogle ScholarPubMed
von Zglinicki, T., Serra, V., Lorenz, M., et al. Short telomeres in patients with vascular dementia: an indicator of low antioxidative capacity and a possible risk factor? Lab Invest. 2000; 80(11): 1739–47.CrossRefGoogle ScholarPubMed
Vulliamy, T., Marrone, A., Dokal, I., Mason, P. J. Association between aplastic anaemia and mutations in telomerase RNA. Lancet. 2002; 359(9324): 2168–70.CrossRefGoogle ScholarPubMed
Vuoksimaa, E., Eriksson, C. J. P., Pulkkinen, L., Rose, R. J., Kaprio, J. Decreased prevalence of left-handedness among females with male co-twins: evidence suggesting prenatal testosterone transfer in humans? Psychoneuroendocrinology. 2010; 35(10): 1462–72.CrossRefGoogle ScholarPubMed
Walsh, K. M., Codd, V., Rice, T., et al. Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget. 2015; 6(40): 4246877.CrossRefGoogle ScholarPubMed
Walsh, K. M., Whitehead, T. P., de Smith, A. J., et al. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis. 2016; 37(6): 576–82.CrossRefGoogle ScholarPubMed
Wang, H., Chen, H., Gao, X., et al. Telomere length and risk of Parkinson's disease. Mov Disord. 2008; 23(2): 302–5.CrossRefGoogle ScholarPubMed
Wang, J., Uryga, A. K., Reinhold, J., et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation. 2015; 132(20): 1909–19.Google ScholarPubMed
Wang, Y.-Y., Chen, A.-F., Wang, H.-Z., Xie, L.-Y., Sui, K.-X., Zhang, Q.-Y. Association of shorter mean telomere length with large artery stiffness in patients with coronary heart disease. Aging Male. 2011; 14(1): 2732.CrossRefGoogle ScholarPubMed
Watfa, G., Dragonas, C., Brosche, T., et al. Study of telomere length and different markers of oxidative stress in patients with Parkinson's disease. J Nutr Health Aging. 2011; 15(4): 277–81.CrossRefGoogle ScholarPubMed
Weischer, M., Bojesen, S. E., Nordestgaard, B. G. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014; 10(3): e1004191.CrossRefGoogle Scholar
Willeit, P., Raschenberger, J., Heydon, E. E., et al. Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PloS One. 2014; 9(11): e112483.CrossRefGoogle ScholarPubMed
Willeit, P., Willeit, J., Brandstätter, A., et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010; 30(8): 1649–56.CrossRefGoogle ScholarPubMed
Xia, L., Wang, X. X., Hu, X. S., et al. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. Br J Pharmacol. 2008; 155(3): 387–94.CrossRefGoogle ScholarPubMed
Yamaguchi, H., Baerlocher, G. M., Lansdorp, P. M., et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood. 2003; 102(3): 916–18.CrossRefGoogle ScholarPubMed
Yamaguchi, H., Calado, R. T., Ly, H., et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005; 352(14): 1413–24.CrossRefGoogle ScholarPubMed
Yeh, J.-K., Wang, C.-Y. Telomeres and telomerase in cardiovascular diseases. Genes. 2016; 7(9): E58.CrossRefGoogle ScholarPubMed
Youngren, K., Jeanclos, E., Aviv, H., et al. Synchrony in telomere length of the human fetus. Hum Genet. 1998; 102(6): 640–3.CrossRefGoogle ScholarPubMed
Zee, R. Y. L., Ridker, P. M., Chasman, D. I. Genetic variants of 11 telomere-pathway gene loci and the risk of incident type 2 diabetes mellitus: the Women's Genome Health Study. Atherosclerosis. 2011; 218(1): 144–6.CrossRefGoogle ScholarPubMed
Zekry, D., Herrmann, F. R., Irminger-Finger, I., et al. Telomere length and ApoE polymorphism in mild cognitive impairment, degenerative and vascular dementia. J Neurol Sci. 2010; 299(1–2): 108–11.CrossRefGoogle ScholarPubMed
Zhan, Y., Song, C., Karlsson, R., et al. Telomere length shortening and Alzheimer disease – A Mendelian Randomization Study. JAMA Neurol. 2015; 72(10): 1202–3.CrossRefGoogle ScholarPubMed
Zhang, C., Doherty, J. A., Burgess, S., et al. Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Hum Mol Genet. 2015; 24(18): 5356–66.CrossRefGoogle ScholarPubMed
Zhang, W., Chen, Y., Wang, Y., et al. Short telomere length in blood leucocytes contributes to the presence of atherothrombotic stroke and haemorrhagic stroke and risk of post-stroke death. Clin Sci. 2013; 125(1): 2736.CrossRefGoogle Scholar

References

Adami, H. O., Hunter, D. & Trichopoulos, D. Textbook of Cancer Epidemiology (Oxford University Press, New York, 2009).Google Scholar
Ahlbom, A. & Alfredsson, L. Interaction: A word with two meanings creates confusion. Eur. J. Epidemiol. 20, 564 (2005).CrossRefGoogle ScholarPubMed
Ahmad, S., Rukh, G., Varga, T. V., et al. (2013) Gene × physical activity interactions in obesity: Combined analysis of 111,421 individuals of European ancestry. PLoS Genet. 9, e1003607 (2013).CrossRefGoogle Scholar
Anselmi, C. V., Malovini, A., Roncarati, R., et al. Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res. 12, 04 (2009).CrossRefGoogle Scholar
Aslibekyan, S. Gene-environment interaction in Cardiovascular Genetics and Genomics in Clinical Practice (eds. Shah, S. & Arnett, D.) (Demos Medical Publishing, New York, 2014).Google Scholar
Atzmon, G., Rincon, M., Schechter, C. B., et al. Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol. 4, 569 (2006).CrossRefGoogle ScholarPubMed
Beekman, M., Blanché, H., Perola, M., et al. Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study. Aging Cell 12, 193 (2013).CrossRefGoogle ScholarPubMed
Benetos, A., Thomas, F., Bean, K. E., Pannier, B. & Guize, L. Role of modifiable risk factors in life expectancy in the elderly. J. Hypertens. 23, 18 (2005).CrossRefGoogle ScholarPubMed
Brooks-Wilson, A. R. Genetics of healthy aging and longevity. Hum. Genet. 132, 1323–38 (2013).CrossRefGoogle ScholarPubMed
Burns, D. M., Lee, L., Shen, L. Z., et al. in Tobacco Control Monograph series 2 (National Institute Of Health, 1997). at https://pubs.cancer.gov/ncipl/detail.aspx?prodid=M040Google Scholar
Bush, W. S. & Moore, J. H. Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 8, e1002822 (2012).CrossRefGoogle ScholarPubMed
Christensen, K. & McGue, M. Genetics: Healthy ageing, the genome and the environment. Nat. Rev. Endocrinol. 12, 30 (2016).CrossRefGoogle ScholarPubMed
Christensen, K., Johnson, T. E. & Vaupel, J. W. The quest for genetic determinants of human longevity: challenges and insights. Nat. Rev. Genet. 7, 48 (2006).CrossRefGoogle ScholarPubMed
Corella, D. & Ordovás, J. M. Aging and cardiovascular diseases: The role of gene–diet interactions. Ageing Res. Rev. 18, 3 (2014).CrossRefGoogle ScholarPubMed
Corella, D., Portolés, O., Arriola, L., et al. Saturated fat intake and alcohol consumption modulate the association between the APOE polymorphism and risk of future coronary heart disease: A nested case-control study in the Spanish EPIC cohort. J. Nutr. Biochem. 22, 494 (2011).CrossRefGoogle ScholarPubMed
Costello, E. J., Eaves, L., Sullivan, P., et al. Genes, environments, and developmental research: Methods for a multi-site study of early substance abuse. Twin Res. Hum. Genet. 16, 55 (2013).CrossRefGoogle ScholarPubMed
Cunningham, G. C. Phenylketonuria. Early detection, diagnosis and treatment. Calif. Med. 105, 17 (1966).Google ScholarPubMed
Däumer, C., Flachsbart, F., Caliebe, A., et al. Adjustment for smoking does not alter the FOXO3A association with longevity. Age (Dordr). 36, 91 (2014).CrossRefGoogle Scholar
de Groot, L. C. P. M. G., Verheijden, M. W., de Henauw, S., et al. Lifestyle, nutritional status, health, and mortality in elderly people across Europe: A review of the longitudinal results of the SENECA study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 59, 12284 (2004).CrossRefGoogle ScholarPubMed
Deelen, J., Beekman, M., Uh, H.-W., et al. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum. Mol. Genet. 23, 44432 (2014).CrossRefGoogle ScholarPubMed
Deelen, J., Beekman, M., Uh, H.-W., et al. Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10, 68 (2011).CrossRefGoogle ScholarPubMed
Deelen, J., Beekman, M., Capri, M., Franceschi, C. & Slagboom, P. E. Identifying the genomic determinants of aging and longevity in human population studies: Progress and challenges. BioEssays 35, 396 (2013).CrossRefGoogle ScholarPubMed
Dempfle, A., Scherag, A., Hein, R., et al. Gene–environment interactions for complex traits: Definitions, methodological requirements and challenges. Eur. J. Hum. Genet. 16, 11172 (2008).CrossRefGoogle ScholarPubMed
Dufouil, C., Tzourio, C., Brayne, C., et al. Influence of apolipoprotein E genotype on the risk of cognitive deterioration in moderate drinkers and smokers. Epidemiology 11, 284 (2000).CrossRefGoogle ScholarPubMed
Dunn, E. C., Brown, R. C., Dai, Y., et al. Genetic determinants of depression: Recent findings and future directions. Harv. Rev. Psychiatry 23, 118 (2015).CrossRefGoogle ScholarPubMed
Dunn, E. C., Wiste, A., Radmanesh, F., et al. Genome-wide association study (GWAS) and genome-wide by environment interaction study (GWEIS) of depressive symptoms in African American and Hispanic/Latina women. Depress. Anxiety 33, 280 (2016).CrossRefGoogle ScholarPubMed
Dupre, M. E., Liu, G. & Gu, D. Predictors of longevity: Evidence from the oldest old in China. Am. J. Public Health 98, 12 (2008).CrossRefGoogle ScholarPubMed
Elston, R. C., Olson, J. M. & Palmer, L. Biostatistical Genetics and Genetic Epidemiology (Wiley, Chichester, United Kingdom, 2002).Google Scholar
Engberg, H., Oksuzyan, A., Jeune, B., Vaupel, J. W. & Christensen, K. Centenarians – A useful model for healthy aging? A 29-year follow-up of hospitalizations among 40,000 Danes born in 1905. Aging Cell 8, 2 (2009).CrossRefGoogle Scholar
Ewbank, D. C. Differences in the association between apolipoprotein E genotype and mortality across populations. J. Gerontol. A. Biol. Sci. Med. Sci. 62, 807 (2007).CrossRefGoogle ScholarPubMed
Ewbank, D. C. The APOE gene and differences in life expectancy in Europe. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 59, B16B20 (2004).CrossRefGoogle ScholarPubMed
Finch, C. E. & Tanzi, R. E. Genetics of aging. Science. 278, 411 (1997).CrossRefGoogle ScholarPubMed
Flachsbart, F., Caliebe, A., Kleindorp, R., et al. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc. Natl. Acad. Sci. U. S. A. 106, 27 (2009).CrossRefGoogle ScholarPubMed
Fried, L. P., Kronmal, R. A., Newman, A. B., et al. Risk factors for 5-year mortality in older adults: The Cardiovascular Health Study. JAMA 279, 52 (1998).CrossRefGoogle ScholarPubMed
Frikke-Schmidt, R., Nordestgaard, B. G., Agerholm-Larsen, B., Schnohr, P. & Tybjaerg-Hansen, A. Context-dependent and invariant associations between lipids, lipoproteins, and apolipoproteins and apolipoprotein E genotype. J. Lipid Res. 41, 182 (2000).CrossRefGoogle ScholarPubMed
Frisoni, G. B., Louhija, J., Geroldi, C. & Trabucchi, M. Longevity and the epsilon2 allele of apolipoprotein E: The Finnish Centenarians Study. J. Gerontol. A. Biol. Sci. Med. Sci. 56, M758 (2001).CrossRefGoogle ScholarPubMed
Ganna, A., Rivadeneira, F., Hofman, A., et al. Genetic determinants of mortality. Can findings from genome-wide association studies explain variation in human mortality? Hum. Genet. 132, 51 (2013).CrossRefGoogle ScholarPubMed
Garatachea, N., Emanuele, E., Calero, M., et al. ApoE gene and exceptional longevity: Insights from three independent cohorts. Exp. Gerontol. 53, 3 (2014).CrossRefGoogle ScholarPubMed
Garatachea, N., Marín, P. J., Santos-Lozano, A., et al. The ApoE gene is related with exceptional longevity: A systematic review and meta-analysis. Rejuvenation Res. 18, 313 (2015).CrossRefGoogle ScholarPubMed
Gauderman, W. J. Sample size requirements for matched case-control studies of gene-environment interaction. Stat. Med. 21, 35 (2002).CrossRefGoogle ScholarPubMed
Gellert, C. Schöttker, B., Brenner, H., et al. Smoking and all-cause mortality in older people: systematic review and meta-analysis. Arch. Intern. Med. 172, 254 (2012).CrossRefGoogle ScholarPubMed
Gentschew, L., Flachsbart, F., Kleindorp, R., et al. Polymorphisms in the superoxidase dismutase genes reveal no association with human longevity in Germans: A case-control association study. Biogerontology 14, 727 (2013).CrossRefGoogle ScholarPubMed
Ghebranious, N., Mukesh, B., Giampietro, P. F., et al. A pilot study of gene/gene and gene/environment interactions in Alzheimer disease. Clin. Med. Res. 9, 5 (2011).CrossRefGoogle ScholarPubMed
Grammer, T. B., Hoffmann, M. M., Scharnagl, H., et al. Smoking, apolipoprotein e genotypes, and mortality (the Ludwigshafen RIsk and Cardiovascular Health study). Eur. Heart J. 34, 12305 (2013).CrossRefGoogle ScholarPubMed
Hagberg, B. & Samuelsson, G. Survival after 100 years of age: A multivariate model of exceptional survival in Swedish centenarians. J. Gerontol. A. Biol. Sci. Med. Sci. 63, 126 (2008).CrossRefGoogle ScholarPubMed
Halme, J. T., Seppä, K., Alho, H., et al. Alcohol consumption and all-cause mortality among elderly in Finland. Drug Alcohol Depend. 106, 2 (2010).CrossRefGoogle ScholarPubMed
Hammond, E. C., Selikoff, I. J. & Seidman, H. Asbestos exposure, cigarette smoking and death rates. Ann. N. Y. Acad. Sci. 330, 40 (1979).CrossRefGoogle ScholarPubMed
Hamza, T. H., Chen, H., Hill-Burns, E. M., et al. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee. PLoS Genet. 7, e1002237 (2011).CrossRefGoogle ScholarPubMed
Haveman-Nies, A., Groot, L. (C. ) P. G. M. de, Burema, J., et al. Dietary quality and lifestyle factors in relation to 10-year mortality in older Europeans: The SENECA study. Am. J. Epidemiol. 156, 968 (2002).CrossRefGoogle ScholarPubMed
Hill, A. B. The environment and disease: Association or causation? Proc. R. Soc. Med. 58, 200 (1965).Google ScholarPubMed
Hjelmborg, J. B., Iachine, I., Skytthe, A., et al. Genetic influence on human lifespan and longevity. Hum. Genet. 119, 321 (2006).CrossRefGoogle Scholar
Holmes, M. V., Frikke-Schmidt, R., Melis, D., et al. A systematic review and meta-analysis of 130,000 individuals shows smoking does not modify the association of APOE genotype on risk of coronary heart disease. Atherosclerosis 237, 512 (2014).CrossRefGoogle Scholar
Huang, Y. & Mahley, R. W. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol. Dis. 72, 312 (2014).CrossRefGoogle ScholarPubMed
Humphries, S. E., Talmud, P. J., Hawe, E., et al. Apolipoprotein E4 and coronary heart disease in middle-aged men who smoke: A prospective study. Lancet 358, 119 (2001).CrossRefGoogle ScholarPubMed
Hunter, D. J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 6, 298 (2005).CrossRefGoogle ScholarPubMed
Iannitti, T. & Palmieri, B. Inflammation and genetics: An insight in the centenarian model. Hum. Biol. 83, 59 (2011).CrossRefGoogle ScholarPubMed
Jacobsen, R., Martinussen, T., Christiansen, L., et al. Increased effect of the ApoE gene on survival at advanced age in healthy and long-lived Danes: Two nationwide cohort studies. Aging Cell 9, 10009 (2010).CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L., Partridge, L., Murphy, C. T., et al. Systems biology of ageing and longevity. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366, 64 (2011).CrossRefGoogle ScholarPubMed
Kivipelto, M., Rovio, S., Ngandu, T., et al. Apolipoprotein E epsilon4 magnifies lifestyle risks for dementia: A population-based study. J. Cell. Mol. Med. 12, 271 (2008).CrossRefGoogle ScholarPubMed
Klein, R. J., Zeiss, C., Chew, E. Y., et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 3 (2005).CrossRefGoogle ScholarPubMed
Knoops, K. T. B, Zeiss, C., Chew, E. Y., et al. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: The HALE project. JAMA 292, 14 (2004).CrossRefGoogle ScholarPubMed
Kulminski, A. M. Unraveling genetic origin of aging-related traits: Evolving concepts. Rejuvenation Res. 16, 32 (2013).CrossRefGoogle ScholarPubMed
Kulminski, A. M., Culminskaya, I., Arbeev, K. G., et al. The role of lipid-related genes, aging-related processes, and environment in healthspan. Aging Cell 12, 246 (2013).CrossRefGoogle ScholarPubMed
Kulminski, A. M., Arbeev, K. G., Culminskaya, I., et al. Age, gender, and cancer but not neurodegenerative and cardiovascular diseases strongly modulate systemic effect of the apolipoprotein E4 allele on lifespan. PLoS Genet. 10, e1004141 (2014).CrossRefGoogle Scholar
Lawlor, D. A. & Mishra, G. D. Family Matters: Designing, Analysing and Understanding Family based Studies in Life Course Epidemiology. Oxford University Press, New York (2009). doi: 10.1093/acprof:oso/9780199231034.001.0001.CrossRefGoogle Scholar
Lee, S. J., Go, A. S., Lindquist, K., Bertenthal, D. & Covinsky, K. E. Chronic conditions and mortality among the oldest old. Am. J. Public Health 98, 124 (2008).CrossRefGoogle ScholarPubMed
Levine, M. & Crimmins, E. Not all smokers die young: A model for hidden heterogeneity within the human population. PLoS One 9, e87403 (2014).CrossRefGoogle Scholar
Lindahl-Jacobsen, R., Tan, Q., Mengel-From, J., et al. Effects of the APOE {varepsilon}2 allele on mortality and cognitive function in the oldest old. J. Gerontol. A Biol. Sci. Med. Sci. (2012). doi: 10.1093/gerona/gls192.Google Scholar
Luck, T., Riedel-Heller, S. G., Luppa, M., et al. Apolipoprotein E epsilon 4 genotype and a physically active lifestyle in late life: Analysis of gene-environment interaction for the risk of dementia and Alzheimer's disease dementia. Psychol. Med. 44, 139 (2014).CrossRefGoogle Scholar
Luo, Y., Zhang, Z. & Gu, D. Education and mortality among older adults in China. Soc. Sci. Med. 127, 12 (2015).CrossRefGoogle ScholarPubMed
Mahley, R. W., Huang, Y. & Rall, S. C. Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J. Lipid Res. 40, 19949 (1999).CrossRefGoogle ScholarPubMed
Manning, A. K., Hivert, M.-F., Scott, R. A., et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 69 (2012).CrossRefGoogle ScholarPubMed
Martelin, T., Koskinen, S. & Valkonen, T. Sociodemographic mortality differences among the oldest old in Finland. J. Gerontol. B. Psychol. Sci. Soc. Sci. 53, S8390 (1998).CrossRefGoogle ScholarPubMed
McKay, G. J., Silvestri, G., Chakravarthy, U., et al. Variations in apolipoprotein E frequency with age in a pooled analysis of a large group of older people. Am. J. Epidemiol. 173, 134 (2011).CrossRefGoogle Scholar
Morris, B. J., Donlon, T. A., He, Q., et al. Association analyses of insulin signaling pathway gene polymorphisms with healthy aging and longevity in Americans of Japanese ancestry. J. Gerontol. - Ser. A Biol. Sci. Med. Sci. 69 A, 273 (2014).Google Scholar
Murabito, J. M., Yuan, R. & Lunetta, K. L. The search for longevity and healthy aging genes: Insights from epidemiological studies and samples of long-lived individuals. J. Gerontol. - Ser. A Biol. Sci. Med. Sci. 67 A, 479 (2012).Google Scholar
Nebel, A., Kleindorp, R., Caliebe, A., et al. A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech. Ageing Dev. 132, 330 (2011).CrossRefGoogle ScholarPubMed
Nettleton, J. A., Hivert, M.-F., Lemaitre, R. N., et al. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts. Am. J. Epidemiol. 177, 15 (2013).CrossRefGoogle ScholarPubMed
Nettleton, J. A., Follis, J. L., Ngwa, J. S., et al. Gene × dietary pattern interactions in obesity: Analysis of up to 68 317 adults of European ancestry. Hum. Mol. Genet. 24, 478 (2015).CrossRefGoogle ScholarPubMed
Newman, A. B. & Murabito, J. M. The epidemiology of longevity and exceptional survival. Epidemiol. Rev. 35, 197 (2013).CrossRefGoogle ScholarPubMed
Newman, A. B., Walter, S., Lunetta, K. L., et al. A meta-analysis of four genome-wide association studies of survival to age 90 years or older: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 47 (2010).Google ScholarPubMed
Newson, R. S., Witteman, J. C. M., Franco, O. H., et al. Predicting survival and morbidity-free survival to very old age. Age (Dordr). 32, 54 (2010).CrossRefGoogle ScholarPubMed
Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Current Biol. 22 (2012).CrossRefGoogle ScholarPubMed
Niti, M., Yap, K. B., Kua, E. H., Tan, C. H. & Ng, T. P. Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults. Int. Psychogeriatr. 20, 21 (2008).CrossRefGoogle ScholarPubMed
Novelli, V., Viviani Anselmi, C., Roncarati, R., et al. Lack of replication of genetic associations with human longevity. Biogerontology 9, 2 (2008).CrossRefGoogle ScholarPubMed
Nybo, H., Petersen, H. C., Gaist, D., et al. Predictors of mortality in 2,249 nonagenarians – The Danish 1905-Cohort Survey. J. Am. Geriatr. Soc. 51, 133 (2003).CrossRefGoogle Scholar
Nygaard, M., Lindahl-Jacobsen, R., Soerensen, M., et al. Birth cohort differences in the prevalence of longevity-associated variants in APOE and FOXO3A in Danish long-lived individuals. Exp. Gerontol. 57 (2014).CrossRefGoogle ScholarPubMed
Ortiz, G. G., Pacheco-Moisés, F. P., González-Renovato, E. D., et al. Genetic, biochemical and histopathological aspects of familiar Alzheimer's disease in Alzheimer's Disease – Challenges for the Future (ed. Zerr, Inga) (InTech, London, UK, 2015). doi: 10.5772/59809.Google Scholar
Pardo Silva, M. C., Janssens, A. C. J. W., Hofman, A., Witteman, J. C. M. & van Duijn, C. M. Apolipoprotein E gene is related to mortality only in normal weight individuals: The Rotterdam Study. Eur. J. Epidemiol. 23, 12 (2008).CrossRefGoogle ScholarPubMed
Pezzini, A., Grassi, M., Del Zotto, E., et al. Synergistic effect of apolipoprotein E polymorphisms and cigarette smoking on risk of ischemic stroke in young adults. Stroke. 35, 442 (2004).CrossRefGoogle ScholarPubMed
Raichlen, D. A. & Alexander, G. E. Exercise, APOE genotype, and the evolution of the human lifespan. Trends Neurosci. 37, 255 (2014).CrossRefGoogle ScholarPubMed
Rajan, K. B., Skarupski, K. A., Rasmussen, H. E. & Evans, D. A. Gene-environment interaction of body mass index and apolipoprotein E ε4 allele on cognitive decline. Alzheimer Dis. Assoc. Disord. 28, 10 (2014).CrossRefGoogle ScholarPubMed
Rizzuto, D. & Fratiglioni, L. Lifestyle factors related to mortality and survival: A mini-review. Gerontology 60, 335 (2014).CrossRefGoogle ScholarPubMed
Rizzuto, D., Orsini, N., Qiu, C., Wang, H.-X. & Fratiglioni, L. Lifestyle, social factors, and survival after age 75: Population based study. BMJ 345, e5568 (2012).CrossRefGoogle ScholarPubMed
Rodriguez-Laso, A., Zunzunegui, M. V. & Otero, A. The effect of social relationships on survival in elderly residents of a Southern European community: A cohort study. BMC Geriatr. 7, 19 (2007).CrossRefGoogle ScholarPubMed
Rosvall, L., Rizzuto, D., Wang, H.-X., et al. APOE-related mortality: Effect of dementia, cardiovascular disease and gender. Neurobiol. Aging 30, 15551 (2009).CrossRefGoogle ScholarPubMed
Rothman, K. J. Causes. Am. J. Epidemiol. 104, 52 (1976).CrossRefGoogle ScholarPubMed
Rothman, K. J. Epidemiology: An Introduction (Oxford University Press, New York, 2012).Google Scholar
Rothman, K. J., Greenland, S. & Associate, T. L. L. Modern Epidemiology, 3rd Edition. Taylor & Francis Ltd, London, UK (2014).Google Scholar
Ruigómez, A., Alonso, J. & Antó, J. M. Relationship of health behaviours to five-year mortality in an elderly Cohort. Age Ageing 24, 119 (1995).CrossRefGoogle Scholar
Sabia, S., Kivimaki, M., Kumari, M., Shipley, M. J. & Singh-Manoux, A. Effect of Apolipoprotein E epsilon4 on the association between health behaviors and cognitive function in late midlife. Mol. Neurodegener. 5, 23 (2010).CrossRefGoogle ScholarPubMed
Salvioli, S., Olivieri, F., Marchegiani, F., et al. Genes, ageing and longevity in humans: Problems, advantages and perspectives. Free Radic. Res. 40, 13323 (2006).CrossRefGoogle Scholar
Schächter, F., Faure-Delanef, L., Guénot, F., et al. Genetic associations with human longevity at the APOE and ACE loci. Nat. Genet. 6, 2 (1994).CrossRefGoogle ScholarPubMed
Schupf, N., Barral, S., Perls, T., et al. Apolipoprotein E and familial longevity. Neurobiol. Aging 34, 121 (2013).CrossRefGoogle ScholarPubMed
Sebastiani, P., Solovieff, N., Dewan, A. T., et al. Genetic signatures of exceptional longevity in humans. PLoS One 7, e29848 (2012).CrossRefGoogle ScholarPubMed
Siegert, S., Hampe, J., Schafmayer, C., et al. Genome-wide investigation of gene-environment interactions in colorectal cancer. Hum. Genet. 132, 231 (2013).CrossRefGoogle ScholarPubMed
Smith, P. G. & Day, N. E. The design of case-control studies: The influence of confounding and interaction effects. Int. J. Epidemiol. 13, 365 (1984).CrossRefGoogle ScholarPubMed
Soerensen, M., Dato, S., Tan, Q., et al. Evidence from case-control and longitudinal studies supports associations of genetic variation in APOE, CETP, and IL6 with human longevity. Age (Dordr). 35, 400 (2013).CrossRefGoogle ScholarPubMed
Spencer, C. A., Jamrozik, K., Norman, P. E. & Lawrence-Brown, M. A simple lifestyle score predicts survival in healthy elderly men. Prev. Med. (Baltim). 40, 7 (2005).CrossRefGoogle ScholarPubMed
Stevens, J., Pamuk, E. R., Williamson, D. F., Thun, M. J., & Wood, J. L. The effect of age on the association between body-mass index and mortality. N. Engl. J. Med. 338, 17 (1998).CrossRefGoogle ScholarPubMed
Strand, B. H., Rosness, T. A., Engedal, K., et al. Interaction of apolipoprotein E genotypes, lifestyle factors and future risk of dementia-related mortality: The Cohort of Norway (CONOR). Dement. Geriatr. Cogn. Disord. 40, 17 (2015).CrossRefGoogle ScholarPubMed
Talmud, P. J., Stephens, J. W., Hawe, E., et al. The significant increase in cardiovascular disease risk in APOE E4 carriers is evident only in men who smoke: Potential relationship between reduced antioxidant status and ApoE4. Ann. Hum. Genet. 69, 622 (2005).CrossRefGoogle ScholarPubMed
Tan, Q., Benedictis, G. De, Ukraintseva, S. V., et al. A centenarian-only approach for assessing gene-gene interaction in human longevity. Eur. J. Hum. Genet. 10, 119 (2002).CrossRefGoogle ScholarPubMed
Thinggaard, M., Jacobsen, R., Jeune, B., Martinussen, T. & Christensen, K. Is the relationship between BMI and mortality increasingly U-shaped with advancing age? A 10-year follow-up of persons aged 70–95 years. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 51 (2010).Google ScholarPubMed
Thinggaard, M., McGue, M., Jeune, B., et al. Survival prognosis in very old adults. J. Am. Geriatr. Soc. 64, 8 (2016).CrossRefGoogle ScholarPubMed
Thomas, D. Gene–environment-wide association studies: emerging approaches. Nat. Rev. Genet. 11, 272 (2010).CrossRefGoogle ScholarPubMed
Vaupel, J. W. Inherited frailty and longevity. Demography 25, 287 (1988).CrossRefGoogle ScholarPubMed
Vaupel, J. W., Manton, K. G. & Stallard, E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16, 44 (1979).CrossRefGoogle ScholarPubMed
Weng, P.-H., Chen, J.-H., Chen, T.-F., et al. CHRNA7 polymorphisms and dementia risk: Interactions with apolipoprotein ε4 and cigarette smoking. Sci. Rep. 6, 27231 (2016).CrossRefGoogle ScholarPubMed
Willcox, B. J., Donlon, T. A., He, Q., et al. FOXO3A genotype is strongly associated with human longevity. Proc. Natl. Acad. Sci. U. S. A. 105, 1392 (2008).CrossRefGoogle ScholarPubMed
Woodard, J. L., Sugarman, M. A., Nielson, K. A., et al. Lifestyle and genetic contributions to cognitive decline and hippocampal structure and function in healthy aging. Curr. Alzheimer Res. 9, 46 (2012).Google ScholarPubMed
Wu, C., Kraft, P., Zhai, K., et al. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat. Genet. 44, 10097 (2012).CrossRefGoogle ScholarPubMed
Yates, L. B., Djoussé, L., Kurth, T., Buring, J. E. & Gaziano, J. M. Exceptional longevity in men: modifiable factors associated with survival and function to age 90 years. Arch. Intern. Med. 168, 20 (2008).CrossRefGoogle ScholarPubMed
Zeng, Y., Nie, C., Min, J., et al. Novel loci and pathways significantly associated with longevity. Sci. Rep. 6, 21243 (2016).CrossRefGoogle ScholarPubMed
Zheng, J.-S., Arnett, D. K., Lee, Y.-C., et al. Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits. PLoS One 8, e77442 (2013).CrossRefGoogle ScholarPubMed

References

Abel, T., Havekes, R., Saletin, J. M., Walker, M. P. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol. Elsevier; 2013; 23: R77488. doi: 10.1016/j.cub.2013.07.025.CrossRefGoogle ScholarPubMed
Ahissar, E., Vaadia, E., Ahissar, M., et al. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science. 1992; 257: 1412–5. Available: http://ncbi.nlm.nih.gov/pubmed/1529342CrossRefGoogle ScholarPubMed
Aimone, J. B., Li, Y., Lee, S. W., et al. Regulation and function of adult neurogenesis: From genes to cognition. Physiol Rev. 2014; 94: 9911026. doi: 10.1152/physrev.00004.2014.CrossRefGoogle ScholarPubMed
Akbik, F. V., Bhagat, S. M., Patel, P. R., Cafferty, W. B. J., Strittmatter, S. M. Anatomical plasticity of adult brain is titrated by Nogo receptor 1. Neuron. 2013; 77: 859–66. doi: 10.1016/j.neuron.2012.12.027.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu Rev Neurosci. 2005; 28: 403–50. doi: 10.1146/annurev.neuro.28.061604.135709.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., Cohen, J. Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry. 1999; 46: 1309–20. Available: http://ncbi.nlm.nih.gov/pubmed/10560036CrossRefGoogle ScholarPubMed
Bäckman, L., Lindenberger, U., Li, S.-C., Nyberg, L. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neurosci Biobehav Rev. 2010; 34: 670–7. doi: 10.1016/j.neubiorev.2009.12.008.CrossRefGoogle ScholarPubMed
Bao, S., Chan, V. T., Merzenich, M. M. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature. 2001; 412: 7983. doi: 10.1038/35083586.CrossRefGoogle ScholarPubMed
Bao, S., Chan, V. T., Zhang, L. I., Merzenich, M. M. Suppression of cortical representation through backward conditioning. Proc Natl Acad Sci. 2003; 100: 1405–8. doi: 10.1073/pnas.0337527100.CrossRefGoogle ScholarPubMed
Barili, P., De Carolis, G., Zaccheo, D., Amenta, F. Sensitivity to ageing of the limbic dopaminergic system: A review. Mech Ageing Dev. 1998; 106: 5792. Available: http://ncbi.nlm.nih.gov/pubmed/9883974CrossRefGoogle ScholarPubMed
Barulli, D., Stern, Y. Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends Cog. Sci. 2013; 17(10): 502–9. doi: 10.1016/j.tics.2013.08.012.CrossRefGoogle ScholarPubMed
Bergan, J. F., Ro, P., Ro, D., Knudsen, E. I. Hunting increases adaptive auditory map plasticity in adult barn owls. J Neurosci. 2005; 25: 9816–20. doi: 10.1523/JNEUROSCI.2533-05.2005.CrossRefGoogle ScholarPubMed
Brose, A., Schmiedek, F., Lövdén, M., Lindenberger, U. Daily variability in working memory is coupled with negative affect: The role of attention and motivation. Emotion. 2012; 12: 605–17. doi: 10.1037/a0024436.CrossRefGoogle ScholarPubMed
Buonomano, D. V., Merzenich, M. M. Cortical plasticity: From synapses to maps. Annu Rev Neurosci. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA; 1998; 21: 149–86. doi: 10.1146/annurev.neuro.21.1.149.CrossRefGoogle ScholarPubMed
Burke, S. N., Barnes, C. A. Senescent synapses and hippocampal circuit dynamics. Trends Neurosci. 2010; 33: 153–61. doi: 10.1016/j.tins.2009.12.003.CrossRefGoogle ScholarPubMed
Burzynska, A. Z., Garrett, D. D., Preuschhof, C., et al. A scaffold for efficiency in the human brain. J Neurosci. 2013; 33: 171509. doi: 10.1523/JNEUROSCI.1426-13.2013.CrossRefGoogle ScholarPubMed
Cai, L., Chan, J. S. Y., Yan, J. H., Peng, K. Brain plasticity and motor practice in cognitive aging. Front Aging Neurosci. 2014; 6: 112. doi: 10.3389/fnagi.2014.00031.CrossRefGoogle ScholarPubMed
Clark, S. A., Allard, T., Jenkins, W. M., Merzenich, M. M. Receptive fields in the body-surface map in adult cortex defined by temporally correlated inputs. Nature. 1988; 332: 444–5. doi: 10.1038/332444a0.CrossRefGoogle ScholarPubMed
Coelho, F. G. de M., Gobbi, S., Andreatto, C. A. A., et al. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Arch Gerontol Geriatr. 2013; 56: 1015. doi: 10.1016/j.archger.2012.06.003.CrossRefGoogle ScholarPubMed
Colcombe, S. J., Kramer, A. F., Erickson, K. I., et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci. 2004; 101: 3316–21. doi: 10.1073/pnas.0400266101.CrossRefGoogle ScholarPubMed
Cooper, L. N., Bear, M. F. The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nat Rev Neurosci. 2012; 13: 798810. doi: 10.1038/nrn3353.CrossRefGoogle ScholarPubMed
Cotman, C. W., Berchtold, N. C. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002; 25: 295301. doi: 10.1016/S0166-2236(02)02143-4.CrossRefGoogle Scholar
Curlik, D. M, Shors, T. J. Training your brain: Do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology. 2013; 64: 506–14. doi: 10.1016/j.neuropharm.2012.07.027.CrossRefGoogle ScholarPubMed
Dan, Y., Poo, M.-M. Spike timing-dependent plasticity: From synapse to perception. Physiol Rev. 2006; 86: 1033–48. doi: 10.1152/physrev.00030.2005.CrossRefGoogle ScholarPubMed
de Villers-Sidani, E., Alzghoul, L., Zhou, X., et al. Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proc Natl Acad Sci. 2010; 107: 139005. doi: 10.1073/pnas.1007885107.CrossRefGoogle ScholarPubMed
de Villers-Sidani, E., Merzenich, M. M. Lifelong plasticity in the rat auditory cortex. Progress in Brain Research. 2011; 191: 119–31. doi: 10.1016/B978-0-444-53752-2.00009-6.CrossRefGoogle ScholarPubMed
Delekate, A., Zagrebelsky, M., Kramer, S., Schwab, M. E., Korte, M. NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. Proc Natl Acad Sci. 2011; 108: 2569–74. doi: 10.1073/pnas.1013322108.CrossRefGoogle ScholarPubMed
Deshpande, A., Bergami, M., Ghanem, A., et al. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci U S A. 2013; 110: E115261. doi: 10.1073/pnas.1218991110.CrossRefGoogle ScholarPubMed
Deslandes, A., Moraes, H., Ferreira, C., et al. Exercise and mental health: Many reasons to move. Neuropsychobiology. 2009; 59: 191–8. doi: 10.1159/000223730.CrossRefGoogle ScholarPubMed
Dranovsky, A, Picchini, A. M., Moadel, T., et al. Experience dictates stem cell fate in the adult hippocampus. Neuron. 2011; 70: 908–23. doi: 10.1016/j.neuron.2011.05.022.CrossRefGoogle ScholarPubMed
Dresler, M., Sandberg, A., Ohla, K., et al. Non-pharmacological cognitive enhancement. Neuropharmacology. 2013; 64: 529–43. doi: 10.1016/j.neuropharm.2012.07.002.CrossRefGoogle ScholarPubMed
Feldman, D. E. The spike-timing dependence of plasticity. Neuron. 2012; 75: 556–71. doi: 10.1016/j.neuron.2012.08.001.CrossRefGoogle ScholarPubMed
Freund, J., Brandmaier, A. M., Lewejohann, L., et al. Emergence of individuality in genetically identical mice. Science. 2013; 340(6133): 756–9. doi: 10.1126/science.1235294.CrossRefGoogle ScholarPubMed
Froemke, R. C., Merzenich, M. M., Schreiner, C. E. A synaptic memory trace for cortical receptive field plasticity. Nature. 2007; 450: 425–9. doi: 10.1038/nature06289.CrossRefGoogle ScholarPubMed
Ge, S., Yang, C.-H., Hsu, K.-S., Ming, G.-L., Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron. 2007; 54: 559–66. doi: 10.1016/j.neuron.2007.05.002.CrossRefGoogle ScholarPubMed
Gervain, J., Vines, B. W., Chen, L. M., et al. Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci. 2013; 7. doi: 10.3389/fnsys.2013.00102.CrossRefGoogle ScholarPubMed
Gilbert, C. D., Li, W., Piech, V. Perceptual learning and adult cortical plasticity. J Physiol. 2009; 587: 2743–51. doi: 10.1113/jphysiol.2009.171488.CrossRefGoogle ScholarPubMed
Göritz, C., Frisén, J. Neural stem cells and neurogenesis in the adult. Cell Stem Cell. 2012; 10: 657–9. doi: 10.1016/j.stem.2012.04.005.CrossRefGoogle ScholarPubMed
Grady, C. The cognitive neuroscience of ageing. Nat Rev Neurosci. 2012; 13: 491505. doi: 10.1038/nrn3256.CrossRefGoogle ScholarPubMed
Haberman, R. P., Colantuoni, C., Koh, M. T., Gallagher, M. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory. Ginsberg SD, editor. PLoS One. 2013; 8: e83674. doi: 10.1371/journal.pone.0083674.CrossRefGoogle Scholar
Hahn, K., Myers, N., Prigarin, S., et al. Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease – Revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence. Neuroimage. 2013; 81: 96109. doi: 10.1016/j.neuroimage.2013.05.011.CrossRefGoogle ScholarPubMed
Horng, S. H., Sur, M. Visual activity and cortical rewiring: Activity-dependent plasticity of cortical networks. Prog Brain Res. 2006; 157: 311. Available: http://ncbi.nlm.nih.gov/pubmed/17167899CrossRefGoogle ScholarPubMed
Houillon, A., Lorenz, R. C., Boehmer, W., et al. The effect of novelty on reinforcement learning. Progress in Brain Research. 2013; 202: 415–39. doi: 10.1016/B978-0-444-62604-2.00021-6.CrossRefGoogle ScholarPubMed
Jagust, W. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron. 2013; 77: 219–34. doi: 10.1016/j.neuron.2013.01.002.CrossRefGoogle ScholarPubMed
Jessberger, S., Gage, F. H. Adult neurogenesis: Bridging the gap between mice and humans. Trends Cell Biol. 2014; 24: 558–63. doi: 10.1016/j.tcb.2014.07.003.CrossRefGoogle ScholarPubMed
Jessberger, S., Gage, F. H. Stem-cell-associated structural and functional plasticity in the aging hippocampus. Psychol Aging. 2008; 23: 684691. doi: 10.1037/a0014188.CrossRefGoogle ScholarPubMed
Kamal, B., Holman, C., de Villers-Sidani, E. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments. Front Syst Neurosci. 2013; 7: 52. doi: 10.3389/fnsys.2013.00052.CrossRefGoogle ScholarPubMed
Kempermann, G., Gast, D., Gage, F. H. Neuroplasticity in old age: Sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol. 2002; 52: 135–43. doi: 10.1002/ana.10262.CrossRefGoogle ScholarPubMed
Kent, B. A., Mistlberger, R. E. Sleep and hippocampal neurogenesis: Implications for Alzheimer's disease. Front Neuroendocrinol. 2017; 45: 3552. doi: 10.1016/j.yfrne.2017.02.004.CrossRefGoogle ScholarPubMed
Kleim, J. A., Barbay, S., Cooper, N. R., et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn Mem. 2002; 77: 6377. doi: 10.1006/nlme.2000.4004.CrossRefGoogle ScholarPubMed
Kreutzmann, J. C., Havekes, R., Abel, T., Meerlo, P. Sleep deprivation and hippocampal vulnerability: Changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience. 2015; 309: 173–90. doi: 10.1016/j.neuroscience.2015.04.053.CrossRefGoogle ScholarPubMed
Kuzawa, C. W., Chugani, H. T., Grossman, L. I., et al. Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci. 2014; 111: 1301013015. doi: 10.1073/pnas.1323099111.CrossRefGoogle ScholarPubMed
Li, S. Spasticity, motor recovery, and neural plasticity after stroke. Front Neurol. Frontiers Media SA; 2017; 8: 120. doi: 10.3389/fneur.2017.00120.Google ScholarPubMed
Lindenberger, U., Lövdén, M., Schellenbach, M., Li, S.-C., Krüger, A. Psychological principles of successful aging technologies: A mini-review. Gerontology. 2008; 54: 5968. doi: 10.1159/000116114.CrossRefGoogle ScholarPubMed
Lindenberger, U. Human cognitive aging: Corriger la fortune? Science. 2014; 346(6209): 572–8. doi: 10.1126/science.1254403.CrossRefGoogle ScholarPubMed
Lisman, J., Grace, A. A., Duzel, E. A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends Neurosci. 2011; 34: 536–47. doi: 10.1016/j.tins.2011.07.006.CrossRefGoogle ScholarPubMed
Lo, R. Y., Hubbard, A. E., Shaw, L. M., et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol. 2011; 68: 1257. doi: 10.1001/archneurol.2011.123.CrossRefGoogle ScholarPubMed
Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., Schmiedek, F. A theoretical framework for the study of adult cognitive plasticity. Psychol Bull. 2010a; 136: 659–76. doi: 10.1037/a0020080.CrossRefGoogle Scholar
Lövdén, M., Bodammer, N. C., Kühn, S., et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia. 2010b; 48: 3878–83. doi: 10.1016/j.neuropsychologia.2010.08.026.CrossRefGoogle ScholarPubMed
Lövdén, M., Schaefer, S., Noack, H., et al. Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiol Aging. 2012; 33: 620. e9620. e22. doi: 10.1016/j.neurobiolaging.2011.02.013.CrossRefGoogle ScholarPubMed
Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U., Bäckman, L. Structural brain plasticity in adult learning and development. Neurosci Biobehav Rev. 2013; 37: 2296–310. doi: 10.1016/j.neubiorev.2013.02.014.CrossRefGoogle ScholarPubMed
Mahncke, H. W., Bronstone, A., Merzenich, M. M. Brain plasticity and functional losses in the aged: Scientific bases for a novel intervention. Progress in Brain Research. 2006a; 157: 81109CrossRefGoogle ScholarPubMed
Mahncke, H. W., Connor, B. B., Appelman, J., et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proc Natl Acad Sci. 2006b; 103: 125238. doi: 10.1073/pnas.0605194103.CrossRefGoogle ScholarPubMed
Malkasian, D. R., Diamond, M. C. The effects of environmental manipulation on the morphology of the neonate rat brain. Int J Neurosci. 1971; 2: 161–9. Available: http://ncbi.nlm.nih.gov/pubmed/5161309CrossRefGoogle ScholarPubMed
Merzenich, M. M., Vleet, T. M. Van, Nahum, M. Brain plasticity-based therapeutics. Front Hum Neurosci. 2014; 8: 116. doi: 10.3389/fnhum.2014.00385.CrossRefGoogle ScholarPubMed
Merzenich, M. M. Cortical plasticity contributing to child development. McClelland, J. L. & Siegler, R. S. (Eds.), Carnegie Mellon Symposia on Cognition. Mechanisms of Cognitive Development: Behavioral and Neural Perspectives. Mahwah, NJ: Lawrence Erlbaum Associates Publishers. 2001. pp. 6796.Google Scholar
Merzenich, M. M., DeCharms, R. C. Neural representations, experience, and change. In Llinás, R. R. & Churchland, P. S. (Eds.), The Mind–Brain Continuum: Sensory Processes. Cambridge, MA: The MIT Press. 1996. pp. 6181.Google Scholar
Merzenich, M. M., Nelson, R. J., Stryker, M. P., et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984; 224: 591605. doi: 10.1002/cne.902240408.CrossRefGoogle ScholarPubMed
Merzenich, M. M., Schreiner, C., Jenkins, W., Wang, X. Neural mechanisms underlying temporal integration, segmentation, and input sequence representation: Some implications for the origin of learning disabilities. Ann N Y Acad Sci. 1993; 682: 122. Available: http://ncbi.nlm.nih.gov/pubmed/8323106CrossRefGoogle ScholarPubMed
Middleton, L. E., Barnes, D. E., Lui, L.-Y., Yaffe, K. Physical activity over the life course and its association with cognitive performance and impairment in old age. J Am Geriatr Soc. 2010; 58: 1322–6. doi: 10.1111/j.1532-5415.2010.02903.x.CrossRefGoogle ScholarPubMed
Morris, R. G. D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain Res Bull. 50: 437. Available: http://ncbi.nlm.nih.gov/pubmed/10643472Google Scholar
Morrison, J. H., Baxter, M. G. Synaptic health. JAMA Psychiatry. 2014; 71: 835. doi: 10.1001/jamapsychiatry.2014.380.CrossRefGoogle ScholarPubMed
Mufson, E. J., Ma, S. Y., Dills, J., et al. Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. J Comp Neurol. 2002; 443: 136–53. Available: http://ncbi.nlm.nih.gov/pubmed/11793352CrossRefGoogle ScholarPubMed
Nahum, M., Lee, H., Merzenich, M. M. Principles of neuroplasticity-based rehabilitation. Prog Brain Res. 2013; 207: 141–71. doi: 10.1016/B978-0-444-63327-9.00009-6.CrossRefGoogle ScholarPubMed
Nakamura, S., Sakaguchi, T. Development and plasticity of the locus coeruleus: A review of recent physiological and pharmacological experimentation. Prog Neurobiol. 1990; 34: 505–26. Available: http://ncbi.nlm.nih.gov/pubmed/2202018CrossRefGoogle ScholarPubMed
Noack, H., Lövdén, M., Schmiedek, F. On the validity and generality of transfer effects in cognitive training research. Psychol Res. 2014; 78: 773–89. doi: 10.1007/s00426-014-0564-6.CrossRefGoogle ScholarPubMed
Persson, J., Pudas, S., Lind, J., et al. Longitudinal structure-function correlates in elderly reveal MTL dysfunction with cognitive decline. Cereb Cortex. 2012; 22: 2297–304. doi: 10.1093/cercor/bhr306.CrossRefGoogle ScholarPubMed
Pieramico, V., Esposito, R., Cesinaro, S., Frazzini, V., Sensi, S. L. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals. Front Syst Neurosci. 2014; 8: 153. doi: 10.3389/fnsys.2014.00153. eCollection 2014.CrossRefGoogle ScholarPubMed
Raven, F., Van der Zee, E. A., Meerlo, P., Havekes, R. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Med Rev. 2018; 39: 311. doi: 10.1016/j.smrv.2017.05.002.CrossRefGoogle ScholarPubMed
Raz, N., Rodrigue, K. M. Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev. 2006; 30: 730–48. doi: 10.1016/j.neubiorev.2006.07.001.CrossRefGoogle ScholarPubMed
Raz, N., Lindenberger, U., Rodrigue, K. M., et al. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb Cortex. 2005; 15: 1676–89. doi: 10.1093/cercor/bhi044.CrossRefGoogle ScholarPubMed
Raz, N., Schmiedek, F., Rodrigue, K. M., et al. Differential brain shrinkage over 6-months shows limited association with cognitive practice. Brain Cogn. 2013; 82: 171–80. doi: 10.1016/j.bandc.2013.04.002.CrossRefGoogle Scholar
Recanzone, G. H., Schreiner, C. E., Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci. 1993; 13: 87103. Available: http://ncbi.nlm.nih.gov/pubmed/8423485CrossRefGoogle ScholarPubMed
Richardson, R. T., DeLong, M. R. Context-dependent responses of primate nucleus basalis neurons in a go/no-go task. J Neurosci. 1990; 10: 2528–40. Available: http://ncbi.nlm.nih.gov/pubmed/2388078CrossRefGoogle Scholar
Rowe, J. W., Kahn, R. L. Human aging: Usual and successful. Science. 1987; 237: 143–9. Available: http://ncbi.nlm.nih.gov/pubmed/3299702CrossRefGoogle ScholarPubMed
Ryan, S. M., Nolan, Y. M. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: Can exercise compensate? Neurosci Biobehav Rev. 2016; 61: 121–31. doi: 10.1016/j.neubiorev.2015.12.004.CrossRefGoogle ScholarPubMed
Salthouse, T. Consequences of age-related cognitive declines. Annu Rev Psychol. 2012; 63: 201–26. doi: 10.1146/annurev-psych-120710-100328.CrossRefGoogle ScholarPubMed
Salthouse, T. A. Aging and measures of processing speed. Biol Psychol. 2000; 54: 3554. Available: http://ncbi.nlm.nih.gov/pubmed/11035219CrossRefGoogle ScholarPubMed
Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009; 10: 211–23. doi: 10.1038/nrn2573.CrossRefGoogle ScholarPubMed
Sara, S. J., Bouret, S. Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron. 2012; 76: 130–41. doi: 10.1016/j.neuron.2012.09.011.CrossRefGoogle ScholarPubMed
Sara, S. J., Segal, M. Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: Implications for cognition. Prog Brain Res. 1991; 88: 571–85. Available: http://ncbi.nlm.nih.gov/pubmed/1813935CrossRefGoogle ScholarPubMed
Sarter, M., Gehring, W. J., Kozak, R. More attention must be paid: The neurobiology of attentional effort. Brain Res Rev. 2006; 51: 145–60. doi: 10.1016/j.brainresrev.2005.11.002.CrossRefGoogle ScholarPubMed
Sarter, M., Givens, B., Bruno, J. P. The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Res Brain Res Rev. 2001; 35(2): 146–60.CrossRefGoogle ScholarPubMed
Schmiedek, F., Lövdén, M., Lindenberger, U. Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Front Aging Neurosci. 2010; 2: pii: 27. doi: 10.3389/fnagi.2010.00027.Google ScholarPubMed
Schmiedek, F., Lövdén, M., Lindenberger, U. Younger adults show long-term effects of cognitive training on broad cognitive abilities over 2 years. Dev Psychol. 2014; 50: 2304–10. doi: 10.1037/a0037388.CrossRefGoogle ScholarPubMed
Schnell, L., Schwab, M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990; 343: 269–72. doi: 10.1038/343269a0.CrossRefGoogle ScholarPubMed
Schultz, W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007; 30: 259–88. doi: 10.1146/annurev.neuro.28.061604.135722.CrossRefGoogle ScholarPubMed
Schwab, M. E., Chen, M. S., Huber, A. B., et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 2000; 403: 434–9. doi: 10.1038/35000219.Google Scholar
Shaffer, J. Neuroplasticity and clinical practice actice acbrain power for health. Front Psychol. 2016; 7: 1118. doi: 10.3389/fpsyg.2016.01118.CrossRefGoogle Scholar
Singh, A., Abraham, W. C. Astrocytes and synaptic plasticity in health and disease. Exp Brain Res. Springer Berlin Heidelberg; 2017; 235: 1645–55. doi: 10.1007/s00221-017-4928-1.CrossRefGoogle ScholarPubMed
Smith, B. A., Goldberg, N. R. S., Meshul, C. K. Effects of treadmill exercise on behavioral recovery and neural changes in the substantia nigra and striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse. Brain Res. 2011; 1386: 7080. doi: 10.1016/j.brainres.2011.02.003.CrossRefGoogle Scholar
Steiner, B., Winter, C., Hosman, K., et al. Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson's disease. Exp Neurol. 2006; 199: 291300. doi: 10.1016/j.expneurol.2005.11.004.CrossRefGoogle ScholarPubMed
Swain, R. A., Thompson, R. F. In search of engrams. Ann N Y Acad Sci. 1993; 702: 2739. Available: http://ncbi.nlm.nih.gov/pubmed/8109877CrossRefGoogle ScholarPubMed
Takesian, A. E., Hensch, T. K. Balancing plasticity/stability across brain development. Prog Brain Res. 2013; 207: 334. doi: 10.1016/B978-0-444-63327-9.00001-1.CrossRefGoogle ScholarPubMed
Tashiro, A., Sandler, V. M., Toni, N., Zhao, C., Gage, F. H. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature. 2006; 442: 929–33. doi: 10.1038/nature05028.CrossRefGoogle ScholarPubMed
Taubert, M., Draganski, B., Anwander, A., et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. J Neurosci. 2010; 30. Available: http://jneurosci.org/content/30/35/11670.longGoogle ScholarPubMed
Trachtenberg, J. T. Competition, inhibition, and critical periods of cortical plasticity. Curr Opin Neurobiol. 2015; 35: 44–8. doi: 10.1016/j.conb.2015.06.006.CrossRefGoogle ScholarPubMed
Uylings, H. B., Kuypers, K., Diamond, M. C., Veltman, W. A. Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats. Exp Neurol. 1978; 62: 658–77. Available: http://ncbi.nlm.nih.gov/pubmed/750216CrossRefGoogle ScholarPubMed
Vemuri, P., Lesnick, T. G., Przybelski, S. A., et al. Association of lifetime intellectual enrichment with cognitive decline in the older population. JAMA Neurol. 2014; 71: 1017. doi: 10.1001/jamaneurol.2014.963.CrossRefGoogle ScholarPubMed
Voelkle, M. C., Brose, A., Schmiedek, F., Lindenberger, U. Toward a unified framework for the study of between-person and within-person structures: Building a bridge between two research paradigms. Multivariate Behav Res. 2014; 49: 193213. doi: 10.1080/00273171.2014.889593.CrossRefGoogle Scholar
Wall, J., Xu, J., Wang, X. Human brain plasticity: An emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Rev. 2002; 39: 181215. doi: 10.1016/S0165-0173(02)00192-3.CrossRefGoogle ScholarPubMed
Weinberger, N. M. Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci. 2004; 5: 279–90. doi: 10.1038/nrn1366.CrossRefGoogle ScholarPubMed
Wenger, E., Schaefer, S., Noack, H., et al. Cortical thickness changes following spatial navigation training in adulthood and aging. Neuroimage. 2012; 59: 3389–97. doi: 10.1016/j.neuroimage.2011.11.015.CrossRefGoogle ScholarPubMed
Willey, J. Z., Gardener, H., Caunca, M. R., et al. Leisure-time physical activity associates with cognitive decline. Neurology. 2016; 86: 1897–903. doi: 10.1212/WNL.0000000000002582.CrossRefGoogle ScholarPubMed
Winder, D. G., Egli, R. E., Schramm, N. L., Matthews, R. T. Synaptic plasticity in drug reward circuitry. Curr Mol Med. 2002; 2: 667–76. Available: http://ncbi.nlm.nih.gov/pubmed/12420805CrossRefGoogle ScholarPubMed
Wolinsky, F. D., Mahncke, H. W., Weg, M. W. V., et al. The ACTIVE cognitive training interventions and the onset of and recovery from suspected clinical depression. J Gerontol Ser B Psychol Sci Soc Sci. 2009; 64B: 577–85. doi: 10.1093/geronb/gbp061.Google Scholar
Wolinsky, F. D., Unverzagt, F. W., Smith, D. M., et al. The ACTIVE cognitive training trial and health-related quality of life: Protection that lasts for 5 years. J Gerontol A Biol Sci Med Sci. 2006; 61: 1324–9. Available: http://ncbi.nlm.nih.gov/pubmed/17234829CrossRefGoogle ScholarPubMed
Wolinsky, F. D., Vander Weg, M. W., Howren, M. B., Jones, M. P., Dotson, M. M. A randomized controlled trial of cognitive training using a visual speed of processing intervention in middle aged and older adults. Laks J., editor. PLoS One. 2013; 8: e61624. doi: 10.1371/journal.pone.0061624.CrossRefGoogle Scholar
Zagrebelsky, M., Schweigreiter, R., Bandtlow, C. E., Schwab, M. E., Korte, M. Nogo-A stabilizes the architecture of hippocampal neurons. J Neurosci. 2010; 30: 1322034. doi: 10.1523/JNEUROSCI.1044-10.2010.CrossRefGoogle ScholarPubMed
Zelinski, E. M., Spina, L. M., Yaffe, K., et al. Improvement in memory with plasticity-based adaptive cognitive training: Results of the 3-month follow-up. J Am Geriatr Soc. 2011; 59: 258–65. doi: 10.1111/j.1532-5415.2010.03277.x.CrossRefGoogle ScholarPubMed
Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L., Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012; 73: 1216–27. doi: 10.1016/j.neuron.2012.03.004.CrossRefGoogle ScholarPubMed

References

Aatola, H., Koivistoinen, T., Hutri-Kahonen, N. et al. Lifetime fruit and vegetable consumption and arterial pulse wave velocity in adulthood: The Cardiovascular Risk in Young Finns Study. Circulation 2010; 122: 2521–8.CrossRefGoogle ScholarPubMed
Ait-Oufella, H., Collin, C., Bozec, E. et al. Long-term reduction in aortic stiffness: A 5.3-year follow-up in routine clinical practice. J Hypertens, 2010; 28(11): 2336–41.CrossRefGoogle Scholar
Akbulut, G., Koksal, E., Bilici, S. et al. Metabolic syndrome (MS) in elderly: A cross sectional survey. Arch Gerontol Geriatr. 2011; 53: e263–6.CrossRefGoogle ScholarPubMed
Alecu, C., Labat, C., Kearney-Schwartz, A. et al. Reference values of aortic pulse wave velocity in the elderly. J Hypertens, 2008; 26(11): 2207–12.CrossRefGoogle ScholarPubMed
Al Hazzouri, A. Z., Newman, A. B., Simonsick, E. et al. Pulse wave velocity and cognitive decline in elders: The Health, Aging, and Body Composition study. Stroke, 2013; 44: 388–93.Google Scholar
Ambrosy, A. P., Fonarow, G. C., Butler, J. et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014; 63: 1123–33.CrossRefGoogle ScholarPubMed
Aparicio, L. S., Thijs, L., Boggia, J. Defining thresholds for home blood pressure monitoring octogenarians. Hypertension. 2015; 66: 865–73.CrossRefGoogle ScholarPubMed
Ashor, A. W., Siervo, M., Lara, J., Oggioni, C., Mathers, J. C. Antioxidant vitamin supplementation reduces arterial stiffness in adults: A systematic review and meta-analysis of randomized controlled trials. J Nutr. 2014; 144(10): 1594–602.CrossRefGoogle ScholarPubMed
Asmar, R., Benetos, A., Topouchian, J. et al. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension, 1995; 26(3): 485–90.CrossRefGoogle ScholarPubMed
Asmar, R. G., London, G. M., O'Rourke, M. E., and Safar, M. E. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: A comparison with atenolol. Hypertension, 2001; 38: 922–6.CrossRefGoogle Scholar
Authors/Task Force M., Mancia, G., Fagard, R., Narkiewicz, K. et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013; 34: 2159–219.Google Scholar
Avolio, A. P., Van Bortel, L. M., Boutouyrie, P. et al. Role of pulse pressure amplification in arterial hypertension: Experts’ opinion and review of the data. Hypertension, 2009; 54(2): 375–83.CrossRefGoogle ScholarPubMed
Bäck, M., Powell, W. S., Dahlén, S. E. et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol. 2014; 171: 3551CrossRefGoogle ScholarPubMed
Balkestein, E. J., van Aggel-Leijssen, D. P., van Baak, M. A., Struijker-Boudier, H. A., Van Bortel, L. M. The effect of weight loss with or without exercise training on large artery compliance in healthy obese men. J Hypertens, 1999; 17(12 Pt 2): 1831–5.CrossRefGoogle ScholarPubMed
Barinas-Mitchell, E., Kuller, L. H., Sutton-Tyrrell, K. et al. Effect of weight loss and nutritional intervention on arterial stiffness in type 2 diabetes. Diabetes Care, 2006; 29(10): 2218–22.CrossRefGoogle ScholarPubMed
Beckett, N. S., Peters, R., Fletcher, A. E. et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med, 2008; 358(18): 1887–98.CrossRefGoogle ScholarPubMed
Benetos, A., Gautier, S., Labat, C. et al. Mortality and cardiovascular events are best predicted by low central/peripheral pulse pressure amplification but not by high blood pressure levels in elderly nursing home subjects: The PARTAGE study. J Am Coll Cardiol. 2012; 60: 1503–11.CrossRefGoogle ScholarPubMed
Benetos, A., Adamopoulos, C., Bureau, J. M. et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation, 2002; 105(10): 1202–7.CrossRefGoogle Scholar
Benetos, A., Buatois, S., Salvi, P. et al. Blood pressure and pulse wave velocity values in the institutionalized elderly aged 80 and over: Baseline of the PARTAGE study. J Hypertens, 2010; 28(1): 4150.CrossRefGoogle ScholarPubMed
Benetos, A., Bulpitt, C. J., Petrovic, M. et al. An Expert Opinion From the European Society of Hypertension-European Union Geriatric Medicine Society Working Group on the Management of Hypertension in Very Old, Frail Subjects. Hypertension, 2016; 67(5): 820–5.CrossRefGoogle Scholar
Benetos, A., Labat, C., Rossignol, P. et al. Treatment with multiple blood pressure medicines, achieved blood pressure, and mortality in older nursing home residents. JAMA Intern Med. 2015; 175: 989–95CrossRefGoogle ScholarPubMed
Benetos, A., Lacolley, P., Safar, M. E. Prevention of aortic fibrosis by spironolactone in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol, 1997; 17(6): 1152–6.CrossRefGoogle ScholarPubMed
Benetos, A., Rossignol, P., Cherubini, A. et al. Polypharmacy in the aging patient: Management of hypertension in octogenarians. JAMA, 2015; 314(2): 170–80.CrossRefGoogle ScholarPubMed
Benetos, A., Salvi, P., and Lacolley, P., Blood pressure regulation during the aging process: the end of the “hypertension era”? J Hypertens, 2011; 29(4): 646–52.CrossRefGoogle Scholar
Benetos, A., Thomas, A., Joly, L. et al. Pulse pressure amplification, a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol, 2010; 55: 1032–37.CrossRefGoogle ScholarPubMed
Benetos, A., Zureik, M., Morcet, J. et al. A decrease in diastolic blood pressure combined with an increase in systolic blood pressure is associated with a higher cardiovascular mortality in men. J Am Coll Cardiol. 2000; 35: 673–80.CrossRefGoogle ScholarPubMed
Blacher, J., Asmar, R., Djane, S., London, G. M., Safar, M. E. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension, 1999a; 33(5): 1111–17.CrossRefGoogle ScholarPubMed
Blacher, J., Guerin, A. P., Pannier, B., Marchais, S. J., Safar, M. E., London, G. M. Impact of aortic stiffness on survival in end-stage renal disease. Circulation, 1999b; 99(18): 2434–9.CrossRefGoogle ScholarPubMed
Boutouyrie, P., Tropeano, A. I., Asmar, R. et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: A longitudinal study. Hypertension, 2002; 39(1): 1015.CrossRefGoogle ScholarPubMed
Braunwald, E. Heart failure. JACC Heart Fail. 2013; 1: 120.CrossRefGoogle ScholarPubMed
Cameron, J. D., Dart, A. M. Exercise training increases total systemic arterial compliance in humans. Am J Physiol. 1994; 266(2 Pt 2): H693–H701.Google ScholarPubMed
Chi, C., Tai, C., Bai, B. et al. Angiotensin system blockade combined with calcium channel blockers is superior to other combinations in cardiovascular protection with similar blood pressure reduction: A meta-analysis in 20,451 hypertensive patients. J Clin Hypertens (Greenwich), 2016; 18: 801–8.CrossRefGoogle Scholar
Cole, C. R., Blackstone, E. H., Pashkow, F. J., Snader, C. E., Lauer, M. S. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med, 1999; 341(18): 1351–7.CrossRefGoogle ScholarPubMed
Crichton, G. E., Elias, M. F., Dore, G. A., Abhayaratna, W. P., Robbins, M. A. Relations between dairy food intake and arterial stiffness. Pulse wave velocity and pulse pressure. Hypertension 2012; 59: 1044–51.CrossRefGoogle ScholarPubMed
Dengo, A. L., Dennis, E. A., Orr, J. S. et al. Arterial destiffening with weight loss in overweight and obese middle-aged and older adults. Hypertension, 2010; 55(4): 855–61.CrossRefGoogle ScholarPubMed
Edwards, N. C., Steeds, R. P., Stewart, P. M., Ferro, C. J., Townend, J. N. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: A randomized controlled trial. J Am Coll Cardiol, 2009; 54(6): 505–12.CrossRefGoogle ScholarPubMed
Franklin, S. S., Khan, S. A., Wong, N. D., Larson, M. G., Levy, D. Is pulse pressure useful in predicting risk for coronary heart disease? Circulation. 1999; 100: 354–60.CrossRefGoogle ScholarPubMed
Genton, L., Karsegard, V. L., Chevalley, T., Kossovsky, M. P., Darmon, P., Pichard, C. Body composition changes over 9 years in healthy elderly subjects and impact of physical activity. Clin Nutr. 2011; 30: 436–42.CrossRefGoogle ScholarPubMed
Group, S. C. R., Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. JAMA, 1991; 265(24): 3255–64.Google Scholar
Haskell, W. L., Lee, I. M., Pate, R. R. et al. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc, 2007; 39(8): 1423–34.CrossRefGoogle Scholar
Hayashi, K., Handa, H., Nagasawa, S., Okumura, A., Moritake, K. Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomechanics 1980; 13: 175–84.CrossRefGoogle ScholarPubMed
Henry, O. F., Blacher, J., Verdavaine, J., Duviquet, M., Safar, M. E. Alpha 1-acid glycoprotein is an independent predictor of in-hospital death in the elderly. Age Ageing, 2003a; 32(1): 3742.CrossRefGoogle ScholarPubMed
Henry, R. M., Kostense, P. J., Spijkerman, A. M. et al. Arterial stiffness increases with deteriorating glucose tolerance status: The Hoorn Study. Circulation. 2003b; 107: 2089–95.CrossRefGoogle ScholarPubMed
Hughes, T. M., Craft, S., Lopez, O. L.. Review of “the potential role of arterial stiffness in the pathogenesis of Alzheimer's disease.” Neurodegener Dis Manag. 2015; 5(2): 121–35.CrossRefGoogle Scholar
Joly, L., Perret-Guillaume, C., Kearney-Schwartz, A. et al. Pulse wave velocity assessment by external noninvasive devices and phase-contrast magnetic resonance imaging in the obese. Hypertension, 2009; 54(2): 421–6.CrossRefGoogle ScholarPubMed
Juonala, M., Magnussen, C. G., Berenson, G. S. et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Eng J Med 2011; 365(20): 1876–85.CrossRefGoogle ScholarPubMed
Kane, G. C., Karon, B. L., Mahoney, D. W. et al. Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA. 2011; 306: 856–63.CrossRefGoogle ScholarPubMed
Kario, K., Sun, N., Chiang, F. T. et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension, 2014; 63(4): 698705.CrossRefGoogle ScholarPubMed
Kass, D. A., Shapiro, E. P., Kawaguchi, M. et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation, 2001; 104(13): 1464–70.CrossRefGoogle ScholarPubMed
Kearney-Schwartz, A., Rossignol, P., Bracard, S. et al. Vascular structure and function is correlated to cognitive performance and white matter hyperintensities in older hypertensive patients with subjective memory complaints. Stroke, 2009; 40: 1229–36.CrossRefGoogle ScholarPubMed
Korotkoff, N., On method of studying blood pressure. Bull Imperial Acad Med (St Petersburg), 1906; 365–7.Google Scholar
Korteweg, D. J. Über die Fortpflanzungsgeschwindigkeit des Schalles in Elastischen Röhren. Annalen der Physik. 1878; 241(12): 525–42.CrossRefGoogle Scholar
Lakatta, E. G., Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part III: cellular and molecular clues to heart and arterial aging. Circulation, 2003; 107(3): 490–7.Google ScholarPubMed
Laurent, S., Boutouyrie, P., Asmar, R. et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension, 2001; 37(5): 1236–41.CrossRefGoogle ScholarPubMed
Laurent, S., Cockcroft, J., Van Bortel, L. et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur Heart J, 2006; 27(21): 2588–605.CrossRefGoogle ScholarPubMed
Laurent, S., Katsahian, S., Fassot, C. et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke, 2003; 34(5): 1203–6.CrossRefGoogle ScholarPubMed
Leeper, N. J., Dewey, F. E., Ashley, E. A. et al. Prognostic value of heart rate increase at onset of exercise testing. Circulation, 2007; 115(4): 468–74.CrossRefGoogle ScholarPubMed
London, G. M., Safar, M. E., Pannier, B.. Aortic aging in ESRD: Structural, hemodynamic, and mortality implications. J Am Soc Nephrol, 2016; 27(6): 1837–46.CrossRefGoogle ScholarPubMed
London, G. M., Asmar, R. G., O'Rourke, M. F., Safar, M. E., REASON Project Investigators Mechanism(s) of selective systolic blood pressure reduction after a low-dose combination of perindopril/indapamide in hypertensive subjects: Comparison with atenolol. J Am Coll Cardiol, 2004; 43: 92–9.CrossRefGoogle ScholarPubMed
Mackenzie, I. S., McEniery, C. M., Dhakam, Z., Brown, M. J., Cockcroft, J. R., Wilkinson, I. B. Comparison of the effects of antihypertensive agents on central blood pressure and arterial stiffness in isolated systolic hypertension. Hypertension, 2009; 54(2): 409–13.CrossRefGoogle ScholarPubMed
Mahomed, F. The physiology and clinical use of the sphygmograph. Med Times Gazette, 1872; 62.Google Scholar
Maki-Petaja, K. M., Booth, A. D., Hall, F. C. et al. Ezetimibe and simvastatin reduce inflammation, disease activity, and aortic stiffness and improve endothelial function in rheumatoid arthritis. J Am Coll Cardiol, 2007; 50(9): 852–8.CrossRefGoogle ScholarPubMed
Maki-Petaja, K. M., Hall, F. C., Booth, A. D. et al. Rheumatoid arthritis is associated with increased aortic pulse-wave velocity, which is reduced by anti-tumor necrosis factor-alpha therapy. Circulation, 2006; 114(11): 1185–92.Google ScholarPubMed
Mattace-Raso, F. U., van der Cammen, T. J., Hofman, A. et al. Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study. Circulation, 2006; 113(5): 657–63.CrossRefGoogle ScholarPubMed
McEniery, C. M., Hall, I. R., Qasem, A., Wilkinson, I. B., and Cockcroft, J. R. Normal vascular aging: Aifferential effects on wave reflection and aortic pulse wave velocity: The Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol, 2005; 46(9): 1753–60.CrossRefGoogle ScholarPubMed
Meaume, S., Benetos, A., Henry, O. F., Rudnichi, A., and Safar, M. E. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol, 2001; 21(12): 2046–50.CrossRefGoogle Scholar
Miller, S. L., Wolfe, R. R. The danger of weight loss in the elderly. J Nutrition, Health and Aging 2008; 12(7): 2008.CrossRefGoogle ScholarPubMed
Mitchell, G. F., Dunlap, M. E., Warnica, W. et al. Long-term trandolapril treatment is associated with reduced aortic stiffness: The prevention of events with angiotensin-converting enzyme inhibition hemodynamic substudy. Hypertension, 2007; 49(6): 1271–7.CrossRefGoogle ScholarPubMed
Miyaki, A., Maeda, S., Yoshizawa, M. et al. Effect of weight reduction with dietary intervention on arterial distensibility and endothelial function in obese men. Angiology, 2009; 60(3): 351–7.CrossRefGoogle ScholarPubMed
Mobius-Winkler, S., Uhlemann, M., Adams, V. et al. Coronary collateral growth induced by physical exercise: Results of the impact of intensive exercise training on coronary collateral circulation in patients with stable coronary artery disease (EXCITE) Trial. Circulation, 2016; 133(15): 1438–48.CrossRefGoogle ScholarPubMed
Molander, L., Lovheim, H., Norman, T. et al. Lower systolic blood pressure is associated with greater mortality in people aged 85 and older. J Am Geriatr Soc. 2008; 56: 1853–9.CrossRefGoogle ScholarPubMed
Monahan, K. D., Feehan, R. P., Blaha, C., McLaughlin, D. J. Effect of omega-3 polyunsaturated fatty acid supplementation on central arterial stiffness and arterial wave reflections in young and older healthy adults. Physiol Rep. 2015; 3(6) pii: e12438.CrossRefGoogle Scholar
Mossello, E., Pieraccioli, M., Nesti, N. et al. Effects of low blood pressure in cognitively impaired elderly patients treated with antihypertensive drugs. JAMA Intern Med. 2015; 175: 578–85.CrossRefGoogle ScholarPubMed
Namasivayam, M., McDonnell, B. J., McEniery, C. M., O'Rourke, M. F., Anglo-Cardiff, I. Collaborative Trial Study, Does wave reflection dominate age-related change in aortic blood pressure across the human life span? Hypertension, 2009; 53(6): 979–85.CrossRefGoogle ScholarPubMed
Nichols, W. W., O'Rourke, M. F. McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles, fourth ed. 2006, Edward Arnold: London. p. 4994, 193233, 339402, 435502.Google Scholar
O'Rourke, M. F., Frolich, E. D. Pulse pressure: Is this a clinically useful risk factor? Hypertension. 1999; 34: 372–4.Google Scholar
Oliver, J. J., Webb, D. J. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol, 2003; 23(4): 554–66.CrossRefGoogle ScholarPubMed
Ong, K. T., Delerme, S., Pannier, B. et al. Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: A meta-analysis of individual data in 294 patients. J Hypertens, 2011; 29(6): 1034–42.CrossRefGoogle ScholarPubMed
O'Rourke, M. F., Gallagher, D. E., Pulse wave analysis. J Hypertens Suppl, 1996; 14(5): S147–57.Google ScholarPubMed
O'Rourke, M. F., Frederick Akbar, Mahomed Hypertension, 1992; 19(2): 212–17.CrossRefGoogle Scholar
O'Rourke, M. F., Seward, J. B., Central arterial pressure regulation during the aging process: new views entering the second century after Korotkoff. Mayo Clin Proc, 2006; 81: 1057–68.CrossRefGoogle Scholar
O'Rourke, M. F., Safar, M. E., Dzau, V. The Cardiovascular Continuum extended: Aging effects on the aorta and microvasculature. Vasc Med. 2010; 15(6): 461–8.CrossRefGoogle ScholarPubMed
Pannier, B., Guerin, A. P., Marchais, S. J., Safar, M. E., and London, G. M., Stiffness of capacitive and conduit arteries: Prognostic significance for end-stage renal disease patients. Hypertension, 2005; 45(4): 592–6.CrossRefGoogle ScholarPubMed
Pannier, B., Thomas, F., Eschwege, E. et al. Cardiovascular risk markers associated with the metabolic syndrome in a large French population: The “SYMFONIE” study. Diabetes Metab. 2006; 32: 467–74.CrossRefGoogle Scholar
Pase, M. P., Grima, N. A., Sarris, J. The effects of dietary and nutrient interventions on arterial stiffness: A systematic review. Am J Clin Nutr 2011; 93: 446–54.CrossRefGoogle ScholarPubMed
Pauca, A. L., O'Rourke, M. F., and Kon, N. D., Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension, 2001; 38(4): 932–7.CrossRefGoogle ScholarPubMed
Piepoli, M. F., Hoes, A. W., Agewall, S. European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. European Heart Journal 2016; 37: 2315–81.Google Scholar
Pries, A. R., Secomb, T. W., Gaehtgens, P., Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res, 1996; 32: 654–67.CrossRefGoogle ScholarPubMed
Rabkin, S. W. Arterial stiffness: Detection and consequences in cognitive impairment and dementia of the elderly. Journal of Alzheimer's Disease 2012; 32: 541–9.CrossRefGoogle ScholarPubMed
Reference Values for Arterial Stiffness, C. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: “Establishing normal and reference values.” Eur Heart J, 2010; 31(19): 2338–50.Google Scholar
Reusz, G. S., Cseprekal, O., Temmar, M. et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension, 2010; 56(2): 217–24.CrossRefGoogle ScholarPubMed
Riva-rocci, S. Un nuovo sfigmomanometro. Gazzetta Medica di Torino, 1896; 50: 981–96.Google Scholar
Roman, M. J., Devereux, R. B., Schwartz, J. E. et al. Arterial stiffness in chronic inflammatory diseases. Hypertension, 2005; 46(1): 194–9.CrossRefGoogle ScholarPubMed
Rueda-Clausen, C. F., Ogunleye, A. A., Sharma, A. M. Health benefits of long-term weight-loss maintenance. Annu Rev Nutr 2015; 35: 475516.CrossRefGoogle ScholarPubMed
Sacre, J. W., Jennings, G. L., Kingwell, B. A. Exercise and dietary influences on arterial stiffness in cardiometabolc disease. Hypertension 2014; 63: 888–93.CrossRefGoogle ScholarPubMed
Safar, M. E., Smulyan, H. Coronary ischemic disease, arterial stiffness, and pulse pressure. Am J Hypertens. 2004; 17: 724–6.CrossRefGoogle ScholarPubMed
Safar, M. E., Blacher, J., Pannier, B. et al. Central pulse pressure and mortality in end-stage renal disease. Hypertension, 2002; 39(3): 735–8.CrossRefGoogle ScholarPubMed
Safar, M. E., Cattan, V., Lacolley, P. et al. Aldosterone synthase gene polymorphism, stroke volume and age-related changes in aortic pulse wave velocity in subjects with hypertension. J Hypertens, 2005; 23: 1159–66.CrossRefGoogle ScholarPubMed
Safar, M. E., Thomas, F., Blacher, J. et al. Metabolic syndrome and age-related progression of aortic stiffness. J Am Coll Cardiol, 2006; 47(1): 72–5.CrossRefGoogle ScholarPubMed
Saji, N., Kimura, K., Shimizu, H., Kita, Y.. Association between silent brain infarct and arterial stiffness indicated by brachial-ankle pulse wave velocity. Int Med 2012; 51: 1003–8.CrossRefGoogle ScholarPubMed
Salvi, P., Safar, M. E., Labat, C. et al. Heart disease and changes in pulse wave velocity and pulse pressure amplification in the elderly over 80 years: The PARTAGE Study. J Hypertens. 2010; 28: 2127–33.CrossRefGoogle ScholarPubMed
Salvi, P., Lio, G., Labat, C., Ricci, E., Pannier, B., and Benetos, A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: The PulsePen device. J Hypertens, 2004; 22(12): 2285–93.CrossRefGoogle ScholarPubMed
Satizabal, C. L., Beiser, A. S., Chouraki, V., Chene, G., Dufouil, C., Seshadri, S. Incidence of dementia over three decades in the Framingham Heart Study, N Engl J Med 2016; 374: 523–32.CrossRefGoogle ScholarPubMed
Scuteri, A., Tesauro, M., Guglini, L., Lauro, D., Fini, M., Di Daniele, N. Aortic stiffness and hypotension episodes are associated with impaired cognitive function in older subjects with subjective complaints of memory loss. Intern J Cardiol 2013; 169: 371–7.CrossRefGoogle ScholarPubMed
Segers, P., Rietzschel, E. R., De Buyzere, M. L. et al. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension, 2007; 49(6): 1248–55.CrossRefGoogle ScholarPubMed
Sehgel, N. L., Zhu, Y., Sun, Z. et al. Increased vascular smooth muscle cell stiffness: a novel mechanism for aortic stiffness in hypertension. Am J Physiol Heart Circ Physiol, 2013; 305(9): H1281–7.CrossRefGoogle ScholarPubMed
Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014; 510: 92.CrossRefGoogle ScholarPubMed
Services, U.D.o.h.a.H., Dietary Guidelines for American 2005, ed. t. ed. 2005, Washington DC: US department of Agriculture.Google Scholar
Shahin, Y., Khan, J. A., Chetter, I., Angiotensin converting enzyme inhibitors effect on arterial stiffness and wave reflections: a meta-analysis and meta-regression of randomised controlled trials. Atherosclerosis, 2012; 221(1): 1833.CrossRefGoogle ScholarPubMed
Shea, M. K., Nicklas, B. J., Houston, D. K. et al. The effect of intentional weight loss on all-cause mortality on older adults: Results of a randomized controlled weight-loss trial. Am J Clin Nutr 2011; 94: 839–46.CrossRefGoogle ScholarPubMed
Shibata, S., Levine, B. D. Effect of exercise training on biologic vascular age in healthy seniors. Am J Physiol Heart. 2012; 302: H1340–6.CrossRefGoogle ScholarPubMed
Shirai, K., Utino, J., Otsuka, K., Takata, M. A novel blood pressure-independent arterial wall stiffness parameter; Cardio-ankle vascular index (CAVI). J Atheroscler Thromb 2006; 13: 101–7.CrossRefGoogle ScholarPubMed
Shoji, T., Emoto, M., Shinohara, K. et al., Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J Am Soc Nephrol, 2001. 12(10): 2117–24.CrossRefGoogle ScholarPubMed
Singer, J., Trollor, J. N., Baune, B. T., Sachdev, P. S., Smith, E. Arterial stiffness, the brain and cognition: A systematic review. Ageing Res Rev 2014; 15: 1627.CrossRefGoogle ScholarPubMed
Sjöström, L. Review of the key results from the Swedish Obese Subjects (SOS) trial – A prospective controlled intervention study of bariatric surgery. J Intern Med 2013; 273: 219234.CrossRefGoogle Scholar
Smulyan, H., Lieber, A., Safar, M. E. Hypertension, diabetes type II, and their association: Role of arterial stiffness. Am J Hypertens, 2016a; 29(1): 513.CrossRefGoogle ScholarPubMed
Smulyan, H., Mookherjee, S., Safar, M. E. The two faces of hypertension: Role of aortic stiffness. J Am Soc Hypertens, 2016b; 10(2): 175–83.CrossRefGoogle ScholarPubMed
Staessen, J. A., Fagard, R., Thijs, L. et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet, 1997; 350(9080): 757–64.CrossRefGoogle ScholarPubMed
Temmar, M., Labat, C., Benkhedda, S. et al. Prevalence and determinants of hypertension in the Algerian Sahara. J Hypertens. 2007; 25: 2218–26.CrossRefGoogle ScholarPubMed
Temmar, T., Watfa, G., Joly, L. et al. Algerian elderly women loose the gender-advantage in terms of arterial stiffness and cardiovascular profile. J Hypertens. 2013; 31: 2244–50.CrossRefGoogle Scholar
Thul, S., Labat, C., Temmar, M., Benetos, A., Bäck, M. Low salivary resolvin D1 to leukotriene B4 ratio predicts carotid intima media thickness: a novel biomarker of non-resolving vascular inflammation. Eur J Prev Cardiol, 2017; 24: 903–6.CrossRefGoogle ScholarPubMed
Toto-Moukouo, J. J., Achimastos, A., Asmar, R. G., Hugues, C. J., Safar, M. E. Pulse wave velocity in patients with obesity and hypertension. Am Heart J, 1986; 112(1): 136–40.CrossRefGoogle ScholarPubMed
Townsend, R. R., Wilkinson, I. B., Schiffrin, E. L. et al. Recommendations for improving and standardizing vascular research on arterial stiffness: A scientific statement from the American Heart Association. Hypertension, 2015; 66(3): 698722.CrossRefGoogle ScholarPubMed
Turnbull, F., Neal, B., Ninomiya, T. et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: Meta-analysis of randomised trials. BMJ. 2008; 336: 1121–3.Google ScholarPubMed
Upala, S., Sanguankeo, A., Congrete, S., Jaruvongvanich, V. Effect of cholecalciferol supplementation on arterial stiffness: A systematic review and meta-analysis. Scand Cardiovasc J. 2016; 50(4): 230–5.CrossRefGoogle ScholarPubMed
Valenti, L., Pantoni, H. S. Markus Treatment of vascular risk factors in patients with a diagnosis of Alzheimer's disease: A systematic review. BMC Medicine 2014; 12: 160.CrossRefGoogle ScholarPubMed
van de Laar, R. J., Stehouwer, C. D., van Bussel, B. C., Prins, M. H., Twisk, J. W., Ferreira, I. Adherence to a Mediterranean dietary pattern in early life is associated with lower arterial stiffness in adulthood: The Amsterdam Growth and Health Longitudinal Study J Intern Med. 2013; 273(1): 7993.CrossRefGoogle ScholarPubMed
van Sloten, T. T., Protogerou, A. D., Henry, R. M., Schram, M. T., Launer, L. J. Stehouwer CDAssociation between arterial stiffness, cerebral small vessel disease and cognitive impairment: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2015; 53: 121–30.CrossRefGoogle Scholar
Waldstein, S. R., Rice, S. C., Thayer, J. F., Najjar, S. S., Scuteri, A., Zonderman, A. B. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension 2008; 51: 99104.CrossRefGoogle ScholarPubMed
Wang, M., Zhang, J., Telljohann, R. et al. Chronic matrix metalloproteinase inhibition retards age-associated arterial proinflammation and increase in blood pressure. Hypertension, 2012; 60(2): 459–66.Google ScholarPubMed
Watfa, G., Benetos, A., Kearney-Schwartz, A. et al. Do arterial hemodynamic parameters predict cognitive decline over a period of 2 years in individuals older than 80 years living in nursing homes? The PARTAGE Study. J Am Med Dir Assoc. 2015; 16: 598602.CrossRefGoogle Scholar
Wildman, R. P., Farhat, G. N., Patel, A. S. et al. Weight change is associated with change in arterial stiffness among healthy young adults. Hypertension, 2005; 45(2): 187–92.CrossRefGoogle ScholarPubMed
Williams, B.,Cockcroft, J. R., Kario, K. et al. Effects of Sacubitril/Valsartan versus Olmesartan on central hemodynamics in the elderly with systolic hypertension. The PARAMETER Study. Hypertension 2017; 69: 411–20.CrossRefGoogle ScholarPubMed
Williams, B., Lacy, P. S., Thom, S. M. et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation, 2006; 113(9): 1213–25.Google ScholarPubMed
Williamson, J. D., Supiano, M. A., Applegate, W. B. et al. Intensive vs. standard blood pressure control and cardiovascular disease outcomes in adults aged >75 years. A randomized clinical trial. JAMA. 2016; 315: 2673–82.CrossRefGoogle ScholarPubMed
Willum-Hansen, T., Staessen, J. A., Torp-Pedersen, C. et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation, 2006. 113(5): 664–70.CrossRefGoogle ScholarPubMed
Wu, C., Smit, E., Peralta, C. A., et al. Functional status modifies the association of blood pressure with death in elders: Health and Retirement Study. J Am Geriatr Soc. 2017. doi: 10.1111/jgs.14816.CrossRefGoogle ScholarPubMed
Young, T., On the function of Heart and arteries (The Cronian lecture). Philosophical Transaction, 1809; 99.Google Scholar
Zhong, W., Cruickshanks, K. J., Schubert, C. R. et al. Pulse wave velocity and cognitive function in older adults. Alzheimer Dis Assoc Dis 2014; 28: 44–9.CrossRefGoogle ScholarPubMed

References

Abellan van Kan, G., Rolland, Y., Bergman, H., et al. The I.A.N.A Task Force on frailty assessment of older people in clinical practice. J Nutr Health Aging. 2008 Jan; 12(1): 2937.CrossRefGoogle ScholarPubMed
Al Snih, S., Graham, J. E., Ray, L. A., et al. Frailty and incidence of activities of daily living disability among older Mexican Americans. J Rehabil Med. 2009 Nov; 41(11): 892–7.CrossRefGoogle ScholarPubMed
Andrew, M. K., Mitnitski, A. B., Rockwood, K. Social vulnerability, frailty and mortality in elderly people. PloS One. 2008; 3(5): e2232.CrossRefGoogle ScholarPubMed
Arem, H., Moore, S. C., Patel, A., et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015 Jun; 175(6): 959–67.CrossRefGoogle ScholarPubMed
Bandeen-Roche, K., Xue, Q.-L., Ferrucci, L., et al. Phenotype of frailty: characterization in the Women's Health and Aging Studies. J Gerontol A Biol Sci Med Sci. 2006 Mar; 61(3): 262–6.CrossRefGoogle ScholarPubMed
Barlow, J., Singh, D., Bayer, S., Curry, R. A systematic review of the benefits of home telecare for frail elderly people and those with long-term conditions. J Telemed Telecare. 2007; 13(4): 172–9.CrossRefGoogle ScholarPubMed
Bauer, M., Fitzgerald, L., Haesler, E., Manfrin, M. Hospital discharge planning for frail older people and their family. Are we delivering best practice? A review of the evidence. J Clin Nurs. 2009 Sep; 18(18): 2539–46.CrossRefGoogle ScholarPubMed
Beasley, J. M., Shikany, J. M., Thomson, C. A. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr. 2013 Dec; 28(6): 684–90.Google ScholarPubMed
Beck, A. M., Kjær, S., Hansen, B. S., et al. Follow-up home visits with registered dietitians have a positive effect on the functional and nutritional status of geriatric medical patients after discharge: a randomized controlled trial. Clin Rehabil. 2013 Jun; 27(6): 483–93.CrossRefGoogle ScholarPubMed
Bendayan, M., Bibas, L., Levi, M., et al. Therapeutic interventions for frail elderly patients: part II. Ongoing and unpublished randomized trials. Prog Cardiovasc Dis. 2014 Oct; 57(2): 144–51.CrossRefGoogle ScholarPubMed
Bibas, L., Levi, M., Bendayan, M., et al. Therapeutic interventions for frail elderly patients: part I. Published randomized trials. Prog Cardiovasc Dis. 2014 Oct; 57(2): 134–43.CrossRefGoogle ScholarPubMed
Bonnefoy, M., Berrut, G., Lesourd, B., et al. Frailty and nutrition: searching for evidence. J Nutr Health Aging. 2015 Mar; 19(3): 250–7.CrossRefGoogle ScholarPubMed
Brach, J. S., Simonsick, E. M., Kritchevsky, S., Yaffe, K., Newman, A. B., Health, Aging and Body Composition Study Research Group. The association between physical function and lifestyle activity and exercise in the health, aging and body composition study. J Am Geriatr Soc. 2004 Apr; 52(4): 502–9.CrossRefGoogle ScholarPubMed
Brown, M., Sinacore, D. R., Ehsani, A. A., et al. Low-intensity exercise as a modifier of physical frailty in older adults. Arch Phys Med Rehabil. 2000 Jul; 81(7): 960–5.CrossRefGoogle ScholarPubMed
Cadore, E. L., Moneo, A. B. B., Mensat, M. M., et al. Positive effects of resistance training in frail elderly patients with dementia after long-term physical restraint. Age Dordr Neth. 2014 Apr; 36(2): 801–11.Google ScholarPubMed
Cawthon, P. M., Marshall, L. M., Michael, Y., et al. Frailty in older men: prevalence, progression, and relationship with mortality. J Am Geriatr Soc. 2007 Aug; 55(8): 1216–23.CrossRefGoogle ScholarPubMed
Chandler, J. M., Duncan, P. W., Kochersberger, G., Studenski, S. Is lower extremity strength gain associated with improvement in physical performance and disability in frail, community-dwelling elders? Arch Phys Med Rehabil. 1998 Jan; 79(1): 2430.CrossRefGoogle ScholarPubMed
Chernichovsky, D., Leibowitz, A. A. Integrating public health and personal care in a reformed US health care system. Am J Public Health. 2010 Feb; 100(2): 205–11.CrossRefGoogle Scholar
Chou, C.-H., Hwang, C.-L., Wu, Y.-T. Effect of exercise on physical function, daily living activities, and quality of life in the frail older adults: a meta-analysis. Arch Phys Med Rehabil. 2012 Feb; 93(2): 237–44.CrossRefGoogle ScholarPubMed
Clegg, A., Barber, S., Young, J., Iliffe, S., Forster, A. The Home-based Older People's Exercise (HOPE) trial: a pilot randomised controlled trial of a home-based exercise intervention for older people with frailty. Age Ageing. 2014 Sep; 43(5): 687–95.CrossRefGoogle Scholar
Clegg, A., Young, J., Iliffe, S., Rikkert, M. O., Rockwood, K. Frailty in elderly people. Lancet. 2013 Mar 2; 381(9868): 752–62.CrossRefGoogle ScholarPubMed
Crimmins, E. M. Trends in the health of the elderly. Annu Rev Public Health. 2004; 25: 7998.CrossRefGoogle ScholarPubMed
Cutler, D. M., Landrum, M. B., Stewart, K. A. Intensive medical care and cardiovascular disease disability reductions [Internet]. National Bureau of Economic Research; 2006 May [cited 2016 Jul 11]. Report No.: 12184. Available from: http://nber.org/papers/w12184Google Scholar
Deutz, N. E. P., Bauer, J. M., Barazzoni, R., et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr Edinb Scotl. 2014 Dec; 33(6): 929–36.Google ScholarPubMed
Dorner, T. E., Lackinger, C., Haider, S., et al. Nutritional intervention and physical training in malnourished frail community-dwelling elderly persons carried out by trained lay “buddies”: study protocol of a randomized controlled trial. BMC Public Health. 2013; 13: 1232.CrossRefGoogle ScholarPubMed
Dumbreck, S., Flynn, A., Nairn, M., et al. Drug-disease and drug-drug interactions: systematic examination of recommendations in 12 UK national clinical guidelines. BMJ. 2015; 350: h949.CrossRefGoogle ScholarPubMed
Ehsani, A. A., Spina, R. J., Peterson, L. R., et al. Attenuation of cardiovascular adaptations to exercise in frail octogenarians. J Appl Physiol Bethesda MD 1985. 2003 Nov; 95(5): 1781–8.Google Scholar
Elkan, R., Kendrick, D., Dewey, M., et al. Effectiveness of home based support for older people: systematic review and meta-analysis. BMJ. 2001 Sep 29; 323(7315): 719–25.CrossRefGoogle ScholarPubMed
Elwood, P., Galante, J., Pickering, J., et al. Healthy lifestyles reduce the incidence of chronic diseases and dementia: evidence from the Caerphilly cohort study. PLoS One. 2013; 8(12): e81877.CrossRefGoogle ScholarPubMed
Epping-Jordan, J. E., Galea, G., Tukuitonga, C., Beaglehole, R. Preventing chronic diseases: taking stepwise action. Lancet Lond Engl. 2005 Nov 5; 366(9497): 1667–71.Google ScholarPubMed
Esterman, A. J., Ben-Tovim, D. I. The Australian coordinated care trials: success or failure? The second round of trials may provide more answers. Med J Aust. 2002 Nov 4; 177(9): 469–70.CrossRefGoogle ScholarPubMed
Estruch, R., Ros, E., Salas-Salvadó, J., et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013 Apr 4; 368(14): 1279–90.CrossRefGoogle ScholarPubMed
Fiatarone, M. A., O'Neill, E. F., Ryan, N. D., et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994 Jun 23; 330(25): 1769–75.CrossRefGoogle ScholarPubMed
Forster, A., Lambley, R., Hardy, J., et al. Rehabilitation for older people in long-term care. Cochrane Database Syst Rev. 2009; (1): CD004294.CrossRefGoogle ScholarPubMed
Fried, L. P., Ferrucci, L., Darer, J., Williamson, J. D., Anderson, G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004 Mar; 59(3): 255–63.CrossRefGoogle ScholarPubMed
Fried, L. P., Tangen, C. M., Walston, J., et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001 Mar; 56(3): M146–56.CrossRefGoogle ScholarPubMed
Fried, L. P., Xue, Q.-L., Cappola, A. R., et al. Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. J Gerontol A Biol Sci Med Sci. 2009 Oct; 64(10): 1049–57.Google ScholarPubMed
Fulop, T., Larbi, A., Witkowski, J. M., et al. Aging, frailty and age-related diseases. Biogerontology. 2010 Oct; 11(5): 547–63.CrossRefGoogle ScholarPubMed
Gill, T. M., Baker, D. I., Gottschalk, M., et al. A program to prevent functional decline in physically frail, elderly persons who live at home. N Engl J Med. 2002 Oct 3; 347(14): 1068–74.CrossRefGoogle ScholarPubMed
Giné-Garriga, M., Roqué-Fíguls, M., Coll-Planas, L., Sitjà-Rabert, M., Salvà, A. Physical exercise interventions for improving performance-based measures of physical function in community-dwelling, frail older adults: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2014 Apr; 95(4): 753–69.e3.CrossRefGoogle ScholarPubMed
Goodwin, N., Sonola, L., Thiel, V., Kodner, D. Co-ordinated Care for People with Complex Chronic Conditions [Internet]. 2013 [cited 2016 Sep 27]. (London: The King's Fund). Available from: http://kingsfund.org.uk/sites/files/kf/field/field_publication_file/co-ordinated-care-for-peoplewith-complex-chronic-conditions-kingsfund-oct13.pdfGoogle Scholar
Graham, J. E., Snih, S. A., Berges, I. M., et al. Frailty and 10-year mortality in community-living Mexican American older adults. Gerontology. 2009; 55(6): 644–51.CrossRefGoogle ScholarPubMed
Gustafsson, S., Edberg, A.-K., Johansson, B., Dahlin-Ivanoff, S. Multi-component health promotion and disease prevention for community-dwelling frail elderly persons: a systematic review. Eur J Ageing. 2009 Oct 17; 6(4): 315–29.CrossRefGoogle ScholarPubMed
Harber, M. P., Konopka, A. R., Douglass, M. D., et al. Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol. 2009 Nov; 297(5): R1452–9.CrossRefGoogle ScholarPubMed
Hébert, R., Raîche, M., Dubois, M.-F., et al. Impact of PRISMA, a coordination-type integrated service delivery system for frail older people in Quebec (Canada): a quasi-experimental study. J Gerontol B Psychol Sci Soc Sci. 2010 Jan; 65B(1): 107–18.CrossRefGoogle ScholarPubMed
Huber, M., Knottnerus, J. A., Green, L., et al. How should we define health? BMJ. 2011; 343: d4163.CrossRefGoogle ScholarPubMed
Inzitari, M., Doets, E., Bartali, B., et al. Nutrition in the age-related disablement process. J Nutr Health Aging. 2011 Aug; 15(8): 599604.CrossRefGoogle ScholarPubMed
Izquierdo, M., Cadore, E. L. Muscle power training in the institutionalized frail: a new approach to counteracting functional declines and very late-life disability. Curr Med Res Opin. 2014 Jul; 30(7): 1385–90.CrossRefGoogle ScholarPubMed
Johri, M., Beland, F., Bergman, H. International experiments in integrated care for the elderly: a synthesis of the evidence. Int J Geriatr Psychiatry. 2003 Mar; 18(3): 222–35.CrossRefGoogle ScholarPubMed
Jones, D. M., Song, X., Rockwood, K. Operationalizing a frailty index from a standardized comprehensive geriatric assessment. J Am Geriatr Soc. 2004 Nov; 52(11): 1929–33.CrossRefGoogle ScholarPubMed
Kaiser, M., Bandinelli, S., Lunenfeld, B. Frailty and the role of nutrition in older people. A review of the current literature. Acta Bio-Medica Atenei Parm. 2010; 81 (Suppl 1): 3745.Google ScholarPubMed
Kaufman, D. W., Kelly, J. P., Rosenberg, L., Anderson, T. E., Mitchell, A. A. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA. 2002 Jan 16; 287(3): 337–44.CrossRefGoogle ScholarPubMed
Kojima, G. Frailty as a predictor of future falls among community-dwelling older people: a systematic review and meta-analysis. J Am Med Dir Assoc. 2015 Dec; 16(12): 1027–33.CrossRefGoogle ScholarPubMed
Kshetrimayum, N., Reddy, C. V. K., Siddhana, S., et al. Oral health-related quality of life and nutritional status of institutionalized elderly population aged 60 years and above in Mysore City, India. Gerodontology. 2013 Jun; 30(2): 119–25.CrossRefGoogle ScholarPubMed
Lally, F., Crome, P. Understanding frailty. Postgrad Med J. 2007 Jan; 83(975): 1620.CrossRefGoogle ScholarPubMed
Lloyd-Sherlock, P., Beard, J., Minicuci, N., Ebrahim, S., Chatterji, S. Hypertension among older adults in low- and middle-income countries: prevalence, awareness and control. Int J Epidemiol. 2014 Feb; 43(1): 116–28.CrossRefGoogle ScholarPubMed
Malafarina, V., Uriz-Otano, F., Iniesta, R., Gil-Guerrero, L. Effectiveness of nutritional supplementation on muscle mass in treatment of sarcopenia in old age: a systematic review. J Am Med Dir Assoc. 2013 Jan; 14(1): 10–7.CrossRefGoogle ScholarPubMed
Marengoni, A., Angleman, S., Melis, R., et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011 Sep; 10(4): 430–9.CrossRefGoogle ScholarPubMed
Marengoni, A., Pasina, L., Concoreggi, C., et al. Understanding adverse drug reactions in older adults through drug-drug interactions. Eur J Intern Med. 2014 Nov; 25(9): 843–6.CrossRefGoogle ScholarPubMed
McDonald, K. M., Schultz, E. M., Chang, C. Evaluating the state of quality-improvement science through evidence synthesis: insights from the closing the quality gap series. Perm J. 2013; 17(4): 5261.CrossRefGoogle ScholarPubMed
Morley, J. E., Argiles, J. M., Evans, W. J., et al. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc. 2010 Jul; 11(6): 391–6.CrossRefGoogle ScholarPubMed
Michel, J.-P., Newton, J. L., Kirkwood, T. B. L. Medical challenges of improving the quality of a longer life. JAMA. 2008 Feb 13; 299(6): 688–90.CrossRefGoogle ScholarPubMed
Morley, J. E., Vellas, B., van Kan, G. A., et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013 Jun; 14(6): 392–7.CrossRefGoogle ScholarPubMed
Millward, D. J. Nutrition and sarcopenia: evidence for an interaction. Proc Nutr Soc. 2012 Nov; 71(4): 566–75.CrossRefGoogle ScholarPubMed
Musini, V. M., Tejani, A. M., Bassett, K., Wright, J. M. Pharmacotherapy for hypertension in the elderly. Cochrane Database Syst Rev. 2009; (4): CD000028.CrossRefGoogle ScholarPubMed
Nobili, A., Pasina, L., Tettamanti, M., et al. Potentially severe drug interactions in elderly outpatients: results of an observational study of an administrative prescription database. J Clin Pharm Ther. 2009 Aug; 34(4): 377–86.CrossRefGoogle ScholarPubMed
Nowson, C., O'Connell, S. Protein requirements and recommendations for older people: a review. Nutrients. 2015 Aug; 7(8): 6874–99.CrossRefGoogle ScholarPubMed
Onder, G., Bonassi, S., Abbatecola, A. M., et al. High prevalence of poor quality drug prescribing in older individuals: a nationwide report from the Italian Medicines Agency (AIFA). J Gerontol A Biol Sci Med Sci. 2014 Apr; 69(4): 430–7.CrossRefGoogle ScholarPubMed
Onder, G., Palmer, K., Navickas, R., et al. Time to face the challenge of multimorbidity. A European perspective from the joint action on chronic diseases and promoting healthy ageing across the life cycle (JA-CHRODIS). Eur J Intern Med. 2015 Apr; 26(3): 157–9.CrossRefGoogle ScholarPubMed
Ouwens, M., Wollersheim, H., Hermens, R., Hulscher, M., Grol, R. Integrated care programmes for chronically ill patients: a review of systematic reviews. Int J Qual Health Care J Int Soc Qual Health Care ISQua. 2005 Apr; 17(2): 141–6.Google ScholarPubMed
Paddon-Jones, D., Leidy, H. Dietary protein and muscle in older persons. Curr Opin Clin Nutr Metab Care. 2014 Jan; 17(1): 511.CrossRefGoogle ScholarPubMed
Pahor, M., Guralnik, J. M., Ambrosius, W. T., et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014 Jun 18; 311(23): 2387–96.CrossRefGoogle ScholarPubMed
Parker, M. G., Thorslund, M. Health trends in the elderly population: getting better and getting worse. The Gerontologist. 2007 Apr; 47(2): 150–8.CrossRefGoogle ScholarPubMed
Perenboom, R. J. M., Van Herten, L. M., Boshuizen, H. C., Van Den Bos, G. A. M. Trends in disability-free life expectancy. Disabil Rehabil. 2004 Apr 8; 26(7): 377–86.CrossRefGoogle ScholarPubMed
Peters, L. L., Boter, H., Buskens, E., Slaets, J. P. J. Measurement properties of the Groningen Frailty Indicator in home-dwelling and institutionalized elderly people. J Am Med Dir Assoc. 2012 Jul; 13(6): 546–51.CrossRefGoogle ScholarPubMed
Peterson, M. J., Giuliani, C., Morey, M. C., et al. Physical activity as a preventative factor for frailty: the health, aging, and body composition study. J Gerontol A Biol Sci Med Sci. 2009 Jan; 64(1): 61–8.Google ScholarPubMed
Peto, R., Darby, S., Deo, H., et al. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ. 2000 Aug 5; 321(7257): 323–9.CrossRefGoogle ScholarPubMed
Pialoux, T., Goyard, J., Lesourd, B. Screening tools for frailty in primary health care: a systematic review. Geriatr Gerontol Int. 2012 Apr; 12(2): 189–97.CrossRefGoogle ScholarPubMed
Puts, M. T. E., Lips, P., Deeg, D. J. H. Static and dynamic measures of frailty predicted decline in performance-based and self-reported physical functioning. J Clin Epidemiol. 2005 Nov; 58(11): 1188–98.CrossRefGoogle ScholarPubMed
Reynolds, S. L., Saito, Y., Crimmins, E. M. The impact of obesity on active life expectancy in older American men and women. The Gerontologist. 2005 Aug; 45(4): 438–44.CrossRefGoogle ScholarPubMed
Robinson, S., Cooper, C., Aihie Sayer, A. Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J Aging Res. 2012; 2012: 510801.CrossRefGoogle ScholarPubMed
Rodríguez-Artalejo, F., Rodríguez-Mañas, L. The frailty syndrome in the public health agenda. J Epidemiol Community Health. 2014 Aug; 68(8): 703–4.CrossRefGoogle ScholarPubMed
Romero-Ortuno, R., Walsh, C. D., Lawlor, B. A., Kenny, R. A. A frailty instrument for primary care: findings from the Survey of Health, Ageing and Retirement in Europe (SHARE). BMC Geriatr. 2010; 10: 57.CrossRefGoogle ScholarPubMed
Rondanelli, M., Faliva, M., Monteferrario, F., et al. Novel insights on nutrient management of sarcopenia in elderly. BioMed Res Int. 2015; 2015: 524948.CrossRefGoogle ScholarPubMed
Rowe, J. W., Fulmer, T., Fried, L. Preparing for better health and health care for an aging population. JAMA. 2016 Oct 25; 316(16): 1643–4.CrossRefGoogle ScholarPubMed
Savela, S. L., Koistinen, P., Stenholm, S., et al. Leisure-time physical activity in midlife is related to old age frailty. J Gerontol A Biol Sci Med Sci. 2013 Nov; 68(11): 1433–8.CrossRefGoogle ScholarPubMed
Schoeni, R. F., Freedman, V. A., Martin, L. G. Why is late-life disability declining? Milbank Q. 2008 Mar; 86(1): 4789.CrossRefGoogle ScholarPubMed
Song, X., Mitnitski, A., Rockwood, K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc. 2010 Apr; 58(4): 681–7.CrossRefGoogle ScholarPubMed
Sternberg, S. A., Wershof Schwartz, A., Karunananthan, S., Bergman, H., Mark Clarfield, A. The identification of frailty: a systematic literature review. J Am Geriatr Soc. 2011 Nov; 59(11): 2129–38.CrossRefGoogle ScholarPubMed
Stuck, A. E., Iliffe, S. Comprehensive geriatric assessment for older adults. BMJ. 2011; 343: d6799.CrossRefGoogle ScholarPubMed
Sugawara, J., Miyachi, M., Moreau, K. L., et al. Age-related reductions in appendicular skeletal muscle mass: association with habitual aerobic exercise status. Clin Physiol Funct Imaging. 2002 May; 22(3): 169–72.CrossRefGoogle ScholarPubMed
Syddall, H., Roberts, H. C., Evandrou, M., et al. Prevalence and correlates of frailty among community-dwelling older men and women: findings from the Hertfordshire Cohort Study. Age Ageing. 2010 Mar; 39(2): 197203.CrossRefGoogle ScholarPubMed
Tavassoli, N., Guyonnet, S., Abellan Van Kan, G., et al. Description of 1,108 older patients referred by their physician to the “Geriatric Frailty Clinic (G.F.C) for Assessment of Frailty and Prevention of Disability” at the gerontopole. J Nutr Health Aging. 2014 May; 18(5): 457–64.CrossRefGoogle Scholar
Theou, O., Stathokostas, L., Roland, K. P., et al. The effectiveness of exercise interventions for the management of frailty: a systematic review. J Aging Res. 2011; 2011: 569194.CrossRefGoogle ScholarPubMed
United Nations, Department of Economic and Social Affairs, Population Division. World Population Ageing 2015 [Internet]. 2015. Available from: http://un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdfGoogle Scholar
Volkert, D. The role of nutrition in the prevention of sarcopenia. Wien Med Wochenschr 1946. 2011 Sep; 161(17–18): 409–15.Google ScholarPubMed
Walston, J., Hadley, E. C., Ferrucci, L., et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J Am Geriatr Soc. 2006 Jun; 54(6): 9911001.CrossRefGoogle Scholar
Walston, J., McBurnie, M. A., Newman, A., et al. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the Cardiovascular Health Study. Arch Intern Med. 2002 Nov 11; 162(20): 2333–41.CrossRefGoogle ScholarPubMed
Weening-Dijksterhuis, E., de Greef, M. H. G., Scherder, E. J. A., Slaets, J. P. J., van der Schans, C. P. Frail institutionalized older persons: a comprehensive review on physical exercise, physical fitness, activities of daily living, and quality-of-life. Am J Phys Med Rehabil Assoc Acad Physiatr. 2011 Feb; 90(2): 156–68.Google Scholar
Wolf, D. A., Hunt, K., Knickman, J. Perspectives on the recent decline in disability at older ages. Milbank Q. 2005; 83(3): 365–95.CrossRefGoogle ScholarPubMed
Woods, N. F., LaCroix, A. Z., Gray, S. L., et al. Frailty: emergence and consequences in women aged 65 and older in the Women's Health Initiative Observational Study. J Am Geriatr Soc. 2005 Aug; 53(8): 1321–30.Google ScholarPubMed
World Health Organization. Prevention and Control of Noncommunicable Diseases: Guidelines for Primary Health Care in Low Resource Settings [Internet]. Geneva: World Health Organization; 2012 [cited 2016 Sep 14]. (WHO Guidelines Approved by the Guidelines Review Committee). Available from: http://ncbi.nlm.nih.gov/books/NBK148622/Google Scholar
World Health Organization. Global Action Plan for the Prevention and Control of NCDs 2013–2020 [Internet]. WHO. [cited 2016 Sep 14]. Available from: http://who.int/nmh/events/ncd_action_plan/en/Google Scholar
World Health Organization. Preventing Chronic Diseases: A Vital Investment [Internet]. WHO. [cited 2016 Sep 14]. Available from: http://who.int/chp/chronic_disease_report/contents/en/Google Scholar

References

Andrieu, S., Coley, N., Lovestone, , Aisen, P. S., Vellas, B. Prevention of sporadic Alzheimer's disease: lessons learned from clinical trials and future directions. Lancet Neurol. 2015; 14: 926–44.CrossRefGoogle ScholarPubMed
Blain, H., Masud, T., Dargent-Molina, P., et al. EUGMS Falls and Fracture Interest Group; European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO), Osteoporosis Research and Information Group (GRIO), and International osteoporosis Foundation (IOF). A Comprehensive Fracture Prevention Strategy in Older Adults: The European Union Geriatric Medicine Society (EUGMS) Statement. J Nutr Health Aging. 2016; 20(6): 647–52.Google ScholarPubMed
Boyle, P. A., Buchman, A. S., Wilson, R. S., et al. Physical activity is associated with incident disability in community-based older persons. J Am Geriatr Soc. 2007; 55(2): 195201.CrossRefGoogle ScholarPubMed
Brown, B. M., Peiffer, J. J., Martins, R. N. Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer's disease? Mol Psychiatry. 2013; 18(8): 864–74.CrossRefGoogle ScholarPubMed
Colcombe, S., Kramer, A. F. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003; 14(2): 125–30.CrossRefGoogle ScholarPubMed
Cosman, F., de Beur, S. J., LeBoff, M. S., et al. Clinician's Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int. 2014; 25(10): 2359–81.CrossRefGoogle ScholarPubMed
Cruz-Jentoft, A. J., Landi, F., Schneider, S. M., et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014; 43(6): 748–59.CrossRefGoogle ScholarPubMed
Fiatarone, M. A., O'Neill, E. F., Ryan, N. D., et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994; 330(25): 1769–75.CrossRefGoogle ScholarPubMed
Giangregorio, L. M., McGill, S., Wark, J. D., et al. Too Fit To Fracture: outcomes of a Delphi consensus process on physical activity and exercise recommendations for adults with osteoporosis with or without vertebral fractures. Osteoporos Int. 2015; 26(3): 891910.CrossRefGoogle ScholarPubMed
Gorelick, P. B., Scuteri, A., Black, S. E., et al. Vascular contributions to cognitive impairment and dementia. A statement for healthcare professionals from the American Heart /American Stroke Association. Stroke. 2011; 42: 2672–713.CrossRefGoogle ScholarPubMed
Kohrt, W. M., Bloomfield, S. A., Little, K. D., et al. American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004; 36(11): 1985–96.CrossRefGoogle ScholarPubMed
Komulainen, P., Kivipelto, M., Lakka, T. A., et al. Exercise, fitness and cognition – a randomised controlled trial in older individuals: the DR's EXTRA study. Eur Geriatr Med. 2010; 1: 266–72.CrossRefGoogle Scholar
Lafortune, L., Martin, S., Kelly, S., et al. Behavioural risk factors in mid-life associated with successful ageing, disability, dementia and frailty in later life: a rapid systematic review. PLos One. 2016; 11(2): e0144405. doi:0.1371/journal.pone.0144405CrossRefGoogle ScholarPubMed
Landi, F., Cesari, M., Calvani, R., et al. The “Sarcopenia and Physical fRailty IN older people: multi-componenT Treatment strategies” (SPRINTT) randomized controlled trial: design and methods. Aging Clin Exp Res. 2017; 29(1): 89100. doi: 10.1007/s40520-016-0715-2.CrossRefGoogle Scholar
Liu, C. J., Latham, N. K. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009; (3): CD002759.Google ScholarPubMed
Marques, E. A., Mota, J., Carvalho, J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr). 2012; 34: 1493–515.CrossRefGoogle Scholar
Messinger-Rapport, B. J., Gammack, J. K., Thomas, D. R., et al. Clinical update on nursing home medicine: 2013. J Am Med Dir Assoc. 2013; 14(12): 860–76.CrossRefGoogle ScholarPubMed
Ngandu, T., Lehtisalo, J., Solomon, A., et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 2015; 385(9984): 2255–63.CrossRefGoogle Scholar
Öhman, H., Savikko, N., Strandberg, T., et al. Effects of exercise on functional performance and fall rate in subjects with mild or advanced Alzheimer's disease: secondary analyses of a randomized controlled study. Dement Geriatr Cogn Disord. 2016a; 41(3–4): 233–41.CrossRefGoogle ScholarPubMed
Öhman, H., Savikko, N., Strandberg, T. E., et al. Effects of exercise on cognition: the Finnish Alzheimer Disease Exercise Trial (FINALEX): a randomized, controlled trial. J Am Geriatr Soc. 2016b; 64: 731–8.CrossRefGoogle Scholar
Pahor, M., Guralnik, J. M., Ambrosius, W. T., et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014; 311(23): 2387–96.CrossRefGoogle ScholarPubMed
Paterson, D. H., Warburton, D. E. Physical activity and functional limitations in older adults: a systematic review related to Canada's Physical Activity Guidelines. Int J Behav Nutr Phys Act. 2010; 7: 38. doi: 10.1186/1479-5868-7-38.CrossRefGoogle ScholarPubMed
Pitkälä, K., Savikko, N., Pöysti, M., Strandberg, T., Laakkonen, M. L. Efficacy of physical exercise intervention on mobility and physical functioning in older people with dementia: a systematic review. Exp Gerontol. 2013a; 48: 8593.CrossRefGoogle ScholarPubMed
Pitkälä, K. H., Pöysti, M. M., Laakkonen, M. L., et al. Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial. JAMA Intern Med. 2013b; 173(10): 894901.CrossRefGoogle ScholarPubMed
Reid, K. F., Martin, K. I., Doros, G., et al. Comparative effects of light or heavy resistance power training for improving lower extremity power and physical performance in mobility-limited older adults. J Gerontol A Biol Sci Med Sci. 2015; 70(3): 374–80.CrossRefGoogle ScholarPubMed
Salpakoski, A., Törmäkangas, T., Edgren, J., et al. Effects of a multicomponent home-based physical rehabilitation program on mobility recovery after hip fracture: a randomized controlled trial. J Am Med Dir Assoc. 2014; 15(5): 361–8.CrossRefGoogle ScholarPubMed
Savela, S., Komulainen, P., Sipilä, S., Strandberg, T. Physical activity of the elderly – what kind of and what for? (in Finnish). Duodecim. 2015; 131(18): 1719–25.Google Scholar
Savela, S. L., Koistinen, P., Stenholm, S., et al. Leisure-time physical activity in midlife is related to old age frailty. J Gerontol A Biol Sci Med Sci. 2013; 68(11): 1433–8.CrossRefGoogle ScholarPubMed
Singh, M. A. Exercise comes of age: rationale and recommendations for a geriatric exercise prescription. J Gerontol A Biol Sci Med Sci. 2002; 57(5): M26282.CrossRefGoogle ScholarPubMed
Singh, N. A., Stavrinos, T. M., Scarbek, Y., et al. A randomized controlled trial of high versus low intensity weight training versus general practitioner care for clinical depression in older adults. J Gerontol A Biol Sci Med Sci. 2005; 60(6): 768–76.CrossRefGoogle ScholarPubMed
Sink, K. M., Espeland, M. A., Castro, C. M., et al. Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: the LIFE randomized trial. JAMA. 2015; 314(8): 781–90.CrossRefGoogle ScholarPubMed
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010; 72(3): 239–52.CrossRefGoogle ScholarPubMed
Stessman, J., Hammerman-Rozenberg, R., Cohen, A., et al. Physical activity, function, and longevity among the very old. Arch Intern Med. 2009; 169(16): 1476–83.CrossRefGoogle ScholarPubMed
Strandberg, T. E., Pitkälä, K. H., Tilvis, R. S. Frailty in older people. Eur Geriatr Med. 2011; 2: 344–55.CrossRefGoogle Scholar
Strawbridge, W. J., Deleger, S., Roberts, R. E., et al. Physical activity reduces the risk of subsequent depression for older adults. Am J Epidemiol. 2002; 156(4): 328–34.CrossRefGoogle ScholarPubMed
Van Roie, E., Delecluse, C., Coudyzer, W., et al. Strength training at high versus low external resistance in older adults: effects on muscle volume, muscle strength, and force-velocity characteristics. Exp Gerontol. 2013; 48(11): 1351–61.CrossRefGoogle ScholarPubMed
Weening-Dijksterhuis, E., de Greef, M. H., Scherder, E. J., et al. Frail institutionalized older persons: A comprehensive review on physical exercise, physical fitness, activities of daily living, and quality-of-life. Am J Phys Med Rehabil. 2011; 90(2): 156–68.CrossRefGoogle Scholar
WHO. Global recommendations on physical activity for health. World Health Organization 2010. ISBN 978 92 4 159 997 9.Google Scholar
Windle, G., Hughes, D., Linck, P., et al. Is exercise effective in promoting mental well-being in older age? A systematic review. Aging Ment Health. 2010; 14(6): 652–69.CrossRefGoogle ScholarPubMed

References

Akbaraly, T. N., Hininger-Favier, I., Carriere, I., et al., Plasma selenium over time and cognitive decline in the elderly. Epidemiology, 2007; 18(1): 52–8.CrossRefGoogle ScholarPubMed
Albanese, E., Taylor, C., Siervo, M., et al., Dementia severity and weight loss: a comparison across eight cohorts. The 10/66 study. Alzheimers Dement, 2013; 9(6): 649–56.CrossRefGoogle ScholarPubMed
Anastasiou, C. A., Yannakoulia, M., Scarmeas, N., Vitamin D and cognition: an update of the current evidence. J Alzheimers Dis, 2014; 42 (Suppl 3): S7180.CrossRefGoogle ScholarPubMed
Anderson, R. A., Qin, B., Canini, F., et al., Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PLoS ONE, 2013; 8(12): e83243.CrossRefGoogle ScholarPubMed
Annweiler, C., Dursun, E., Feron, F., et al., “Vitamin D and cognition in older adults”: updated international recommendations. J Intern Med, 2015; 277(1): 4557.CrossRefGoogle ScholarPubMed
Arts, I. C., Hollman, P. C., Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr, 2005; 81(1 Suppl): 317S–25S.CrossRefGoogle ScholarPubMed
Atochin, D. N., Huang, P. L., Role of endothelial nitric oxide in cerebrovascular regulation. Curr Pharm Biotechnol, 2011; 12(9): 1334–42.CrossRefGoogle ScholarPubMed
Attwell, D., Buchan, A. M., Charpak, S., et al., Glial and neuronal control of brain blood flow. Nature, 2010; 468(7321): 232–43.CrossRefGoogle ScholarPubMed
Bakker, A., Kirwan, C. B., Miller, M., et al., Pattern separation in the human hippocampal CA3 and dentate gyrus. Science, 2008; 319(5870): 1640–2.CrossRefGoogle ScholarPubMed
Balion, C., Griffith, L. E., Strifler, L., et al., Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology, 2012; 79(13): 1397–405.CrossRefGoogle ScholarPubMed
Bang, H. O., Dyerberg, J., Nielsen, A. B., Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet, 1971; 1(7710): 1143–5.Google ScholarPubMed
Bang, H. O., Dyerberg, J., Sinclair, H. M., The composition of the Eskimo food in north western Greenland. Am J Clin Nutr, 1980; 33(12): 2657–61.CrossRefGoogle ScholarPubMed
Baranano, K. W., Hartman, A. L., The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol, 2008; 10(6): 410–19.CrossRefGoogle ScholarPubMed
Barberger-Gateau, P., Raffaitin, C., Letenneur, L., et al., Dietary patterns and risk of dementia: the Three-City cohort study. Neurology, 2007; 69(20): 1921–30.CrossRefGoogle ScholarPubMed
Barberger-Gateau, P., Letenneur, L., Deschamps, V., et al., Fish, meat, and risk of dementia: cohort study. BMJ, 2002; 325(7370): 932–3.CrossRefGoogle ScholarPubMed
Barnard, N. D., Bush, A. I., Ceccarelli, A., et al., Dietary and lifestyle guidelines for the prevention of Alzheimer's disease. Neurobiol Aging, 2014; 35 (Suppl 2): S74–8.CrossRefGoogle ScholarPubMed
Beydoun, M. A., Beydoun, H. A., Gamaldo, A. A., et al., Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health, 2014; 14: 643.CrossRefGoogle ScholarPubMed
Birks, J., Grimley Evans, J., Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev, 2009; (1): CD003120.Google ScholarPubMed
Black, B. S., Johnston, D., Morrison, A., et al., Quality of life of community-residing persons with dementia based on self-rated and caregiver-rated measures. Qual Life Res, 2012; 21(8): 1379–89.CrossRefGoogle ScholarPubMed
Bough, K. J., Rho, J. M., Anticonvulsant mechanisms of the ketogenic diet. Epilepsia, 2007; 48(1): 4358.CrossRefGoogle ScholarPubMed
Bowling, A., Rowe, G., Adams, S., et al., Quality of life in dementia: a systematically conducted narrative review of dementia-specific measurement scales. Aging Ment Health, 2015; 19(1): 1331.CrossRefGoogle ScholarPubMed
Bowman, G. L., Ascorbic acid, cognitive function, and Alzheimer's disease: a current review and future direction. Biofactors, 2012; 38(2): 114–22.CrossRefGoogle ScholarPubMed
Braak, E., Griffing, K., Arai, K., et al., Neuropathology of Alzheimer's disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin Neurosci, 1999; 249 (Suppl 3): 1422.CrossRefGoogle ScholarPubMed
Brickman, A. M., Khan, U. A., Provenzano, F. A., et al., Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci, 2014; 17(12): 1798–803.CrossRefGoogle ScholarPubMed
Brouwer-Brolsma, E. M., de Groot, L. C., Vitamin D and cognition in older adults: an update of recent findings. Curr Opin Clin Nutr Metab Care, 2015; 18(1): 1116.CrossRefGoogle ScholarPubMed
Cansev, M., van Wijk, N., Turkyilmaz, M., et al., A specific multi-nutrient enriched diet enhances hippocampal cholinergic transmission in aged rats. Neurobiol Aging, 2015; 36(1): 344–51.CrossRefGoogle ScholarPubMed
Cassidy, A., Mukamal, K. J., Liu, L., et al., High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation, 2013; 127(2): 188–96.CrossRefGoogle Scholar
Cederholm, T., Palmblad, J., Are omega-3 fatty acids options for prevention and treatment of cognitive decline and dementia? Curr Opin Clin Nutr Metab Care, 2010; 13(2): 150–5.CrossRefGoogle ScholarPubMed
Chakrabarti, S., Munshi, S., Banerjee, K., et al., Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis, 2011; 2(3): 242–56.Google ScholarPubMed
Chang, C. Y., Ke, D. S., Chen, J. Y., Essential fatty acids and human brain. Acta Neurol Taiwan, 2009; 18(4): 231–41.Google ScholarPubMed
Chang, P., Terbach, N., Plant, N., et al., Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology, 2013; 69: 105–14.CrossRefGoogle ScholarPubMed
Chang, P., Augustin, K., Boddum, K., et al., Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain, 2015: 113.Google ScholarPubMed
Cherbuin, N., Anstey, K. J., The Mediterranean diet is not related to cognitive change in a large prospective investigation: the PATH Through Life study. Am J Geriatr Psychiatry, 2012; 20(7): 635–9.CrossRefGoogle ScholarPubMed
Chouinard, J., Lavigne, E., Villeneuve, C., Weight loss, dysphagia, and outcome in advanced dementia. Dysphagia, 1998; 13(3): 151–5.CrossRefGoogle ScholarPubMed
Clarke, R., Smith, A. D., Jobst, K. A., et al., Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol, 1998; 55(11): 1449–55.CrossRefGoogle ScholarPubMed
Clarke, R., Bennett, D., Parish, S., et al., Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr, 2014; 100(2): 657–66.CrossRefGoogle Scholar
Conklin, S. M., Gianaros, P. J., Brown, S. M., et al., Long-chain omega-3 fatty acid intake is associated positively with corticolimbic gray matter volume in healthy adults. Neurosci Lett, 2007; 421(3): 209–12.CrossRefGoogle ScholarPubMed
Corona, G., Vauzour, D., Hercelin, J., et al., Phenolic acid intake, delivered via moderate champagne wine consumption, improves spatial working memory via the modulation of hippocampal and cortical protein expression/activation. Antioxid Redox Signal, 2013; 19(14): 1676–89.CrossRefGoogle ScholarPubMed
Cox, C. J., Choudhry, F., Peacey, E., et al., Dietary (−)-epicatechin as a potent inhibitor of betagamma-secretase amyloid precursor protein processing. Neurobiol Aging, 2015; 36(1): 178–87.CrossRefGoogle ScholarPubMed
Craft, S., Asthana, S., Schellenberg, G., et al., Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer's disease differ according to apolipoprotein-E genotype. Ann N Y Acad Sci, 2000; 903: 222–8.CrossRefGoogle ScholarPubMed
Dangour, A. D., Allen, E., Clarke, R., et al., A randomised controlled trial investigating the effect of vitamin B12 supplementation on neurological function in healthy older people: the Older People and Enhanced Neurological function (OPEN) study protocol [ISRCTN54195799]. Nutr J, 2011; 10: 22.CrossRefGoogle ScholarPubMed
Dashti, H. M., Al-Zaid, N. S., Mathew, T. C., et al., Long term effects of ketogenic diet in obese subjects with high cholesterol level. Mol Cell Biochem, 2006; 286(1–2): 19.CrossRefGoogle ScholarPubMed
de Jager, C. A., Oulhaj, A., Jacoby, R., et al., Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry, 2012; 27(6): 592600.CrossRefGoogle ScholarPubMed
de Lau, L. M., Smith, A. D., Refsum, H., et al., Plasma vitamin B12 status and cerebral white-matter lesions. J Neurol Neurosurg Psychiatry, 2009; 80(2): 149–57.CrossRefGoogle ScholarPubMed
de Waal, H., Stam, C. J., Lansbergen, M. M., et al., The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study. PLoS ONE, 2014; 9(1): e86558.CrossRefGoogle ScholarPubMed
DeKosky, S. T., Williamson, J. D., Fitzpatrick, A. L., et al., Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA, 2008; 300(19): 2253–62.CrossRefGoogle ScholarPubMed
Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., et al., Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal, 2013; 18(14): 1818–92.CrossRefGoogle ScholarPubMed
Di Castelnuovo, A., Costanzo, S., Bagnardi, V., et al., Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies. Arch Intern Med, 2006; 166(22): 2437–45.CrossRefGoogle ScholarPubMed
Douaud, G., Refsum, H., de Jager, C. A., et al., Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A, 2013; 110(23): 9523–8.CrossRefGoogle ScholarPubMed
Downer, B., Zanjani, F., Fardo, D. W., The relationship between midlife and late life alcohol consumption, APOE e4 and the decline in learning and memory among older adults. Alcohol Alcohol, 2014; 49(1): 1722.CrossRefGoogle Scholar
Dysken, M. W., Sano, M., Asthana, S., et al., Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA, 2014; 311(1): 3344.CrossRefGoogle ScholarPubMed
Engelborghs, S., Gilles, C., Ivanoiu, A., et al., Rationale and clinical data supporting nutritional intervention in Alzheimer's disease. Acta Clin Belg, 2014; 69(1): 1724.CrossRefGoogle ScholarPubMed
Estruch, R., Ros, E., Salas-Salvado, J., et al., Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med, 2013; 368(14): 1279–90.CrossRefGoogle ScholarPubMed
Feart, C., Alles, B., Merle, B., et al., Adherence to a Mediterranean diet and energy, macro-, and micronutrient intakes in older persons. J Physiol Biochem, 2012; 68(4): 691700.CrossRefGoogle ScholarPubMed
Feart, C., Samieri, C., Rondeau, V., et al., Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA, 2009; 302(6): 638–48.Google ScholarPubMed
Fjellstrom, C., Starkenberg, A., Wesslen, A., et al., To be a good food provider: an exploratory study among spouses of persons with Alzheimer's disease. Am J Alzheimers Dis Other Demen, 2010; 25(6): 521–6.CrossRefGoogle ScholarPubMed
Ford, A. H., Almeida, O. P., Effect of homocysteine lowering treatment on cognitive function: a systematic review and meta-analysis of randomized controlled trials. J Alzheimers Dis, 2012; 29(1): 133–49.CrossRefGoogle ScholarPubMed
Freund-Levi, Y., Eriksdotter-Jonhagen, M., Cederholm, T., et al., Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol, 2006; 63(10): 1402–8.CrossRefGoogle ScholarPubMed
Frisardi, V., Panza, F., Seripa, D., et al., Nutraceutical properties of Mediterranean diet and cognitive decline: possible underlying mechanisms. J Alzheimers Dis, 2010; 22(3): 715–40.CrossRefGoogle ScholarPubMed
Gillette Guyonnet, S., Abellan Van Kan, G., Alix, E., et al., IANA (International Academy on Nutrition and Aging) Expert Group: weight loss and Alzheimer's disease. J Nutr Health Aging, 2007; 11(1): 3848.Google Scholar
Gomes, F., Emery, P. W., Weekes, C. E., Risk of Malnutrition Is an Independent Predictor of Mortality, Length of Hospital Stay, and Hospitalization Costs in Stroke Patients. J Stroke Cerebrovasc Dis, 2016; 25(4): 799806.CrossRefGoogle ScholarPubMed
Gomez-Pinilla, F., Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci, 2008; 9(7): 568–78.CrossRefGoogle ScholarPubMed
Grundman, M., Corey-Bloom, J., Jernigan, T., et al., Low body weight in Alzheimer's disease is associated with mesial temporal cortex atrophy. Neurology, 1996; 46(6): 1585–91.CrossRefGoogle ScholarPubMed
Guerchet, M., Prina, M., Prince, M., et al. Nutrition and Dementia. A Review of Available Research. London: Alzheimer's Disease International (ADI).Google Scholar
Gustafson, D. R., Clare Morris, M., Scarmeas, N., et al., New perspectives on Alzheimer's disease and nutrition. J Alzheimers Dis, 2015; 46(4): 1111–27.CrossRefGoogle ScholarPubMed
Hankey, G. J., Ford, A. H., Yi, Q., Eikelboom, J. W., et al., Effect of B vitamins and lowering homocysteine on cognitive impairment in patients with previous stroke or transient ischemic attack: a prespecified secondary analysis of a randomized, placebo-controlled trial and meta-analysis. Stroke, 2013; 44(8): 2232–9.CrossRefGoogle ScholarPubMed
Harrison, F. E., A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer's disease. J Alzheimers Dis, 2012; 29(4): 711–26.CrossRefGoogle ScholarPubMed
Hartman, A. L., Gasior, M., Vining, E. P., et al., The neuropharmacology of the ketogenic diet. Pediatr Neurol, 2007; 36(5): 281–92.CrossRefGoogle ScholarPubMed
Henderson, S., Moore, N., Lee, E., et al., Do the malnutrition universal screening tool (MUST) and Birmingham nutrition risk (BNR) score predict mortality in older hospitalised patients? BMC Geriatr, 2008; 8: 26.CrossRefGoogle Scholar
Hooper, L., Kroon, P. A., Rimm, E. B., et al., Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr, 2008; 88(1): 3850.CrossRefGoogle ScholarPubMed
Huffman, J., Kossoff, E. H., State of the ketogenic diet(s) in epilepsy. Curr Neurol Neurosci Rep, 2006; 6(4): 332–40.CrossRefGoogle ScholarPubMed
Imhof, A., Froehlich, M., Brenner, H., et al., Effect of alcohol consumption on systemic markers of inflammation. Lancet, 2001; 357(9258): 763–7.CrossRefGoogle ScholarPubMed
Jansen, D., Zerbi, V., Arnoldussen, I. A., et al., Effects of specific multi-nutrient enriched diets on cerebral metabolism, cognition and neuropathology in AbetaPPswe-PS1dE9 mice. PLoS One, 2013; 8(9): e75393.CrossRefGoogle ScholarPubMed
Jansen, D., Zerbi, V., Janssen, C. I., et al., Impact of a multi-nutrient diet on cognition, brain metabolism, hemodynamics, and plasticity in apoE4 carrier and apoE knockout mice. Brain Struct Funct, 2014; 219(5): 1841–68.Google ScholarPubMed
Janssen, C. I., Kiliaan, A. J., Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res, 2014; 53: 117.CrossRefGoogle ScholarPubMed
Joshi, Y. B., Pratico, D., Vitamin E in aging, dementia, and Alzheimer's disease. Biofactors, 2012; 38(2): 90–7.CrossRefGoogle ScholarPubMed
Kamphuis, P. J., Scheltens, P., Can nutrients prevent or delay onset of Alzheimer's disease? J Alzheimers Dis, 2010; 20(3): 765–75.CrossRefGoogle ScholarPubMed
Kanowski, S., Herrmann, W. M., Stephan, K., et al., Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Phytomedicine, 1997; 4(1): 313.CrossRefGoogle ScholarPubMed
Kastorini, C. M., Milionis, H. J., Esposito, K., et al., The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol, 2011; 57(11): 1299–313.CrossRefGoogle ScholarPubMed
Kesse-Guyot, E., Andreeva, V. A., Jeandel, C., et al., Alcohol consumption in midlife and cognitive performance assessed 13 years later in the SU.VI.MAX 2 cohort. PLoS One, 2012; 7(12): e52311.CrossRefGoogle ScholarPubMed
Krikorian, R., Eliassen, J. C., Boespflug, E. L., et al., Improved cognitive-cerebral function in older adults with chromium supplementation. Nutr Neurosci, 2010; 13(3): 116–22.CrossRefGoogle ScholarPubMed
Kuhla, A., Lange, S., Holzmann, C., et al., Lifelong caloric restriction increases working memory in mice. PLoS One, 2013; 8(7): e68778.CrossRefGoogle ScholarPubMed
Kyle, U. G., Kossovsky, M. P., Karsegard, V. L., et al., Comparison of tools for nutritional assessment and screening at hospital admission: a population study. Clin Nutr, 2006; 25(3): 409–17.CrossRefGoogle ScholarPubMed
Lamport, D. J., Pal, D., Moutsiana, C., et al., The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl), 2015; 232(17): 3227–34.CrossRefGoogle Scholar
Lang, I., Wallace, R. B., Huppert, F. A., et al., Moderate alcohol consumption in older adults is associated with better cognition and well-being than abstinence. Age Ageing, 2007; 36(3): 256–61.CrossRefGoogle ScholarPubMed
Langlois, F., Vu, T. T., Kergoat, M. J., et al., The multiple dimensions of frailty: physical capacity, cognition, and quality of life. Int Psychogeriatr, 2012; 24(9): 1429–36.CrossRefGoogle ScholarPubMed
Langmore, S. E., Skarupski, K. A., Park, P. S., et al., Predictors of aspiration pneumonia in nursing home residents. Dysphagia, 2002; 17(4): 298307.CrossRefGoogle ScholarPubMed
Laudisio, A., Milaneschi, Y., Bandinelli, S., et al., Chewing problems are associated with depression in the elderly: results from the InCHIANTI study. Int J Geriatr Psychiatry, 2014; 29(3): 236–44.CrossRefGoogle ScholarPubMed
Le Bars, P. L., Katz, M. M., Berman, N., et al., A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA, 1997; 278(16): 1327–32.CrossRefGoogle ScholarPubMed
Leroi, I., McDonald, K., Pantula, H., et al., Cognitive impairment in Parkinson disease: impact on quality of life, disability, and caregiver burden. J Geriatr Psychiatry Neurol, 2012; 25(4): 208–14.CrossRefGoogle ScholarPubMed
Li, W., Prakash, R., Chawla, D., et al., Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am J Physiol Regul Integr Comp Physiol, 2013; 304(11): R1001–8.CrossRefGoogle ScholarPubMed
Lim, S. L., Ong, K. C., Chan, Y. H., et al., Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin Nutr, 2012; 31(3): 345–50.CrossRefGoogle Scholar
Llorach, R., Garcia-Aloy, M., Tulipani, S., et al., Nutrimetabolomic strategies to develop new biomarkers of intake and health effects. J Agric Food Chem, 2012; 60(36): 8797–808.CrossRefGoogle ScholarPubMed
Lyu, J., Lee, S. H., Gender differences in the link between excessive drinking and domain-specific cognitive functioning among older adults. J Aging Health, 2012; 24(8): 1380–98.CrossRefGoogle ScholarPubMed
Macready, A. L., Butler, L. T., Kennedy, O. B., et al., Cognitive tests used in chronic adult human randomised controlled trial micronutrient and phytochemical intervention studies. Nutr Res Rev, 2010; 23(2): 200–29.CrossRefGoogle ScholarPubMed
Malafarina, V., Uriz-Otano, F., Gil-Guerrero, L., et al., The anorexia of ageing: physiopathology, prevalence, associated comorbidity and mortality. A systematic review. Maturitas, 2013; 74(4): 293302.CrossRefGoogle ScholarPubMed
Malouf, R., Areosa Sastre, A., Vitamin B12 for cognition. Cochrane Database Syst Rev, 2003; (3): CD004326.Google ScholarPubMed
Mangialasche, F., Solomon, A., Kareholt, I., et al., Serum levels of vitamin E forms and risk of cognitive impairment in a Finnish cohort of older adults. Exp Gerontol, 2013; 48(12): 1428–35.CrossRefGoogle Scholar
Mangialasche, F., Xu, W., Kivipelto, M., et al., Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging, 2011; 33(10): 2282–90.Google ScholarPubMed
Martin, B., Mattson, M. P., Maudsley, S., Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev, 2006; 5(3): 332–53.CrossRefGoogle ScholarPubMed
Martinez-Lapiscina, E. H., Clavero, P., Toledo, E., et al., Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry, 2013; 84(12): 1318–25.CrossRefGoogle ScholarPubMed
Martinez-Lapiscina, E. H., Clavero, P., Toledo, E.,et al., Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging, 2013; 17(6): 544–52.CrossRefGoogle ScholarPubMed
Maruszak, A., Pilarski, A., Murphy, T., et al., Hippocampal neurogenesis in Alzheimer's disease: is there a role for dietary modulation? J Alzheimers Dis, 2014; 38(1): 1138.CrossRefGoogle Scholar
Mateus-Pinheiro, A., Pinto, L., Bessa, J. M., et al., Sustained remission from depressive-like behavior depends on hippocampal neurogenesis. Transl Psychiatry, 2013; 1: e210.CrossRefGoogle Scholar
Mattson, M. P., Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab, 2012; 16(6): 706–22.CrossRefGoogle Scholar
Mazereeuw, G., Lanctot, K. L., Chau, S. A., et al., Effects of omega-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol Aging, 2012; 33(7): 1482.e171482.e29.CrossRefGoogle ScholarPubMed
McCullough, M. L., Peterson, J. J., Patel, R., et al., Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr, 2012; 95(2): 454–64.CrossRefGoogle Scholar
Middleton, L. E., Yaffe, K., Promising strategies for the prevention of dementia. Arch Neurol, 2009; 66(10): 1210–15.CrossRefGoogle ScholarPubMed
Moorthy, D., Peter, I., Scott, T. M., et al., Status of vitamins B-12 and B-6 but not of folate, homocysteine, and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults. J Nutr, 2012; 142(8): 1554–60.CrossRefGoogle Scholar
Morris, M. C., Evans, D. A., Tangney, C. C., et al., Fish consumption and cognitive decline with age in a large community study. Arch Neurol, 2005; 62(12): 1849–53.CrossRefGoogle Scholar
Murphy, T., Thuret, S., The systemic milieu as a mediator of dietary influence on stem cell function during ageing. Ageing Res Rev, 2014; 19: 5364.CrossRefGoogle ScholarPubMed
Murphy, T., Dias, G. P., Thuret, S., Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast, 2014; 2014: 132.CrossRefGoogle ScholarPubMed
Nooyens, A. C., Bueno-de-Mesquita, H. B., van Gelder, B. M., et al., Consumption of alcoholic beverages and cognitive decline at middle age: the Doetinchem Cohort Study. Br J Nutr, 2014; 111(4): 715–23.CrossRefGoogle ScholarPubMed
Nuttall, J. R., Oteiza, P. I., Zinc and the aging brain. Genes Nutr, 2014; 9(1): 379.CrossRefGoogle ScholarPubMed
Obeid, R., Herrmann, W., Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett, 2006; 580(13): 29943005.CrossRefGoogle ScholarPubMed
Olde Rikkert, M. G., Verhey, F. R., Blesa, R., et al., Tolerability and safety of Souvenaid in patients with mild Alzheimer's disease: results of multi-center, 24-week, open-label extension study. J Alzheimers Dis, 2015; 44(2): 471–80.CrossRefGoogle ScholarPubMed
O'Leary, F., Allman-Farinelli, M., Samman, S., Vitamin B12 status, cognitive decline and dementia: a systematic review of prospective cohort studies. Br J Nutr, 2012; 108(11): 1948–61.CrossRefGoogle ScholarPubMed
Olofsson, J. K., Nordin, S., Wiens, S., et al., Odor identification impairment in carriers of ApoE-varepsilon4 is independent of clinical dementia. Neurobiol Aging, 2010; 31(4): 567–77.CrossRefGoogle ScholarPubMed
Ozkalkanli, M. Y., Ozkalkanli, D. T., Katircioglu, K., et al., Comparison of tools for nutrition assessment and screening for predicting the development of complications in orthopedic surgery. Nutr Clin Pract, 2009; 24(2): 274–80.CrossRefGoogle ScholarPubMed
Palop, J. J., Mucke, L., Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol, 2009; 66(4): 435–40.CrossRefGoogle ScholarPubMed
Panza, F., Solfrizzi, V., Barulli, M. R., et al., Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. J Nutr Health Aging, 2015; 19(3): 313–28.CrossRefGoogle ScholarPubMed
Paoli, A., Cenci, L. and Grimaldi, K. A., et al., Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr, 2013; 67(8): 789–96.CrossRefGoogle ScholarPubMed
Paoli, A., Cenci, L., Grimaldi, K. A., Effect of ketogenic Mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees. Nutr J, 2011; 10(112): 18.CrossRefGoogle ScholarPubMed
Park, S. K., Prolla, T. A., Lessons learned from gene expression profile studies of aging and caloric restriction. Ageing Res Rev, 2005; 4(1): 5565.CrossRefGoogle ScholarPubMed
Peterson, D. W., George, R. C., Scaramozzino, F., et al., Cinnamon extracts inhibit Tau protein aggregation associated with Alzheimer's disease in vitro. J Alzheimers Disease, 2009; 17(3): 585–96.Google ScholarPubMed
Polidori, M. C., Pratico, D., Mangialasche, F., et al., High fruit and vegetable intake is positively correlated with antioxidant status and cognitive performance in healthy subjects. J Alzheimers Dis, 2009; 17(4): 921–7.CrossRefGoogle ScholarPubMed
Pottala, J. V., Yaffe, K., Robinson, J. G., et al., Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI Study. Neurology, 2014; 82(5): 435–42.CrossRefGoogle ScholarPubMed
Psaltopoulou, T., Sergentanis, T. N., Panagiotakos, D. B., et al., Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol, 2013; 74(4): 580–91.CrossRefGoogle ScholarPubMed
Putwatana, P., Reodecha, P., Sirapo-ngam, Y., et al., Nutrition screening tools and the prediction of postoperative infectious and wound complications: comparison of methods in presence of risk adjustment. Nutrition, 2005; 21(6): 691–7.CrossRefGoogle ScholarPubMed
Rafnsson, S. B., Dilis, V., Trichopoulou, A., Antioxidant nutrients and age-related cognitive decline: a systematic review of population-based cohort studies. Eur J Nutr, 2013; 52(6): 1553–67.CrossRefGoogle ScholarPubMed
Ramsay, S. E., Whincup, P. H., Watt, R. G., et al., Burden of poor oral health in older age: findings from a population-based study of older British men. BMJ Open, 2015; 5(12): e009476.CrossRefGoogle ScholarPubMed
Regan, C. O., Kearney, P. M., Savva, G. M., et al., Age and sex differences in prevalence and clinical correlates of depression: first results from the Irish Longitudinal Study on Ageing. Int J Geriatr Psychiatry, 2013; 28(12): 1280–7.CrossRefGoogle ScholarPubMed
Reger, M. A., Henderson, S. T., Hale, C., et al., Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging, 2004; 25(3): 311–14.CrossRefGoogle ScholarPubMed
Rendeiro, C., Vauzour, D., Kean, R. J., et al., Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology, 2012; 223(3): 319330.CrossRefGoogle ScholarPubMed
Rendeiro, C., Vauzour, D., Rattray, M., et al., Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One, 2013; 8(5): e63535.CrossRefGoogle ScholarPubMed
Ritchie, S. J., Bates, T. C., Corley, J., et al., Alcohol consumption and lifetime change in cognitive ability: a gene x environment interaction study. Age (Dordr), 2014; 36(3): 9638.CrossRefGoogle Scholar
Rodriguez-Mateos, A., Rendeiro, C., Bergillos-Meca, T., et al., Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am J Clin Nutr, 2013; 98(5): 1179–91.CrossRefGoogle ScholarPubMed
Roussel, A. M., Andriollo-Sanchez, M., Ferry, M., et al., Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br J Nutr, 2007; 98(2): 326–31.CrossRefGoogle ScholarPubMed
Sabia, S., Elbaz, A., Britton, A., et al., Alcohol consumption and cognitive decline in early old age. Neurology, 2014; 82(4): 332–9.CrossRefGoogle ScholarPubMed
Sachdev, P. S., Valenzuela, M., Wang, X. L., et al., Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology, 2002; 58(10): 1539–41.CrossRefGoogle ScholarPubMed
Salas-Salvado, J., Bullo, M., Babio, N., et al., Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care, 2011; 34(1): 1419.CrossRefGoogle ScholarPubMed
Samieri, C., Maillard, P., Crivello, F., et al., Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology, 2012; 79(7): 642–50.CrossRefGoogle ScholarPubMed
Samieri, C., Lorrain, S., Buaud, B., et al., Relationship between diet and plasma long-chain n-3 PUFAs in older people: impact of apolipoprotein E genotype. J Lipid Res, 2013; 54(9): 2559–67.CrossRefGoogle ScholarPubMed
Scalbert, A., Manach, C., Morand, C., et al., Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr, 2005; 45(4): 287306.CrossRefGoogle ScholarPubMed
Scarmeas, N., Stern, Y., Mayeux, R., et al., Mediterranean diet and mild cognitive impairment. Arch Neurol, 2009; 66(2): 216–25.Google ScholarPubMed
Scarmeas, N., Stern, Y., Tang, M. X., et al., Mediterranean diet and risk for Alzheimer's disease. Ann Neurol, 2006; 59(6): 912–21.CrossRefGoogle ScholarPubMed
Scheltens, P., Twisk, J. W., Blesa, R., et al., Efficacy of Souvenaid in mild Alzheimer's disease: results from a randomized, controlled trial. J Alzheimers Dis, 2012; 31(1): 225–36.CrossRefGoogle ScholarPubMed
Schlogl, M., Holick, M. F., Vitamin D and neurocognitive function. Clin Interv Aging, 2014; 9: 559–68.Google ScholarPubMed
Schroeter, H., Heiss, C., Balzer, J., et al., (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A, 2006; 103(4): 1024–9.CrossRefGoogle ScholarPubMed
Schroeter, H., Heiss, C., Spencer, J. P., et al., Recommending flavanols and procyanidins for cardiovascular health: current knowledge and future needs. Mol Aspects Med, 2010; 31(6): 546–57.CrossRefGoogle ScholarPubMed
Seshadri, S., Beiser, A., Selhub, J., et al., Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med, 2002; 346(7): 476–83.CrossRefGoogle ScholarPubMed
Shah, R. C., Kamphuis, P. J., Leurgans, S., et al., The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer's disease. Alzheimers Res Ther, 2013; 5(6): 19.CrossRefGoogle ScholarPubMed
Shah, R. C. et al., Medical foods for Alzheimer's disease. Drugs Aging, 2011; 28(6): 421–8.CrossRefGoogle ScholarPubMed
Shatenstein, B., Barberger-Gateau, P., Mecocci, P., Prevention of age-related cognitive decline: which strategies, when, and for whom? J Alzheimers Dis, 2015; 48(1): 3553.CrossRefGoogle Scholar
Silva, P., Kergoat, M. J., Shatenstein, B., Challenges in managing the diet of older adults with early-stage Alzheimer dementia: a caregiver perspective. J Nutr Health Aging, 2013; 17(2): 142–7.CrossRefGoogle ScholarPubMed
Singh, B., Parsaik, A. K., Mielke, M. M., et al., Association of Mediterranean diet with mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. J Alzheimers Dis, 2014; 39(2): 271–82.CrossRefGoogle ScholarPubMed
Sinn, N., Milte, C. M., Street, S. J., et al., Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr, 2012; 107(11): 1682–93.CrossRefGoogle Scholar
Smith, A. D., Smith, S. M., de Jager, C. A., et al., Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One, 2010; 5(9): e12244.CrossRefGoogle Scholar
Smith, K. L., Greenwood, C. E., Weight loss and nutritional considerations in Alzheimer disease. J Nutr Elder, 2008; 27(3–4): 381403.CrossRefGoogle ScholarPubMed
Snitz, B. E., O'Meara, E. S., Carlson, M. C., et al., Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA, 2009; 302(24): 2663–70.CrossRefGoogle ScholarPubMed
Snyder, J. S., Soumier, A., Brewer, M., et al., Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 2011; 476(7361): 458–61.CrossRefGoogle ScholarPubMed
Sofi, F., Abbate, R., Gensini, G. F., et al., Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr, 2010; 92(5): 1189–96.CrossRefGoogle Scholar
Sorensen, J., Kondrup, J., Prokopowicz, J., et al., EuroOOPS: an international, multicentre study to implement nutritional risk screening and evaluate clinical outcome. Clin Nutr, 2008; 27(3): 340–9.CrossRefGoogle ScholarPubMed
Spencer, J. P., Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc Nutr Soc, 2008; 67(2): 238–52.CrossRefGoogle ScholarPubMed
Spencer, J. P., The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev, 2009; 38(4): 1152–61.CrossRefGoogle ScholarPubMed
Stampfer, M. J., Kang, J. H., Chen, J., et al., Effects of moderate alcohol consumption on cognitive function in women. N Engl J Med, 2005; 352(3): 245–53.CrossRefGoogle ScholarPubMed
Stanciu, I., Larsson, M., Nordin, S., et al., Olfactory impairment and subjective olfactory complaints independently predict conversion to dementia: a longitudinal, population-based study. J Int Neuropsychol Soc, 2014; 20(2): 209–17.CrossRefGoogle ScholarPubMed
Stangl, D., Thuret, S., Impact of diet on adult hippocampal neurogenesis. Genes Nutr, 2009; 4(4): 271–82.CrossRefGoogle ScholarPubMed
Steinman, M. Q., Crean, K. K., Trainor, B. C., Photoperiod interacts with food restriction in performance in the Barnes maze in female California mice. Eur J Neurosci, 2011; 33(2): 361–70.CrossRefGoogle ScholarPubMed
Stratton, R. J., King, C. L., Stroud, M. A., et al., “Malnutrition Universal Screening Tool” predicts mortality and length of hospital stay in acutely ill elderly. Br J Nutr, 2006; 95(2): 325–30.CrossRefGoogle ScholarPubMed
Sydenham, E., Dangour, A. D., Lim, W. S., Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst Rev, 2012; 6: CD005379.Google Scholar
Tan, Z. S., Harris, W. S., Beiser, A. S., et al., Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging. Neurology, 2012; 78(9): 658–64.CrossRefGoogle ScholarPubMed
Tangney, C. C., Kwasny, M. J., Li, H., et al., Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population. Am J Clin Nutr, 2011a; 93(3): 601–7.CrossRefGoogle Scholar
Tangney, C. C., Aggarwal, N. T., Li, H., et al., Vitamin B12, cognition, and brain MRI measures: a cross-sectional examination. Neurology, 2011b; 77(13): 1276–82.CrossRefGoogle Scholar
Thomas, P., Lalloue, F., Preux, P. M., et al., Dementia patients caregivers quality of life: the PIXEL study. Int J Geriatr Psychiatry, 2006; 21(1): 50–6.CrossRefGoogle ScholarPubMed
Titova, O. E., Sjogren, P., Brooks, S. J., et al., Dietary intake of eicosapentaenoic and docosahexaenoic acids is linked to gray matter volume and cognitive function in elderly. Age (Dordr), 2013; 35(4): 1495–505.CrossRefGoogle ScholarPubMed
Trichopoulou, A., Costacou, T., Bamia, C., et al., Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med, 2003; 348(26): 2599–608.CrossRefGoogle Scholar
Tsivgoulis, G., Judd, S., Letter, A. J., et al., Adherence to a Mediterranean diet and risk of incident cognitive impairment. Neurology, 2013; 80(18): 1684–92.CrossRefGoogle ScholarPubMed
Usoro, O. B., Mousa, S. A., Vitamin E forms in Alzheimer's disease: a review of controversial and clinical experiences. Crit Rev Food Sci Nutr, 2010; 50(5): 414–19.CrossRefGoogle ScholarPubMed
Vakhapova, V., Cohen, T., Richter, Y., et al., Phosphatidylserine containing omega-3 Fatty acids may improve memory abilities in nondemented elderly individuals with memory complaints: results from an open-label extension study. Dement Geriatr Cogn Disord, 2014; 38(1–2): 3945.CrossRefGoogle ScholarPubMed
Valls-Pedret, C., Sala-Vila, A., Serra-Mir, M., et al., Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med, 2015; 175(7): 1094–103.CrossRefGoogle ScholarPubMed
van Dam, R. M., Naidoo, N., Landberg, R., Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr Opin Lipidol, 2013; 24(1): 2533.CrossRefGoogle ScholarPubMed
van de Rest, O., Geleijnse, J. M., Kok, F. J., et al., Effect of fish-oil supplementation on mental well-being in older subjects: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr, 2008; 88(3): 706–13.CrossRefGoogle ScholarPubMed
van de Rest, O., Spiro, A., 3rd, Krall-Kaye, E., et al., Intakes of (n-3) fatty acids and fatty fish are not associated with cognitive performance and 6-year cognitive change in men participating in the Veterans Affairs Normative Aging Study. J Nutr, 2009; 139(12): 2329–36.CrossRefGoogle Scholar
van de Rest, O., van Hooijdonk, L. W., Doets, E., et al., B vitamins and n-3 fatty acids for brain development and function: review of human studies. Ann Nutr Metab, 2012; 60(4): 272–92.CrossRefGoogle ScholarPubMed
van Wijk, N., Broersen, L. M., de Wilde, M. C., et al., Targeting synaptic dysfunction in Alzheimer's disease by administering a specific nutrient combination. J Alzheimers Dis, 2014; 38(3): 459–79.Google ScholarPubMed
Vandewoude, M., et al., Healthy brain ageing and cognition: nutritional factors. European Geriatric Medicine, 2016; 7: 7785.CrossRefGoogle Scholar
Vanhanen, M., Kivipelto, M., Koivisto, K., et al., APOE-epsilon4 is associated with weight loss in women with AD: a population-based study. Neurology, 2001; 56(5): 655–9.CrossRefGoogle ScholarPubMed
Vauzour, D., Camprubi-Robles, M., Miquel-Kergoat, S., et al., Nutrition for the ageing brain: towards evidence for an optimal diet. Ageing Res Rev, 2016; 35: 222–40.Google ScholarPubMed
Vellas, B., Coley, N., Ousset, P. J., et al., Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer's disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol, 2012; 11(10): 851–9.CrossRefGoogle ScholarPubMed
Vercambre, M. N., Grodstein, F., Berr, C., et al., Mediterranean diet and cognitive decline in women with cardiovascular disease or risk factors. J Acad Nutr Diet, 2012; 112(6): 816–23.CrossRefGoogle ScholarPubMed
Virtaa, J. J., Jarvenpaa, T., Heikkila, K., et al., Midlife alcohol consumption and later risk of cognitive impairment: a twin follow-up study. J Alzheimers Dis, 2010; 22(3): 939–48.CrossRefGoogle ScholarPubMed
Virtanen, J. K., Siscovick, D. S., Longstreth, W. T., et al., Fish consumption and risk of subclinical brain abnormalities on MRI in older adults. Neurology, 2008; 71(6): 439–46.CrossRefGoogle ScholarPubMed
Vogiatzoglou, A., Refsum, H., Johnston, C., et al., Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology, 2008; 71(11): 826–32.CrossRefGoogle ScholarPubMed
Volkert, D., Chourdakis, M., Faxen-Irving, G., et al., ESPEN guidelines on nutrition in dementia. Clin Nutr, 2015; 34(6): 1052–73.CrossRefGoogle ScholarPubMed
Walker, J. G., Batterham, P. J., Mackinnon, A. J., et al., Oral folic acid and vitamin B-12 supplementation to prevent cognitive decline in community-dwelling older adults with depressive symptoms – the Beyond Ageing Project: a randomized controlled trial. Am J Clin Nutr, 2012; 95(1): 194203.CrossRefGoogle ScholarPubMed
Wang, X., Wang, W., Li, L., et al., Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta, 2014; 1842(8): 1240–7.Google ScholarPubMed
Wengreen, H., Munger, R. G., Cutler, A., et al., Prospective study of Dietary Approaches to Stop Hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging. Am J Clin Nutr, 2013; 98(5): 1263–71.CrossRefGoogle Scholar
Wetzels, R. B., Zuidema, S. U., de Jonghe, J. F., et al., Determinants of quality of life in nursing home residents with dementia. Dement Geriatr Cogn Disord, 2010; 29(3): 189–97.CrossRefGoogle ScholarPubMed
Wiesmann, M., Jansen, D., Zerbi, V., et al., Improved spatial learning strategy and memory in aged Alzheimer AbetaPPswe/PS1dE9 mice on a multi-nutrient diet. J Alzheimers Dis, 2013; 37(1): 233–45.CrossRefGoogle ScholarPubMed
Williams, R. J., Spencer, J. P., Rice-Evans, C., Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med., 2004; 36(7): 838–49.CrossRefGoogle ScholarPubMed
Williams, C. M., El Mohsen, M. A., Vauzour, D., et al., Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med, 2008; 45(3): 295305.CrossRefGoogle ScholarPubMed
Williams, R. J., Spencer, J. P., Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med, 2012; 52(1): 3545.CrossRefGoogle ScholarPubMed
Williamson, R., McNeilly, A., Sutherland, C., Insulin resistance in the brain: an old-age or new-age problem? Biochem Pharmacol, 2012; 84(6): 737–45.CrossRefGoogle ScholarPubMed
Witte, A. V., Kerti, L., Hermannstadter, H. M., et al., Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex, 2013; 24(11): 3059–68.Google ScholarPubMed
World Health Organization. Dementia: A Public Health Priority, 2012. Geneva, Switzerland: WHO Press.Google Scholar
Wu, A., Ying, Z., Gomez-Pinilla, F., Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience, 2008a; 155(3): 751–9.CrossRefGoogle ScholarPubMed
Wu, P., Shen, Q., Dong, S., et al., Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging, 2008b; 29(10): 1502–11.CrossRefGoogle ScholarPubMed
Wurtman, R. J., Cansev, M., Sakamoto, T., et al., Use of phosphatide precursors to promote synaptogenesis. Annu Rev Nutr, 2009; 29: 5987.CrossRefGoogle ScholarPubMed
Wurtman, R. J., Synapse formation and cognitive brain development: effect of docosahexaenoic acid and other dietary constituents. Metabolism, 2008; 57 (Suppl 2): S610.CrossRefGoogle ScholarPubMed
Yassa, M. A., Lacy, J. W., Stark, S. M., et al., Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 2011; 21(9): 968–79.CrossRefGoogle ScholarPubMed
Yilmaz, N., Vural, H., Yilmaz, M., et al., Calorie restriction modulates hippocampal NMDA receptors in diet-induced obese rats. J Recept Signal Transduct Res, 2011; 31(3): 214–19.CrossRefGoogle ScholarPubMed
Yurko-Mauro, K., McCarthy, D., Rom, D., et al., Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement, 2010; 6(6): 456–64.CrossRefGoogle ScholarPubMed
Zainuddin, M. S., Thuret, S., Nutrition, adult hippocampal neurogenesis and mental health. British Medical Bulletin, 2012; 103(1): 25.CrossRefGoogle ScholarPubMed
Zamora-Ros, R., Rabassa, M., Llorach, R., et al., Application of dietary phenolic biomarkers in epidemiology: past, present, and future. J Agric Food Chem, 2012; 60(27): 6648–57.CrossRefGoogle ScholarPubMed
Zamora-Ros, R., Touillaud, M., Rothwell, J. A., et al., Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits. Am J Clin Nutr, 2014; 100(1): 1126.CrossRefGoogle Scholar
Zanotta, D., Puricelli, S., Bonoldi, G., Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: a noncomparative, exploratory clinical study. Neuropsychiatr Dis Treat, 2014; 10: 225–30.Google ScholarPubMed
Zerbi, V., Jansen, D., Wiesmann, M., et al., Multinutrient diets improve cerebral perfusion and neuroprotection in a murine model of Alzheimer's disease. Neurobiol Aging, 2014; 35(3): 600–13.CrossRefGoogle Scholar

References

Abbatecola, A. M., Cherubini, A., Guralnik, J. M., et al. Plasma polyunsaturated fatty acids and age-related physical performance decline. Rejuvenation Res 2009; 12: 2532.CrossRefGoogle ScholarPubMed
Annweiler, C., Schott, A. M., Berrut, G., et al. Vitamin D-related changes in physical performance: a systematic review. J Nutr Health Aging 2009; 13: 893–98.CrossRefGoogle ScholarPubMed
Bauer, J. M., Diekmann, R. Protein and older persons. Clin Geriatr Med 2015; 31: 327–38.CrossRefGoogle ScholarPubMed
Bauer, J., Biolo, G., Cederholm, T., et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 2013; 14: 542–59.CrossRefGoogle ScholarPubMed
Bauer, J. M., Verlaan, S., Bautmans, I., et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Directors Assoc 2015; 16: 740–7.CrossRefGoogle ScholarPubMed
Baumgartner, R. N., Wayne, S. J., Waters, D. L., et al. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obesity Research 2004; 12: 19952004.CrossRefGoogle ScholarPubMed
Beasley, J. M., Wertheim, B. C., LaCroix, A. Z., et al. Biomarker-calibrated protein intake and physical function in the Women's Health Initiative. J Am Geriatr Soc 2013; 61: 1863–71.CrossRefGoogle ScholarPubMed
Beaudart, C., Buckinx, F., Rabenda, V., et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 2014; 99: 4336–45.CrossRefGoogle Scholar
Bischoff-Ferrari, H. A., Borchers, M., Gudat, F., et al. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Mineral Res 2004; 19: 265–9.CrossRefGoogle ScholarPubMed
Bischoff-Ferrari, H. A., Dawson-Hughes, B., Staehelin, H. B., et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ (Clin Res ed.) 2009; 339: b3692.CrossRefGoogle ScholarPubMed
Bischoff-Ferrari, H. A., Dawson-Hughes, B., Stocklin, E., et al. Oral supplementation with 25(OH)D3 versus vitamin D3: effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. J Bone Mineral Res 2012; 27: 160–9.CrossRefGoogle ScholarPubMed
Bollwein, J., Diekmann, R., Kaiser, M. J., et al. Distribution but not amount of protein intake is associated with frailty: a cross-sectional investigation in the region of Nurnberg. Nutr J 2013; 12: 109.CrossRefGoogle Scholar
Bolzetta, F., Veronese, N., de Rui, M., et al. Are the recommended dietary allowances for vitamins appropriate for elderly people? J Acad Nutr Diet 2015; 115: 1789–97.CrossRefGoogle ScholarPubMed
Casas-Agustench, P., Cherubini, A., Andres-Lacueva, C. Lipids and physical function in older adults. Curr Opin Clin Nutr Metab Care 2017; 20: 1625.CrossRefGoogle ScholarPubMed
Chernoff, R. Micronutrient requirements in older women. Am J Clin Nutr 2005; 81: 1240S–5S.CrossRefGoogle ScholarPubMed
Collins, J., Longhurst, G., Roschel, H., et al. Resistance training and co-supplementation with creatine and protein in older subjects with frailty. The Journal of Frailty & Aging 2016; 5: 126–34.Google ScholarPubMed
Delmonico, M. J., Harris, T. B., Visser, M., et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. The American Journal of Clinical Nutrition 2009; 90: 1579–85.CrossRefGoogle ScholarPubMed
Deutz, , Nicolaas, E. P., Bauer, J. M., Barazzoni, R., et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 2014; 33: 929–36.CrossRefGoogle ScholarPubMed
Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. www.iom.edu/Reports/2002/Dietary-Reference-Intakes-for-Energy-Carbohydrate-Fiber-Fat-Fatty-Acids-Cholesterol-Protein-and-Amino-Acids.aspx (accessed December 16, 2014).Google Scholar
Dillon, E. L., Sheffield-Moore, M., Paddon-Jones, D., et al. Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J Clin Endocrinol Metab 2009; 94: 1630–7.CrossRefGoogle ScholarPubMed
Ding, J., Kritchevsky, S. B., Newman, A. B., et al. Effects of birth cohort and age on body composition in a sample of community-based elderly. The American Journal of Clinical Nutrition 2007; 85: 405–10.CrossRefGoogle Scholar
FAO. Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation 2001. ftp://ftp.fao.org/docrep/fao/007/y5686e/y5686e00.pdf.Google Scholar
Gaillard, C., Alix, E., Salle, A., et al. Energy requirements in frail elderly people: a review of the literature. Clin Nutr 2007; 26: 1624.CrossRefGoogle ScholarPubMed
German Nutrition Society. New reference values for vitamin D. Ann Nutr Metab 2012: 241–6. www.dge.de/wissenschaft/referenzwerte/vitamin-d/https://www.dge.de/wissenschaft/referenzwerte/vitamin-d/.Google Scholar
Glendenning, P., Zhu, K., Inderjeeth, C., et al. Effects of three-monthly oral 150,000 IU cholecalciferol supplementation on falls, mobility, and muscle strength in older postmenopausal women: a randomized controlled trial. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 2012; 27: 170–6.CrossRefGoogle Scholar
Gryson, C., Walrand, S., Giraudet, C., et al. “Fast proteins” with a unique essential amino acid content as an optimal nutrition in the elderly: Growing evidence. Clin Nutr 2014; 33: 642–8.CrossRefGoogle ScholarPubMed
Houston, D. K., Nicklas, B. J., Ding, J., et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 2008; 87: 150–5.CrossRefGoogle ScholarPubMed
Houston, D. K., Tooze, J. A., Davis, C. C., et al. Serum 25-hydroxyvitamin D and physical function in older adults: the Cardiovascular Health Study All Stars. Journal of the American Geriatrics Society 2011; 59: 1793–801.CrossRefGoogle ScholarPubMed
Houston, D. K., Neiberg, R. H., Tooze, J. A., et al. Low 25-hydroxyvitamin D predicts the onset of mobility limitation and disability in community-dwelling older adults: the Health ABC Study. The Journals of Gerontology. Series A, Biological sciences and medical sciences 2013; 68: 181–7.CrossRefGoogle ScholarPubMed
Jeromson, S., Gallagher, I. J., Galloway, Stuart D. R., et al. Omega-3 fatty acids and skeletal muscle health. Marine Drugs 2015; 13: 69777004.CrossRefGoogle ScholarPubMed
Kirn, D. R., Koochek, A., Reid, K. F., et al. The vitality, independence, and vigor in the elderly 2 study (VIVE2): design and methods. Contemporary Clinical Trials 2015; 43: 164–71.CrossRefGoogle ScholarPubMed
Krzyminska-Siemaszko, R., Czepulis, N., Lewandowicz, M., et al. The effect of a 12-week omega-3 supplementation on body composition, muscle strength and physical performance in elderly individuals with decreased muscle mass. International Journal of Environmental Research and Public Health 2015; 12: 1055874.CrossRefGoogle ScholarPubMed
Logan, S. L., Spriet, L. L. Omega-3 fatty acid supplementation for 12 weeks increases resting and exercise metabolic rate in healthy community-dwelling older females. PloS one 2015; 10: e0144828.CrossRefGoogle ScholarPubMed
Lustgarten, M. S., Price, L. L., Chale, A., et al. Branched chain amino acids are associated with muscle mass in functionally limited older adults. J Gerontol A Biol Sci Med Sci 2013.Google ScholarPubMed
Muir, S. W., Montero-Odasso, M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. Journal of the American Geriatrics Society 2011; 59: 2291–300.CrossRefGoogle ScholarPubMed
Murphy, R. A., Mourtzakis, M., Chu, Q. S., et al. Skeletal muscle depletion is associated with reduced plasma (n-3) fatty acids in non-small cell lung cancer patients. The Journal of Nutrition 2010; 140: 1602–06.CrossRefGoogle ScholarPubMed
Nowson, C., O'Connell, S. Protein requirements and recommendations for older people: a review. Nutrients 2015; 7: 6874–99.CrossRefGoogle ScholarPubMed
Pennings, B., Boirie, Y., Senden, J. M., et al. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011; 93: 9971005. www.ncbi.nlm.nih.gov/pubmed/?term=pennings+B+AND+boirie+Y.CrossRefGoogle ScholarPubMed
Reinders, I., Murphy, R. A., Song, X., et al. Polyunsaturated fatty acids in relation to incident mobility disability and decline in gait speed; the Age, Gene/Environment Susceptibility-Reykjavik Study. European Journal of Clinical Nutrition 2015a; 69: 489–93.CrossRefGoogle ScholarPubMed
Reinders, I., Song, X., Visser, M., et al. Plasma phospholipid PUFAs are associated with greater muscle and knee extension strength but not with changes in muscle parameters in older adults. The Journal of Nutrition 2015b; 145: 105–12.CrossRefGoogle Scholar
Rizzoli, R., Stevenson, J. C., Bauer, J. M., et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas 2014; 79: 122–32.CrossRefGoogle ScholarPubMed
Roberts, S. B., Dallal, G. E. Energy requirements and aging. Public Health Nutr 2005; 8: 1028–36.CrossRefGoogle ScholarPubMed
Robinson, S. M., Jameson, K. A., Batelaan, S. F., et al. Diet and its relationship with grip strength in community-dwelling older men and women: the Hertfordshire cohort study. Journal of the American Geriatrics Society 2008; 56: 8490.CrossRefGoogle ScholarPubMed
Rondanelli, M., Klersy, C., Terracol, G., et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. The American Journal of Clinical Nutrition 2016; 103: 830–40.CrossRefGoogle ScholarPubMed
Rothenberg, E. M. Resting, activity and total energy expenditure at age 91-96 compared to age 73. The Journal of Nutrition, Health & Aging 2002; 6: 177–8.CrossRefGoogle ScholarPubMed
Schaap, L. A., Koster, A., Visser, M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiologic Reviews 2013; 35: 5165.CrossRefGoogle ScholarPubMed
Shardell, M., Hicks, G. E., Miller, R. R., et al. Association of low vitamin D levels with the frailty syndrome in men and women. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 2009; 64: 6975.CrossRefGoogle ScholarPubMed
Smith, G. I., Julliand, S., Reeds, D. N., et al. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. The American journal of clinical nutrition 2015; 102: 115–22.CrossRefGoogle ScholarPubMed
Spiro, A., Buttriss, J. L. Vitamin D: an overview of vitamin D status and intake in Europe. Nutrition bulletin / BNF 2014; 39: 322–50.Google ScholarPubMed
Tang, M., McCabe, G. P., Elango, R., et al. Assessment of protein requirement in octogenarian women with use of the indicator amino acid oxidation technique. Am J Clin Nutr 2014; 99: 891–8.CrossRefGoogle ScholarPubMed
ter Borg, S., Verlaan, S., Hemsworth, J., et al. Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. The British Journal of Nutrition 2015; 113: 1195–206.CrossRefGoogle ScholarPubMed
Tieland, M., Dirks, M. L., van der Zwaluw, N., et al. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 2012; 13: 713–19.Google ScholarPubMed
Welch, A. A., MacGregor, A. J., Minihane, A., et al. Dietary fat and fatty acid profile are associated with indices of skeletal muscle mass in women aged 18-79 years. The Journal of Nutrition 2014; 144: 327–34.CrossRefGoogle ScholarPubMed
World Health Organization. WHO | Nutrition for older persons. www.who.int/nutrition/topics/ageing/en/index1.html (accessed January 13, 2015).Google Scholar
Zamboni, M., Zoico, E., Scartezzini, T., et al. Body composition changes in stable-weight elderly subjects: the effect of sex. Aging Clinical and Experimental Research 2003; 15: 321–7.CrossRefGoogle ScholarPubMed
Zhu, K., Austin, N., Devine, A., et al. A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. Journal of the American Geriatrics Society 2010; 58: 2063–8.CrossRefGoogle ScholarPubMed

References

Arenas-Gaitán, J., Peral-Peral, B., Ramón-Jerónimo, M. Elderly and internet banking: an application of UTAUT2. Journal of Internet Banking and Commerce, 2015; 20(1): 123.Google Scholar
Axelsson, S. W., Wikman, A. M. Ready for e-health: Swedish older persons’ perceptions of mobile health related applications. Gerontechnology, 2016; 15 (Suppl): 67s.Google Scholar
Barnard, Y., Bradley, M. D., Hodgson, F., Lloyd, A. D. Learning to use new technologies by older adults: perceived difficulties, experimentation behaviour and usability. Computers in Human Behavior, 2013; 29: 1715–24.CrossRefGoogle Scholar
Bouma, H. Gerontechnology: emerging technologies and their impact on aging in society. Stud Health Technol Inform, 1998; 48: 93104.Google ScholarPubMed
Bouma, H. Professional ethics in gerontechnology: a pragmatic approach. Gerontechnology, 2010; 9: 429–32.CrossRefGoogle Scholar
Bouma, H., Fozard, J. L., Bouwhuis, D. G., et al. Gerontechnology in perspective. Gerontechnology, 2007; 6(4): 190216.CrossRefGoogle Scholar
Bouma, H., Fozard, J. L., van Bronswijk, J. E. M. H. Gerontechnology as a field of endeavour. Gerontechnology, 2009; 8(2): 6875.CrossRefGoogle Scholar
Bowen, W. R. Engineering Ethics: Outline of an Aspirational Approach, Springer, London, 2009, pp. 7880.Google Scholar
Chen, K., Chan, A. H. Use or non-use of gerontechnology – a qualitative study. Int J Environ Res Public Health, 2013; 10(10): 4645–66.CrossRefGoogle ScholarPubMed
Chen, K., Chan, A. H. Gerontechnology acceptance by elderly Hong Kong Chinese: a senior technology acceptance model (STAM). Ergonomics, 2014; 57(5): 635–52.CrossRefGoogle ScholarPubMed
Cimperman, M., Brenčič, M. M., Trkman, P., et al. Older adults' perceptions of home telehealth services. Telemed J E Health, 2013; 19(10): 786–90.CrossRefGoogle ScholarPubMed
Cimperman, M., Makovec Brenčič, M., Trkman, P. Analyzing older users' home telehealth services acceptance behavior-applying an Extended UTAUT model. Int J Med Inform. 2016; 90: 2231.CrossRefGoogle ScholarPubMed
Cornet, G. Alzheimer's disease wandering behaviour: Gerontechnology and ethics in three French Speaking countries. Gerontechnology, 2012; 11(2): 266–8.CrossRefGoogle Scholar
Dasgupta, D., Chaudhry, B., Koh, E., et al. A survey of tablet applications for promoting successful aging in older adults. IEEE Access, 2016; 4: 9005–17.CrossRefGoogle Scholar
Depp, C. A., Jeste, D. V. Definitions and predictors of successful aging: a comprehensive review of larger quantitative studies. Am J Geriatr Psychiatry, 2006; 14(1): 620.CrossRefGoogle ScholarPubMed
Economic Policy Committee (EPC). August 2018. The 2012 Ageing Report: Underlying Assumptions and Projection Methodologies. EUROPEAN ECONOMY 4/ 2011. Available at: http://ec.europa.eu/economy_finance/publications/european_economy/2011/ee4_en.htmGoogle Scholar
Foster, L., Walker, A. Active and successful aging: a European policy perspective. Gerontologist, 2015; 55(1): 8390.CrossRefGoogle ScholarPubMed
Fozard, J. L. Gerontechnology and perceptual motor-function: New opportunities for prevention, compensation, and enhancement. Gerontechnology, 2001; 1(1): 524.CrossRefGoogle Scholar
Friedman, S. M., Shah, K., Hall, W. J. Failing to focus on healthy aging: a frailty of our discipline? J Am Geriatr Soc, 2015; 63(7): 1459–62.CrossRefGoogle ScholarPubMed
Graafmans, J., Taipale, V. Gerontechnology. A sustainable investment in the future. Stud Health Technol Inform, 1998; 48: 36.Google ScholarPubMed
Hanson, V. L. Influencing technology adoption by older adults. Interact Comput, 2010; 22(6): 502–9.CrossRefGoogle Scholar
Havighurst, R. J. Successful aging. Gerontologist, 1961; 1: 813.Google Scholar
Hawley-Hague, H., Boulton, E., Hall, A., et al. Older adults' perceptions of technologies aimed at falls prevention, detection or monitoring: a systematic review. Int J Med Inform, 2014; 83(6): 416–26.CrossRefGoogle ScholarPubMed
Katz, S., Ford, A. B., Moskowitz, R. W., et al. Studies of illness in the aged the index of ADL: a standardized measure of biological and psychosocial function. JAMA, 1963; 185(12): 914–19.CrossRefGoogle Scholar
Kiwanuka, M. Acceptance process: the missing link between UTAUT and diffusion of innovation theory. American Journal of Information Systems, 2015; 3(2): 40–4.Google Scholar
Koch, S. Healthy ageing supported by technology – a cross-disciplinary research challenge. Inform Health Soc Care, 2010; 35(3–4): 8191.CrossRefGoogle ScholarPubMed
Kusumastuti, S., Derks, M. G., Tellier, S., et al. Successful ageing: a study of the literature using citation network analysis. Maturitas, 2016; 93: 412.CrossRefGoogle ScholarPubMed
“La Révolution du Bien Vieillir: comment le numérique transforme l'action sociale et accélère le développement de la Silver Economie” (Livre Blanc de Syntec Numérique, 2015).Google Scholar
Ma, Q., Chan, A. H., Chen, K. Personal and other factors affecting acceptance of smartphone technology by older Chinese adults. Appl Ergon, 2016; 54: 6271.CrossRefGoogle ScholarPubMed
Magsamen-Conrad, K. Bridging the Divide: Using UTAUT to predict multigenerational tablet adoption practices (2015). Media and Communications Faculty Publications. Paper 37. http://scholarworks.bgsu.edu/smc_pub/37.Google ScholarPubMed
McDonough, C. C. The effect of ageism on the digital divide among older adults. J Gerontol Geriatr Med, 2016; 2: 008.Google Scholar
Michel, J. P. The future of geriatric medicine. European Geriatric Medicine, 2012; 3(4): 233–7.CrossRefGoogle Scholar
Michel, J. P., Franco, A. Geriatricians and technology. Journal of the American Medical Directors Association, 2014; 15(12): 860–2.CrossRefGoogle ScholarPubMed
Peek, S. T., Wouters, E. J., van Hoof, J., et al. Factors influencing acceptance of technology for aging in place: a systematic review. Int J Med Inform, 2014; 83(4): 235–48.CrossRefGoogle ScholarPubMed
Pinto, M. R., De Medici, S., Napoli, C. Ergonomics, gerontechnology and well-being in older patients with cardiovascular disease. Int J Cardiol, 2000; 72(2): 187–8.CrossRefGoogle ScholarPubMed
Pinto, M. R., De Medici, S., Van Sant, C., et al. Ergonomics, gerontechnology, and design for the home-environment. Appl Ergon, 2000a; 31(3): 317–22.Google ScholarPubMed
Rowe, J. W., Kahn, R. L. Human aging: usual versus successful. Science, 1987; 237, 143–9.CrossRefGoogle Scholar
Rowe, J. W., Kahn, R. L. Successful aging. New York, NY: Pantheon Books. 1998.Google ScholarPubMed
Rowe, J. W., Kahn, R. L. Successful Aging 2.0: Conceptual Expansions for the 21st Century. J Gerontol B Psychol Sci Soc Sci, 2015; 70(4): 593–6.CrossRefGoogle Scholar
Seeman, T. E., Berkman, L. F., Charpentier, P. A., et al. Behavioral and psychosocial predictors of physical performance: MacArthur studies of successful aging. J Gerontol A Biol Sci Med Sci, 1995; 50(4): M177–83.Google ScholarPubMed
Smith, A. Pew Research Center, April 2014, “Older Adults and Technology Use.” Available at: www.pewinternet.org/2014/04/03/older-adults-and-technology-use/Google Scholar
Stegemann, S., Baeyens, J., Cerreta, F., et al. Adherence measurement systems and technology for medications in older patient populations. European Geriatric Medicine. 2012; 3(4): 254–60.CrossRefGoogle Scholar
Stowe, S., Harding, S. Telecare, telehealth and telemedicine. European Geriatric Medicine 2010; 1(3): 193–7.CrossRefGoogle Scholar
Tesch-Römer, C., Wahl, H. W. Toward a more comprehensive concept of successful aging: disability and care needs. J Gerontol B Psychol Sci Soc Sci, 2017; 72(2): 310–18.Google Scholar
Thompson, H. J., Demiris, G., Rue, T., et al. A holistic approach to assess older adults' wellness using e-health technologies. Telemed J E Health. 2011; 17(10): 794800.CrossRefGoogle ScholarPubMed
van Berlo, A. Ethics in domotics. Gerontechnology, 2005; 3(3): 170–2.Google Scholar
van Bronswijk, J. E. M. H., Bouma, H., Fozard, J. L. Technology for quality of life: an enriched taxonomy. Gerontechnology. 2002; 2(2): 169–72.Google Scholar
van der Vaart, R., Drossaert, C. Development of the digital health literacy instrument: measuring a broad spectrum of health 1.0 and health 2.0 skills. J Med Internet Res. 2017; 19(1): e27.CrossRefGoogle ScholarPubMed
Venkatesh, V., Morris, M. G., Davis, G. B., et al. User acceptance of information technology: toward a unified view. MIS Quarterly, 2007; 27(3): 425–78.Google Scholar
Wahl, H. W., Mollenkopf, H. Impact of everyday technology in the home environment on older adults’ quality of life. In Charness, N., Schaie, K. W., editors. Impact of technology on successful aging. New York: Springer; 2003. pp. 215–41.Google Scholar
Wandke, H., Sengpiel, M., Sönksen, M. Myths about older people's use of information and communication technology. Gerontology, 2012; 58(6): 564–70.CrossRefGoogle ScholarPubMed
Wu, Y. H., Damnée, S., Kerhervé, H., et al. Bridging the digital divide in older adults: a study from an initiative to inform older adults about new technologies. Clin Interv Aging, 2015; 10: 193200.CrossRefGoogle ScholarPubMed
Ziefle, M., Schaar, A. K. Handbook of Smart Homes, Health Care and Well-Being. New York: Springer; 2014. Technology acceptance by patients: empowerment and stigma; pp. 30100.Google Scholar

References

Agency for Healthcare Research and Quality US Department of Health and Human Services. Medications at Transitions and Clinical Handoffs (MATCH) Toolkit for Medication Reconciliation. Publication No. 11(12)-0059, August 2012. Available at: www.ahrq.gov/sites/default/files/publications/files/match.pdf. Last visit: 25 April 2018.Google Scholar
Alagiakrishnan, K., Wilson, P., Sadowski, C. A., et al. Physicians' use of computerized clinical decision supports to improve medication management in the elderly-the Seniors Medication Alert and Review Technology intervention. Clinical Interventions in Aging. 2016; 11: 7381.CrossRefGoogle ScholarPubMed
American Geriatrics Society Expert Panel on Person-Centered Care. Person-Centered Care: A Definition and Essential Elements. Journal of the American Geriatrics Society. 2016; 64: 1518.CrossRefGoogle Scholar
American Geriatrics Society Expert Panel on the Care of Older Adults with Multimorbidity. Patient-centered care for older adults with multiple chronic conditions: a stepwise approach from the American Geriatrics Society: American Geriatrics Society Expert Panel on the Care of Older Adults with Multimorbidity. J Am Geriatr Soc. 2012a; 60: 1957–68.Google Scholar
American Geriatrics Society Expert Panel on the Care of Older Adults with Multimorbidity. Guiding principles for the care of older adults with multimorbidity: an approach for clinicians. Journal of the American Geriatrics Society. 2012b; 60: E1E25.Google Scholar
Barry, M. J., Edgman-Levitan, S. Shared decision making – pinnacle of patient-centered care. The New England journal of medicine. 2012; 366: 780–1.CrossRefGoogle ScholarPubMed
Beijer, H. J., de Blaey, C. J. Hospitalisations caused by adverse drug reactions (ADR): a meta-analysis of observational studies. Pharm World Sci. 2002; 24: 4654.CrossRefGoogle ScholarPubMed
Belcher, V. N., Fried, T. R., Agostini, J. V., et al. Views of older adults on patient participation in medication-related decision making. Journal of General Internal Medicine. 2006; 21: 298303.CrossRefGoogle ScholarPubMed
Bell, C., Colquhoun, M., Creighton, P., et al. Medication reconciliation in acute care: getting started kit. 2011. Available at: www.ismp-canada.org/download/MedRec/Medrec_AC_English_GSK_V3.pdf. Last visit: 25 April 2018.Google Scholar
Bernsten, C., Bjorkman, I., Caramona, M., et al. Pharmaceutical care of the elderly in Europe Research (PEER) Group. Improving the well-being of elderly patients via community pharmacy based provision of pharmaceutical care: a multicentre study in seven European countries. Drugs Aging. 2001; 18: 6377.CrossRefGoogle ScholarPubMed
Blenkinsopp, A., Bond, C., Raynor, D. K. Medication reviews. British Journal of Clinical Pharmacology. 2012; 74: 573–80.CrossRefGoogle ScholarPubMed
Boland, B., Guignard, B., Dalleur, O., et al. Application of STOPP/START and Beers criteria: compared analysis on identification and relevance of potentially inappropriate prescriptions. Eur Geriatr Med. 2016; 7: 416–23.CrossRefGoogle Scholar
Brown, M. T., Bussell, J. K. Medication adherence: WHO cares? Review Mayo Clin Proc. 2011; 86: 304–14.Google ScholarPubMed
Campbell, N., Boustani, M., Skopelja, E., et al. Medication adherence in older adults with cognitive impairment: a systematic evidence-based review. The American Journal of Geriatric Pharmacotherapy. 2012; 10: 165–77.CrossRefGoogle ScholarPubMed
Christensen, M., Lundh, A. Medication review in hospitalised patients to reduce morbidity and mortality. The Cochrane Database of Systematic Reviews. 2016; 2: CD008986.Google ScholarPubMed
Claeys, C., Neve, J., Tulkens, P. M., et al. Content validity and inter-rater reliability of an instrument to characterize unintentional medication discrepancies. Drugs & Aging. 2012; 29: 577–91.Google ScholarPubMed
Conn, V., Hafdahl, A., Cooper, P., et al. Interventions to improve medication adherence among older adults: meta-analysis of adherence outcomes among randomized controlled trials. Gerontologist. 2009; 49: 447–62.CrossRefGoogle ScholarPubMed
Conn, V., Ruppar, T., Chan, K., et al. Packaging interventions to increase medication adherence: systematic review and meta-analysis. Current Medical Research and Opinion. 2015; 31: 145–60.CrossRefGoogle ScholarPubMed
Cornish, P. L., Knowles, S. R., Marchesano, R., et al. Unintended medication discrepancies at the time of hospital admission. Arch Intern Med. 2005; 165: 424–9.CrossRefGoogle ScholarPubMed
Cornu, P., Steurbaut, S., Leysen, T., et al. Effect of medication reconciliation at hospital admission on medication discrepancies during hospitalization and at discharge for geriatric patients. Ann Pharmacother. 2012; 46: 484–94.CrossRefGoogle ScholarPubMed
de Silva, D. Helping Measure Person-Centered Care. London: The Health Foundation 2014.Google Scholar
de Wit, H. A., Hurkens, K. P., Mestres Gonzalvo, C., et al. The support of medication reviews in hospitalised patients using a clinical decision support system. Springer Plus. 2016; 5: 871.CrossRefGoogle ScholarPubMed
Dilles, T., Vander Stichele, R., Van Bortel, L., et al. The development and test of an intervention to improve ADR screening in nursing homes. J Am Med Dir Assoc. 2013; 14: 379. e16.CrossRefGoogle ScholarPubMed
Dodd, K. S., Saczynski, J. S., Zhao, Y., et al. Exclusion of older adults and women from recent trials of acute coronary syndromes. J Am Geriatr Soc. 2011; 59: 506–11.CrossRefGoogle ScholarPubMed
Drenth-van Maanen, A. C., Spee, J., van Hensbergen, L., et al. Structured history taking of medication use reveals iatrogenic harm due to discrepancies in medication histories in hospital and pharmacy records. J Am Geriatr Soc. 2011; 59: 1976–7.CrossRefGoogle ScholarPubMed
Ellis, G., Whitehead, M., Robinson, D., et al. Comprehensive geriatric assessment for older adults admitted to hospital: meta-analysis of randomised controlled trials. BMJ. 2011; 343: d6553.CrossRefGoogle ScholarPubMed
Elwyn, G., Frosch, D., Thomson, R., et al. Shared decision making: a model for clinical practice. Journal of General Internal Medicine. 2012; 27: 1361–7.CrossRefGoogle Scholar
Elwyn, G., Lloyd, A., May, C., et al. Collaborative deliberation: a model for patient care. Patient Education and Counseling. 2014; 97: 158–64.CrossRefGoogle Scholar
Garfinkel, D., Mangin, D. Feasibility study of a systematic approach for discontinuation of multiple medications in older adults: addressing polypharmacy. Arch Intern Med. 2010; 170: 1648–54.CrossRefGoogle ScholarPubMed
Gellad, W., Grenard, J., Marcum, Z. A systematic review of barriers to medication adherence in the elderly: looking beyond cost and regimen complexity. Am J Geriatr Pharmacother. 2011; 9: 1123.CrossRefGoogle ScholarPubMed
Gheewala, P. A., Peterson, G. M., Curtain, C. M., et al. Impact of the pharmacist medication review services on drug-related problems and potentially inappropriate prescribing of renally cleared medications in residents of aged care facilities. Drugs & Aging. 2014; 31: 825–35.CrossRefGoogle ScholarPubMed
Giardini, A., Martin, M., Cahir, C., et al. Toward appropriate criteria in medication adherence assessment in older persons: Position Paper. Aging Clin Exp Res. 2016; 28: 371–81.CrossRefGoogle ScholarPubMed
Gillespie, U., Alassaad, A., Henrohn, D., et al. A comprehensive pharmacist intervention to reduce morbidity in patients 80 years or older: a randomized controlled trial. Archives of Internal Medicine. 2009; 169: 894900.CrossRefGoogle ScholarPubMed
Gleason, K. M., Brake, H., Agramonte, V., et al. Medications at Transitions and Clinical Handoffs (MATCH) Toolkit for Medication Reconciliation. (Prepared by the Island Peer Review Organization, Inc., under Contract No. HHSA2902009000 13C.) AHRQ Publication No. 11(12)-0059. Rockville, MD: Agency for Healthcare Research and Quality. Revised August 2012.Google Scholar
Grymonpre, R., Williamson, D., Montgomery, P. Impact of a pharmaceutical care model for non-institutionalized elderly: results of a randomized controlled trial. Into J Pham Pac. 2001; 9: 235–41.Google Scholar
Hajjar, E. R., Hanlon, J. T., Artz, M. B. et al. Adverse drug reaction risk factors in older outpatients. Am J Geriatr Pharmacother 2003; 1: 8289.CrossRefGoogle ScholarPubMed
Hanlon, J., Schmader, K., Samsa, G., et al. A method for assessing drug therapy appropriateness. J Clin Epidemiol. 1992; 45: 1045–51.CrossRefGoogle ScholarPubMed
Hanlon, J., Weinberger, M., Samsa, G., et al. A randomised, controlled trial of a clinical pharmacist intervention to improve inappropriate prescribing in elderly outpatients with polypharmacy. Am J Med. 1996; 100: 428–37.CrossRefGoogle ScholarPubMed
Hawe, P., Higgins, G. Can medication education improve the drug compliance of the elderly? Evaluation of an inhospital program. Patient Educ Couns. 1990; 16: 151–60.CrossRefGoogle Scholar
Haynes, R., Ackloo, E., Sahota, N., et al. Interventions for enhancing medication adherence. The Cochrane Database of Systematic Reviews. 2008 (2): CD000011.Google Scholar
Hepler, C. D., Strand, L. M. Opportunities and responsibilities in pharmaceutical care. Am J Hosp Pharm. 1990; 47: 533–43.Google ScholarPubMed
Holahan, P. J., Lesselroth, B. J., Adams, K., et al. Beyond technology acceptance to effective technology use: a parsimonious and actionable model. Journal of the American Medical Informatics Association: JAMIA. 2015; 22: 718–29.CrossRefGoogle ScholarPubMed
Hughes, C. M. Medication non-adherence in the elderly: how big is the problem? Drugs & Aging. 2004; 21: 793811.CrossRefGoogle ScholarPubMed
Jansen, J., Naganathan, V., Carter, S. M., et al. Too much medicine in older people? Deprescribing through shared decision making. BMJ (Clinical Research ed.). 2016; 353: i2893.Google ScholarPubMed
Kaufmann, C., Tremp, R., Hersberger, K., et al. Inappropriate prescribing: a systematic overview of published assessment tools. Eur J Clin Pharmacol. 2014; 70: 111.CrossRefGoogle ScholarPubMed
Kempen, T. G., van de Steeg-van Gompel, C. H., Hoogland, P., et al. Large scale implementation of clinical medication reviews in Dutch community pharmacies: drug-related problems and interventions. International Journal of Clinical Pharmacy. 2014; 36: 630–5.CrossRefGoogle ScholarPubMed
Kogan, A. C., Wilber, K., Mosqueda, L. Person-centered care for older adults with chronic conditions and functional impairment: a systematic literature review. Journal of the American Geriatrics Society. 2016; 64: e17.CrossRefGoogle ScholarPubMed
Kostas, T., Pacquin, A. M., Zimmerman, K. M., et al. Characterizing medication discrepancies among older adults during transitions of care; a systematic review focusing on discrepancy synonyms, data sources and classification terms. Aging Health. 2013; 9: 497508.CrossRefGoogle Scholar
Kwan, J. L., Lo, L., Sampson, M., et al. Medication reconciliation during transitions of care as a patient safety strategy: a systematic review. Ann Intern Med. 2013; 158: 397403.CrossRefGoogle Scholar
Lavan, A. H., Gallagher, P. F., O'Mahony, D. Methods to reduce prescribing errors in elderly patients with multimorbidity. Clinical Interventions in Aging. 2016; 11: 857–66.Google ScholarPubMed
Le Couteur, D. G., Hilmer, S. N., Glasgow, N., et al. Prescribing in older people. Aust Fam Physician. 2004; 33: 777781.Google ScholarPubMed
Lee, J., Grace, K., Taylor, A. Effect of a pharmacy care programme on medication adherence and persistence, blood pressure, and low-density lipoprotein cholesterol: a randomized controlled trial. J Am Med Assoc. 2006; 296: 2563–71.CrossRefGoogle ScholarPubMed
Leendertse, A. J., Egberts, A. C., Stoker, L. J., et al. Frequency of and risk factors for preventable medication-related hospital admissions in the Netherlands. Arch Intern Med. 2008; 168: 1890–6.Google ScholarPubMed
Lehane, E., McCarthy, G. Intentional and unintentional medication non-adherence: a comprehensive framework for clinical research and practice? A discussion paper. Int J Nurs Stud. 2007, 44: 1468–77.CrossRefGoogle Scholar
Lesselroth, B. J., Holahan, P. J., Adams, K., et al. Primary care provider perceptions and use of a novel medication reconciliation technology. Informatics in Primary Care. 2011; 19: 105–18.Google ScholarPubMed
Lund, B. C., Carnahan, R. M., Egge, J. A., et al. Inappropriate prescribing predicts adverse drug events in older adults. Ann Pharmacother. 2010; 44: 957–63.CrossRefGoogle ScholarPubMed
Mannesse, C. K., Derkx, F. H., de Ridder, M. A., et al. Contribution of adverse drug reactions to hospital admission of older patients. Age Ageing. 2000; 29: 35–9.Google ScholarPubMed
Marien, S., Krug, B., Spinewine, A. Electronic tools to support medication reconciliation-a systematic review. Journal of the American Medical Informatics Association: JAMIA. 2017; 24: 227–40.CrossRefGoogle Scholar
Meulendijk, M., Spruit, M., Drenth-van Maanen, C., et al. General practitioners' attitudes towards decision-supported prescribing: an analysis of the Dutch primary care sector. Health Informatics Journal. 2013; 19: 247–63.CrossRefGoogle ScholarPubMed
Meulendijk, M. C., Spruit, M. R., Drenth-van Maanen, A. C., et al. Computerized decision support improves medication review effectiveness: an experiment evaluating the STRIP assistant's usability. Drugs & Aging. 2015; 32: 495503.CrossRefGoogle ScholarPubMed
Mistiaen, P., Francke, A., Poot, E. Interventions aimed at reducing problems in adult patients discharged from hospital to home: a systematic meta-review. BMC Health Services Research. 2007; 7: 47.CrossRefGoogle ScholarPubMed
Mueller, S. K., Kripalani, S., Stein, J., et al. A toolkit to disseminate best practices in inpatient medication reconciliation: multi-center medication reconciliation quality improvement study (MARQUIS). Joint Commission Journal on Quality and Patient Safety / Joint Commission Resources. 2013; 39: 371–82.Google ScholarPubMed
Nazareth, I., Burton, A., Schulman, S., et al. A pharmacy discharge plan for hospitalized elderly patients – a randomized controlled trial. Age Ageing. 2001; 30: 3340.CrossRefGoogle ScholarPubMed
NHS Cumbria Medicines Management Team. Clinical Medication Review A Practice Guide, February 2013. Available at: www.cumbria.nhs.uk/ProfessionalZone/MedicinesManagement/Guidelines/MedicationReview-PracticeGuide2011.pdf. Last visit: 10 April 2017.Google Scholar
O'Connor, M., Gallagher, P., O'Mahony, D. Inappropriate prescribing criteria, detection and prevention. Drugs Aging. 2012; 29: 437–52.Google ScholarPubMed
O'Mahony, D., Cherubini, A., Petrovic, M. Optimizing pharmacotherapy in older patients: a European perspective. Drugs Aging. 2012; 29: 423–5.Google ScholarPubMed
O'Mahony, D., O'Sullivan, D., Byrne, S., et al. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 2015; 44: 213–18.Google ScholarPubMed
Onder, G., Pedone, C., Landi, F., et al. Adverse drug reactions as cause of hospital admissions: results from the Italian Group of Pharmacoepidemiology in the Elderly (GIFA). J Am Geriatr Soc. 2002; 50: 1962–8.CrossRefGoogle ScholarPubMed
Onder, G., van der Cammen, T., Petrovic, M., et al. Strategies to reduce the risk of iatrogenic illness in complex older adults. Age Ageing. 2013; 42: 284–91.CrossRefGoogle ScholarPubMed
Osterberg, L., Blaschke, T. Adherence to medication. N Engl J Med. 2005; 353: 487–97.CrossRefGoogle ScholarPubMed
Perehudoff, K., Azermai, M., Somers, A., et al. Medication discrepancies in older patients admitted to non-geriatric wards: an exploratory study. European Geriatric Medicine. 2015; 6(1): 41–5.CrossRefGoogle Scholar
Petrovic, M., van der Cammen, T., Onder, G. Adverse drug reactions in older people: detection and prevention. Drugs Aging. 2012; 29: 453–62.CrossRefGoogle ScholarPubMed
Pevnick, J. M., Shane, R., Schnipper, J. L. The problem with medication reconciliation. BMJ Quality and Safety. 2016; 25: 726–30.CrossRefGoogle ScholarPubMed
Phillips, N. M., Street, M., Haesler, E. A systematic review of reliable and valid tools for the measurement of patient participation in healthcare. BMJ Quality and Safety. 2016; 25: 110–17.CrossRefGoogle ScholarPubMed
Pirmohamed, M., James, S., Meakin, S., et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004; 329: 1519.CrossRefGoogle ScholarPubMed
Reeve, E., Gnjidic, D., Long, J., et al. A systematic review of the emerging definition of ‘deprescribing’ with network analysis: implications for future research and clinical practice. Br J Clin Pharmacol. 2015; 80: 1254–68.CrossRefGoogle ScholarPubMed
Renom-Guiteras, A., Meyer, G., Thürmann, P. A. The EU (7)-PIM list: a list of potentially inappropriate medications for older people consented by experts from seven European countries. Eur J Clin Pharmacol. 2015; 71: 861–75.CrossRefGoogle Scholar
Sabaté, E. (Ed.) Adherence to Long-Term Therapies: Evidence for Action. World Health Organization, 2003, Geneva, Switzerland.Google Scholar
Schmader, K., Hanlon, J., Pieper, C., et al. Effects of geriatric evaluation and management on adverse drug reactions and suboptimal prescribing in the frail elderly. Am J Med. 2004; 116: 394401.CrossRefGoogle ScholarPubMed
Schnipper, J. L., Hamann, C., Ndumele, C. D., et al. Effect of an electronic medication reconciliation application and process redesign on potential adverse drug events: a cluster-randomized trial. Archives of Internal Medicine. 2009; 169: 771–80.CrossRefGoogle ScholarPubMed
Scott, I., Hilmer, S., Reeve, E., et al. Reducing inappropriate polypharmacy. JAMA Intern Med. 2015; 175: 827–34.CrossRefGoogle ScholarPubMed
Scullin, C., Scott, M., Hogg, A., et al. An innovative approach to integrated medicine management. J Eval Clin Pract. 2007; 13: 781–88.CrossRefGoogle Scholar
Smith, J. D., Coleman, E. A., Min, S. J. A new tool for identifying discrepancies in post acute medications for community-dwelling older adults. The American Journal of Geriatric Pharmacotherapy. 2004; 2: 141–7.CrossRefGoogle Scholar
Somers, A., Robays, H., Vander Stichele, R., et al. Contribution of drug related problems to hospital admission in the elderly. J Nutr Health Aging. 2010; 14: 475–82.CrossRefGoogle ScholarPubMed
Somers, A., Mallet, L., van der Cammen, T., et al. Applicability of an adapted medication appropriateness index for detection of drug-related problems in geriatric inpatients. Am J Geriatr Pharmacother. 2012; 10: 101–9.CrossRefGoogle ScholarPubMed
Spinewine, A., Schmader, K., Barber, N., et al. Appropriate prescribing in elderly people: how well can it be measured and optimised? Lancet. 2007; 370: 173–84.CrossRefGoogle ScholarPubMed
Steinman, M. A., Landefeld, C. S., Rosenthal, G. E., et al. Polypharmacy and prescribing quality in older people. J Am Geriatr Soc. 2006; 54: 1516–23.CrossRefGoogle ScholarPubMed
Stiggelbout, A. M., Pieterse, A. H., De Haes, J. C. Shared decision making: concepts, evidence, and practice. Patient Education and Counseling. 2015; 98: 1172–9.CrossRefGoogle ScholarPubMed
Sturgess, I., McElnay, J., Hughes, C., et al. Community pharmacy based provision of pharmaceutical care to older patients. Pharm World Sci. 2003; 25: 218–26.CrossRefGoogle ScholarPubMed
Swift, C. G. The clinical pharmacology of ageing. Br J Clin Pharmacol. 2003; 56: 249–53.CrossRefGoogle ScholarPubMed
Tannenbaum, C., Martin, P., Tamblyn, R., et al. Reduction of inappropriate benzodiazepine prescriptions among older adults through direct patient education: the EMPOWER cluster randomized trial. JAMA Internal Medicine. 2014; 174: 890–8.CrossRefGoogle ScholarPubMed
The American Geriatrics Society 2015 Beers Criteria Update Expert Panel. American Geriatrics Society 2015 updated beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015; 63: 2227–46.Google Scholar
Tommelein, E., Petrovic, M., Somers, A., et al. Older patients' prescriptions screening in the community pharmacy: development of the Ghent Older People's Prescriptions community Pharmacy Screening (GheOP³S) tool. J Public Health (Oxf). 2016; 38: e158–70.Google Scholar
Topinkova, E., Baeyens, J., Michel, J., et al. Evidence-based strategies for the optimization of pharmacotherapy in older people. Drugs Aging. 2012; 29: 477–94.CrossRefGoogle ScholarPubMed
Umar, N., Litaker, D., Schaarschmidt, M. L., et al. Outcomes associated with matching patients' treatment preferences to physicians' recommendations: study methodology. BMC Health Services Research. 2012; 12: 1.CrossRefGoogle ScholarPubMed
van den Bemt, P. M., Egberts, A. C., Lenderink, A. W., et al. Risk factors for the development of adverse drug events in hospitalized patients. Pharm World Sci. 2000; 22: 62–6.Google ScholarPubMed
van der Cammen, T., Rajkumar, C., Onder, G., et al. Drug cessation in complex older adults: time for action. Age Ageing. 2014; 43: 20–5.CrossRefGoogle ScholarPubMed
Villanyi, D., Fok, M., Wong, R. Y. Medication reconciliation: identifying medication discrepancies in acutely ill hospitalized older adults. Am J Geriatr Pharmacother. 2011; 9: 339–44.CrossRefGoogle ScholarPubMed
Volume, C., Farris, K., Kassam, R., et al. Pharmaceutical care research and education project: patient outcomes. J Am Pharm Assoc. 2001; 41: 411–20.Google ScholarPubMed
Wong, J. D., Bajcar, J. M., Wong, G. G., et al. Medication reconciliation at hospital discharge: evaluating discrepancies. Annals of Pharmacotherapy. 2008; 42: 1373–9.CrossRefGoogle ScholarPubMed
Wu, J., Leung, W., Chang, S., et al. Effectiveness of telephone counselling by a pharmacist in reducing mortality in patients receiving polypharmacy: randomised controlled trial. Br Med J. 2006; 333: 522–7.CrossRefGoogle ScholarPubMed
Wu, C., Bell, C. M., Wodchis, W. P. Incidence and economic burden of adverse drug reactions among elderly patients in Ontario emergency departments, a retrospective study. Drug Safety 2012; 35: 769–81.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×