Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T17:06:09.044Z Has data issue: false hasContentIssue false

12 - Nutrition and Cognition

from Part I - Biomedical Aspects

Published online by Cambridge University Press:  10 January 2019

Rocío Fernández-Ballesteros
Affiliation:
Universidad Autónoma de Madrid
Athanase Benetos
Affiliation:
Université de Lorraine and Institut national de la santé et de la recherche médicale (INSERM) Nancy
Jean-Marie Robine
Affiliation:
INSERM
Get access

Summary

Key points. There is currently too little hard evidence to propose a single diet in order to prevent cognitive decline. Dietary changes can influence cognition / cognitive decline, although long periods of adherence need to be taken into account before significant results can be seen. It is paramount to offer nutritional education already at an early age. Since the 'optimal diet' is not the same in each age group, dietary advice must be patient-tailored.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbaraly, T. N., Hininger-Favier, I., Carriere, I., et al., Plasma selenium over time and cognitive decline in the elderly. Epidemiology, 2007; 18(1): 52–8.CrossRefGoogle ScholarPubMed
Albanese, E., Taylor, C., Siervo, M., et al., Dementia severity and weight loss: a comparison across eight cohorts. The 10/66 study. Alzheimers Dement, 2013; 9(6): 649–56.CrossRefGoogle ScholarPubMed
Anastasiou, C. A., Yannakoulia, M., Scarmeas, N., Vitamin D and cognition: an update of the current evidence. J Alzheimers Dis, 2014; 42 (Suppl 3): S7180.CrossRefGoogle ScholarPubMed
Anderson, R. A., Qin, B., Canini, F., et al., Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PLoS ONE, 2013; 8(12): e83243.CrossRefGoogle ScholarPubMed
Annweiler, C., Dursun, E., Feron, F., et al., “Vitamin D and cognition in older adults”: updated international recommendations. J Intern Med, 2015; 277(1): 4557.CrossRefGoogle ScholarPubMed
Arts, I. C., Hollman, P. C., Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr, 2005; 81(1 Suppl): 317S–25S.CrossRefGoogle ScholarPubMed
Atochin, D. N., Huang, P. L., Role of endothelial nitric oxide in cerebrovascular regulation. Curr Pharm Biotechnol, 2011; 12(9): 1334–42.CrossRefGoogle ScholarPubMed
Attwell, D., Buchan, A. M., Charpak, S., et al., Glial and neuronal control of brain blood flow. Nature, 2010; 468(7321): 232–43.CrossRefGoogle ScholarPubMed
Bakker, A., Kirwan, C. B., Miller, M., et al., Pattern separation in the human hippocampal CA3 and dentate gyrus. Science, 2008; 319(5870): 1640–2.CrossRefGoogle ScholarPubMed
Balion, C., Griffith, L. E., Strifler, L., et al., Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology, 2012; 79(13): 1397–405.CrossRefGoogle ScholarPubMed
Bang, H. O., Dyerberg, J., Nielsen, A. B., Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet, 1971; 1(7710): 1143–5.Google ScholarPubMed
Bang, H. O., Dyerberg, J., Sinclair, H. M., The composition of the Eskimo food in north western Greenland. Am J Clin Nutr, 1980; 33(12): 2657–61.CrossRefGoogle ScholarPubMed
Baranano, K. W., Hartman, A. L., The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol, 2008; 10(6): 410–19.CrossRefGoogle ScholarPubMed
Barberger-Gateau, P., Raffaitin, C., Letenneur, L., et al., Dietary patterns and risk of dementia: the Three-City cohort study. Neurology, 2007; 69(20): 1921–30.CrossRefGoogle ScholarPubMed
Barberger-Gateau, P., Letenneur, L., Deschamps, V., et al., Fish, meat, and risk of dementia: cohort study. BMJ, 2002; 325(7370): 932–3.CrossRefGoogle ScholarPubMed
Barnard, N. D., Bush, A. I., Ceccarelli, A., et al., Dietary and lifestyle guidelines for the prevention of Alzheimer's disease. Neurobiol Aging, 2014; 35 (Suppl 2): S74–8.CrossRefGoogle ScholarPubMed
Beydoun, M. A., Beydoun, H. A., Gamaldo, A. A., et al., Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health, 2014; 14: 643.CrossRefGoogle ScholarPubMed
Birks, J., Grimley Evans, J., Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev, 2009; (1): CD003120.Google ScholarPubMed
Black, B. S., Johnston, D., Morrison, A., et al., Quality of life of community-residing persons with dementia based on self-rated and caregiver-rated measures. Qual Life Res, 2012; 21(8): 1379–89.CrossRefGoogle ScholarPubMed
Bough, K. J., Rho, J. M., Anticonvulsant mechanisms of the ketogenic diet. Epilepsia, 2007; 48(1): 4358.CrossRefGoogle ScholarPubMed
Bowling, A., Rowe, G., Adams, S., et al., Quality of life in dementia: a systematically conducted narrative review of dementia-specific measurement scales. Aging Ment Health, 2015; 19(1): 1331.CrossRefGoogle ScholarPubMed
Bowman, G. L., Ascorbic acid, cognitive function, and Alzheimer's disease: a current review and future direction. Biofactors, 2012; 38(2): 114–22.CrossRefGoogle ScholarPubMed
Braak, E., Griffing, K., Arai, K., et al., Neuropathology of Alzheimer's disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin Neurosci, 1999; 249 (Suppl 3): 1422.CrossRefGoogle ScholarPubMed
Brickman, A. M., Khan, U. A., Provenzano, F. A., et al., Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci, 2014; 17(12): 1798–803.CrossRefGoogle ScholarPubMed
Brouwer-Brolsma, E. M., de Groot, L. C., Vitamin D and cognition in older adults: an update of recent findings. Curr Opin Clin Nutr Metab Care, 2015; 18(1): 1116.CrossRefGoogle ScholarPubMed
Cansev, M., van Wijk, N., Turkyilmaz, M., et al., A specific multi-nutrient enriched diet enhances hippocampal cholinergic transmission in aged rats. Neurobiol Aging, 2015; 36(1): 344–51.CrossRefGoogle ScholarPubMed
Cassidy, A., Mukamal, K. J., Liu, L., et al., High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation, 2013; 127(2): 188–96.CrossRefGoogle Scholar
Cederholm, T., Palmblad, J., Are omega-3 fatty acids options for prevention and treatment of cognitive decline and dementia? Curr Opin Clin Nutr Metab Care, 2010; 13(2): 150–5.CrossRefGoogle ScholarPubMed
Chakrabarti, S., Munshi, S., Banerjee, K., et al., Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis, 2011; 2(3): 242–56.Google ScholarPubMed
Chang, C. Y., Ke, D. S., Chen, J. Y., Essential fatty acids and human brain. Acta Neurol Taiwan, 2009; 18(4): 231–41.Google ScholarPubMed
Chang, P., Terbach, N., Plant, N., et al., Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology, 2013; 69: 105–14.CrossRefGoogle ScholarPubMed
Chang, P., Augustin, K., Boddum, K., et al., Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain, 2015: 113.Google ScholarPubMed
Cherbuin, N., Anstey, K. J., The Mediterranean diet is not related to cognitive change in a large prospective investigation: the PATH Through Life study. Am J Geriatr Psychiatry, 2012; 20(7): 635–9.CrossRefGoogle ScholarPubMed
Chouinard, J., Lavigne, E., Villeneuve, C., Weight loss, dysphagia, and outcome in advanced dementia. Dysphagia, 1998; 13(3): 151–5.CrossRefGoogle ScholarPubMed
Clarke, R., Smith, A. D., Jobst, K. A., et al., Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol, 1998; 55(11): 1449–55.CrossRefGoogle ScholarPubMed
Clarke, R., Bennett, D., Parish, S., et al., Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr, 2014; 100(2): 657–66.CrossRefGoogle Scholar
Conklin, S. M., Gianaros, P. J., Brown, S. M., et al., Long-chain omega-3 fatty acid intake is associated positively with corticolimbic gray matter volume in healthy adults. Neurosci Lett, 2007; 421(3): 209–12.CrossRefGoogle ScholarPubMed
Corona, G., Vauzour, D., Hercelin, J., et al., Phenolic acid intake, delivered via moderate champagne wine consumption, improves spatial working memory via the modulation of hippocampal and cortical protein expression/activation. Antioxid Redox Signal, 2013; 19(14): 1676–89.CrossRefGoogle ScholarPubMed
Cox, C. J., Choudhry, F., Peacey, E., et al., Dietary (−)-epicatechin as a potent inhibitor of betagamma-secretase amyloid precursor protein processing. Neurobiol Aging, 2015; 36(1): 178–87.CrossRefGoogle ScholarPubMed
Craft, S., Asthana, S., Schellenberg, G., et al., Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer's disease differ according to apolipoprotein-E genotype. Ann N Y Acad Sci, 2000; 903: 222–8.CrossRefGoogle ScholarPubMed
Dangour, A. D., Allen, E., Clarke, R., et al., A randomised controlled trial investigating the effect of vitamin B12 supplementation on neurological function in healthy older people: the Older People and Enhanced Neurological function (OPEN) study protocol [ISRCTN54195799]. Nutr J, 2011; 10: 22.CrossRefGoogle ScholarPubMed
Dashti, H. M., Al-Zaid, N. S., Mathew, T. C., et al., Long term effects of ketogenic diet in obese subjects with high cholesterol level. Mol Cell Biochem, 2006; 286(1–2): 19.CrossRefGoogle ScholarPubMed
de Jager, C. A., Oulhaj, A., Jacoby, R., et al., Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry, 2012; 27(6): 592600.CrossRefGoogle ScholarPubMed
de Lau, L. M., Smith, A. D., Refsum, H., et al., Plasma vitamin B12 status and cerebral white-matter lesions. J Neurol Neurosurg Psychiatry, 2009; 80(2): 149–57.CrossRefGoogle ScholarPubMed
de Waal, H., Stam, C. J., Lansbergen, M. M., et al., The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study. PLoS ONE, 2014; 9(1): e86558.CrossRefGoogle ScholarPubMed
DeKosky, S. T., Williamson, J. D., Fitzpatrick, A. L., et al., Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA, 2008; 300(19): 2253–62.CrossRefGoogle ScholarPubMed
Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., et al., Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal, 2013; 18(14): 1818–92.CrossRefGoogle ScholarPubMed
Di Castelnuovo, A., Costanzo, S., Bagnardi, V., et al., Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies. Arch Intern Med, 2006; 166(22): 2437–45.CrossRefGoogle ScholarPubMed
Douaud, G., Refsum, H., de Jager, C. A., et al., Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A, 2013; 110(23): 9523–8.CrossRefGoogle ScholarPubMed
Downer, B., Zanjani, F., Fardo, D. W., The relationship between midlife and late life alcohol consumption, APOE e4 and the decline in learning and memory among older adults. Alcohol Alcohol, 2014; 49(1): 1722.CrossRefGoogle ScholarPubMed
Dysken, M. W., Sano, M., Asthana, S., et al., Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA, 2014; 311(1): 3344.CrossRefGoogle ScholarPubMed
Engelborghs, S., Gilles, C., Ivanoiu, A., et al., Rationale and clinical data supporting nutritional intervention in Alzheimer's disease. Acta Clin Belg, 2014; 69(1): 1724.CrossRefGoogle ScholarPubMed
Estruch, R., Ros, E., Salas-Salvado, J., et al., Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med, 2013; 368(14): 1279–90.CrossRefGoogle ScholarPubMed
Feart, C., Alles, B., Merle, B., et al., Adherence to a Mediterranean diet and energy, macro-, and micronutrient intakes in older persons. J Physiol Biochem, 2012; 68(4): 691700.CrossRefGoogle ScholarPubMed
Feart, C., Samieri, C., Rondeau, V., et al., Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA, 2009; 302(6): 638–48.Google ScholarPubMed
Fjellstrom, C., Starkenberg, A., Wesslen, A., et al., To be a good food provider: an exploratory study among spouses of persons with Alzheimer's disease. Am J Alzheimers Dis Other Demen, 2010; 25(6): 521–6.CrossRefGoogle ScholarPubMed
Ford, A. H., Almeida, O. P., Effect of homocysteine lowering treatment on cognitive function: a systematic review and meta-analysis of randomized controlled trials. J Alzheimers Dis, 2012; 29(1): 133–49.CrossRefGoogle ScholarPubMed
Freund-Levi, Y., Eriksdotter-Jonhagen, M., Cederholm, T., et al., Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol, 2006; 63(10): 1402–8.CrossRefGoogle ScholarPubMed
Frisardi, V., Panza, F., Seripa, D., et al., Nutraceutical properties of Mediterranean diet and cognitive decline: possible underlying mechanisms. J Alzheimers Dis, 2010; 22(3): 715–40.CrossRefGoogle ScholarPubMed
Gillette Guyonnet, S., Abellan Van Kan, G., Alix, E., et al., IANA (International Academy on Nutrition and Aging) Expert Group: weight loss and Alzheimer's disease. J Nutr Health Aging, 2007; 11(1): 3848.Google Scholar
Gomes, F., Emery, P. W., Weekes, C. E., Risk of Malnutrition Is an Independent Predictor of Mortality, Length of Hospital Stay, and Hospitalization Costs in Stroke Patients. J Stroke Cerebrovasc Dis, 2016; 25(4): 799806.CrossRefGoogle ScholarPubMed
Gomez-Pinilla, F., Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci, 2008; 9(7): 568–78.CrossRefGoogle ScholarPubMed
Grundman, M., Corey-Bloom, J., Jernigan, T., et al., Low body weight in Alzheimer's disease is associated with mesial temporal cortex atrophy. Neurology, 1996; 46(6): 1585–91.CrossRefGoogle ScholarPubMed
Guerchet, M., Prina, M., Prince, M., et al. Nutrition and Dementia. A Review of Available Research. London: Alzheimer's Disease International (ADI).Google Scholar
Gustafson, D. R., Clare Morris, M., Scarmeas, N., et al., New perspectives on Alzheimer's disease and nutrition. J Alzheimers Dis, 2015; 46(4): 1111–27.CrossRefGoogle ScholarPubMed
Hankey, G. J., Ford, A. H., Yi, Q., Eikelboom, J. W., et al., Effect of B vitamins and lowering homocysteine on cognitive impairment in patients with previous stroke or transient ischemic attack: a prespecified secondary analysis of a randomized, placebo-controlled trial and meta-analysis. Stroke, 2013; 44(8): 2232–9.CrossRefGoogle ScholarPubMed
Harrison, F. E., A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer's disease. J Alzheimers Dis, 2012; 29(4): 711–26.CrossRefGoogle ScholarPubMed
Hartman, A. L., Gasior, M., Vining, E. P., et al., The neuropharmacology of the ketogenic diet. Pediatr Neurol, 2007; 36(5): 281–92.CrossRefGoogle ScholarPubMed
Henderson, S., Moore, N., Lee, E., et al., Do the malnutrition universal screening tool (MUST) and Birmingham nutrition risk (BNR) score predict mortality in older hospitalised patients? BMC Geriatr, 2008; 8: 26.CrossRefGoogle Scholar
Hooper, L., Kroon, P. A., Rimm, E. B., et al., Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr, 2008; 88(1): 3850.CrossRefGoogle ScholarPubMed
Huffman, J., Kossoff, E. H., State of the ketogenic diet(s) in epilepsy. Curr Neurol Neurosci Rep, 2006; 6(4): 332–40.CrossRefGoogle ScholarPubMed
Imhof, A., Froehlich, M., Brenner, H., et al., Effect of alcohol consumption on systemic markers of inflammation. Lancet, 2001; 357(9258): 763–7.CrossRefGoogle ScholarPubMed
Jansen, D., Zerbi, V., Arnoldussen, I. A., et al., Effects of specific multi-nutrient enriched diets on cerebral metabolism, cognition and neuropathology in AbetaPPswe-PS1dE9 mice. PLoS One, 2013; 8(9): e75393.CrossRefGoogle ScholarPubMed
Jansen, D., Zerbi, V., Janssen, C. I., et al., Impact of a multi-nutrient diet on cognition, brain metabolism, hemodynamics, and plasticity in apoE4 carrier and apoE knockout mice. Brain Struct Funct, 2014; 219(5): 1841–68.Google ScholarPubMed
Janssen, C. I., Kiliaan, A. J., Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res, 2014; 53: 117.CrossRefGoogle ScholarPubMed
Joshi, Y. B., Pratico, D., Vitamin E in aging, dementia, and Alzheimer's disease. Biofactors, 2012; 38(2): 90–7.CrossRefGoogle ScholarPubMed
Kamphuis, P. J., Scheltens, P., Can nutrients prevent or delay onset of Alzheimer's disease? J Alzheimers Dis, 2010; 20(3): 765–75.CrossRefGoogle ScholarPubMed
Kanowski, S., Herrmann, W. M., Stephan, K., et al., Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Phytomedicine, 1997; 4(1): 313.CrossRefGoogle ScholarPubMed
Kastorini, C. M., Milionis, H. J., Esposito, K., et al., The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol, 2011; 57(11): 1299–313.CrossRefGoogle ScholarPubMed
Kesse-Guyot, E., Andreeva, V. A., Jeandel, C., et al., Alcohol consumption in midlife and cognitive performance assessed 13 years later in the SU.VI.MAX 2 cohort. PLoS One, 2012; 7(12): e52311.CrossRefGoogle ScholarPubMed
Krikorian, R., Eliassen, J. C., Boespflug, E. L., et al., Improved cognitive-cerebral function in older adults with chromium supplementation. Nutr Neurosci, 2010; 13(3): 116–22.CrossRefGoogle ScholarPubMed
Kuhla, A., Lange, S., Holzmann, C., et al., Lifelong caloric restriction increases working memory in mice. PLoS One, 2013; 8(7): e68778.CrossRefGoogle ScholarPubMed
Kyle, U. G., Kossovsky, M. P., Karsegard, V. L., et al., Comparison of tools for nutritional assessment and screening at hospital admission: a population study. Clin Nutr, 2006; 25(3): 409–17.CrossRefGoogle ScholarPubMed
Lamport, D. J., Pal, D., Moutsiana, C., et al., The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl), 2015; 232(17): 3227–34.CrossRefGoogle Scholar
Lang, I., Wallace, R. B., Huppert, F. A., et al., Moderate alcohol consumption in older adults is associated with better cognition and well-being than abstinence. Age Ageing, 2007; 36(3): 256–61.CrossRefGoogle ScholarPubMed
Langlois, F., Vu, T. T., Kergoat, M. J., et al., The multiple dimensions of frailty: physical capacity, cognition, and quality of life. Int Psychogeriatr, 2012; 24(9): 1429–36.CrossRefGoogle ScholarPubMed
Langmore, S. E., Skarupski, K. A., Park, P. S., et al., Predictors of aspiration pneumonia in nursing home residents. Dysphagia, 2002; 17(4): 298307.CrossRefGoogle ScholarPubMed
Laudisio, A., Milaneschi, Y., Bandinelli, S., et al., Chewing problems are associated with depression in the elderly: results from the InCHIANTI study. Int J Geriatr Psychiatry, 2014; 29(3): 236–44.CrossRefGoogle ScholarPubMed
Le Bars, P. L., Katz, M. M., Berman, N., et al., A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA, 1997; 278(16): 1327–32.CrossRefGoogle ScholarPubMed
Leroi, I., McDonald, K., Pantula, H., et al., Cognitive impairment in Parkinson disease: impact on quality of life, disability, and caregiver burden. J Geriatr Psychiatry Neurol, 2012; 25(4): 208–14.CrossRefGoogle ScholarPubMed
Li, W., Prakash, R., Chawla, D., et al., Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am J Physiol Regul Integr Comp Physiol, 2013; 304(11): R1001–8.CrossRefGoogle ScholarPubMed
Lim, S. L., Ong, K. C., Chan, Y. H., et al., Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin Nutr, 2012; 31(3): 345–50.CrossRefGoogle Scholar
Llorach, R., Garcia-Aloy, M., Tulipani, S., et al., Nutrimetabolomic strategies to develop new biomarkers of intake and health effects. J Agric Food Chem, 2012; 60(36): 8797–808.CrossRefGoogle ScholarPubMed
Lyu, J., Lee, S. H., Gender differences in the link between excessive drinking and domain-specific cognitive functioning among older adults. J Aging Health, 2012; 24(8): 1380–98.CrossRefGoogle ScholarPubMed
Macready, A. L., Butler, L. T., Kennedy, O. B., et al., Cognitive tests used in chronic adult human randomised controlled trial micronutrient and phytochemical intervention studies. Nutr Res Rev, 2010; 23(2): 200–29.CrossRefGoogle ScholarPubMed
Malafarina, V., Uriz-Otano, F., Gil-Guerrero, L., et al., The anorexia of ageing: physiopathology, prevalence, associated comorbidity and mortality. A systematic review. Maturitas, 2013; 74(4): 293302.CrossRefGoogle ScholarPubMed
Malouf, R., Areosa Sastre, A., Vitamin B12 for cognition. Cochrane Database Syst Rev, 2003; (3): CD004326.Google ScholarPubMed
Mangialasche, F., Solomon, A., Kareholt, I., et al., Serum levels of vitamin E forms and risk of cognitive impairment in a Finnish cohort of older adults. Exp Gerontol, 2013; 48(12): 1428–35.CrossRefGoogle Scholar
Mangialasche, F., Xu, W., Kivipelto, M., et al., Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging, 2011; 33(10): 2282–90.Google ScholarPubMed
Martin, B., Mattson, M. P., Maudsley, S., Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev, 2006; 5(3): 332–53.CrossRefGoogle ScholarPubMed
Martinez-Lapiscina, E. H., Clavero, P., Toledo, E., et al., Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry, 2013; 84(12): 1318–25.CrossRefGoogle ScholarPubMed
Martinez-Lapiscina, E. H., Clavero, P., Toledo, E.,et al., Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging, 2013; 17(6): 544–52.CrossRefGoogle ScholarPubMed
Maruszak, A., Pilarski, A., Murphy, T., et al., Hippocampal neurogenesis in Alzheimer's disease: is there a role for dietary modulation? J Alzheimers Dis, 2014; 38(1): 1138.CrossRefGoogle Scholar
Mateus-Pinheiro, A., Pinto, L., Bessa, J. M., et al., Sustained remission from depressive-like behavior depends on hippocampal neurogenesis. Transl Psychiatry, 2013; 1: e210.CrossRefGoogle Scholar
Mattson, M. P., Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab, 2012; 16(6): 706–22.CrossRefGoogle Scholar
Mazereeuw, G., Lanctot, K. L., Chau, S. A., et al., Effects of omega-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol Aging, 2012; 33(7): 1482.e171482.e29.CrossRefGoogle ScholarPubMed
McCullough, M. L., Peterson, J. J., Patel, R., et al., Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr, 2012; 95(2): 454–64.CrossRefGoogle Scholar
Middleton, L. E., Yaffe, K., Promising strategies for the prevention of dementia. Arch Neurol, 2009; 66(10): 1210–15.CrossRefGoogle ScholarPubMed
Moorthy, D., Peter, I., Scott, T. M., et al., Status of vitamins B-12 and B-6 but not of folate, homocysteine, and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults. J Nutr, 2012; 142(8): 1554–60.CrossRefGoogle Scholar
Morris, M. C., Evans, D. A., Tangney, C. C., et al., Fish consumption and cognitive decline with age in a large community study. Arch Neurol, 2005; 62(12): 1849–53.CrossRefGoogle Scholar
Murphy, T., Thuret, S., The systemic milieu as a mediator of dietary influence on stem cell function during ageing. Ageing Res Rev, 2014; 19: 5364.CrossRefGoogle ScholarPubMed
Murphy, T., Dias, G. P., Thuret, S., Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast, 2014; 2014: 132.CrossRefGoogle ScholarPubMed
Nooyens, A. C., Bueno-de-Mesquita, H. B., van Gelder, B. M., et al., Consumption of alcoholic beverages and cognitive decline at middle age: the Doetinchem Cohort Study. Br J Nutr, 2014; 111(4): 715–23.CrossRefGoogle ScholarPubMed
Nuttall, J. R., Oteiza, P. I., Zinc and the aging brain. Genes Nutr, 2014; 9(1): 379.CrossRefGoogle ScholarPubMed
Obeid, R., Herrmann, W., Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett, 2006; 580(13): 29943005.CrossRefGoogle ScholarPubMed
Olde Rikkert, M. G., Verhey, F. R., Blesa, R., et al., Tolerability and safety of Souvenaid in patients with mild Alzheimer's disease: results of multi-center, 24-week, open-label extension study. J Alzheimers Dis, 2015; 44(2): 471–80.CrossRefGoogle ScholarPubMed
O'Leary, F., Allman-Farinelli, M., Samman, S., Vitamin B12 status, cognitive decline and dementia: a systematic review of prospective cohort studies. Br J Nutr, 2012; 108(11): 1948–61.CrossRefGoogle ScholarPubMed
Olofsson, J. K., Nordin, S., Wiens, S., et al., Odor identification impairment in carriers of ApoE-varepsilon4 is independent of clinical dementia. Neurobiol Aging, 2010; 31(4): 567–77.CrossRefGoogle ScholarPubMed
Ozkalkanli, M. Y., Ozkalkanli, D. T., Katircioglu, K., et al., Comparison of tools for nutrition assessment and screening for predicting the development of complications in orthopedic surgery. Nutr Clin Pract, 2009; 24(2): 274–80.CrossRefGoogle ScholarPubMed
Palop, J. J., Mucke, L., Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol, 2009; 66(4): 435–40.CrossRefGoogle ScholarPubMed
Panza, F., Solfrizzi, V., Barulli, M. R., et al., Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. J Nutr Health Aging, 2015; 19(3): 313–28.CrossRefGoogle ScholarPubMed
Paoli, A., Cenci, L. and Grimaldi, K. A., et al., Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr, 2013; 67(8): 789–96.CrossRefGoogle ScholarPubMed
Paoli, A., Cenci, L., Grimaldi, K. A., Effect of ketogenic Mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees. Nutr J, 2011; 10(112): 18.CrossRefGoogle ScholarPubMed
Park, S. K., Prolla, T. A., Lessons learned from gene expression profile studies of aging and caloric restriction. Ageing Res Rev, 2005; 4(1): 5565.CrossRefGoogle ScholarPubMed
Peterson, D. W., George, R. C., Scaramozzino, F., et al., Cinnamon extracts inhibit Tau protein aggregation associated with Alzheimer's disease in vitro. J Alzheimers Disease, 2009; 17(3): 585–96.Google ScholarPubMed
Polidori, M. C., Pratico, D., Mangialasche, F., et al., High fruit and vegetable intake is positively correlated with antioxidant status and cognitive performance in healthy subjects. J Alzheimers Dis, 2009; 17(4): 921–7.CrossRefGoogle ScholarPubMed
Pottala, J. V., Yaffe, K., Robinson, J. G., et al., Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI Study. Neurology, 2014; 82(5): 435–42.CrossRefGoogle ScholarPubMed
Psaltopoulou, T., Sergentanis, T. N., Panagiotakos, D. B., et al., Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol, 2013; 74(4): 580–91.CrossRefGoogle ScholarPubMed
Putwatana, P., Reodecha, P., Sirapo-ngam, Y., et al., Nutrition screening tools and the prediction of postoperative infectious and wound complications: comparison of methods in presence of risk adjustment. Nutrition, 2005; 21(6): 691–7.CrossRefGoogle ScholarPubMed
Rafnsson, S. B., Dilis, V., Trichopoulou, A., Antioxidant nutrients and age-related cognitive decline: a systematic review of population-based cohort studies. Eur J Nutr, 2013; 52(6): 1553–67.CrossRefGoogle ScholarPubMed
Ramsay, S. E., Whincup, P. H., Watt, R. G., et al., Burden of poor oral health in older age: findings from a population-based study of older British men. BMJ Open, 2015; 5(12): e009476.CrossRefGoogle ScholarPubMed
Regan, C. O., Kearney, P. M., Savva, G. M., et al., Age and sex differences in prevalence and clinical correlates of depression: first results from the Irish Longitudinal Study on Ageing. Int J Geriatr Psychiatry, 2013; 28(12): 1280–7.CrossRefGoogle ScholarPubMed
Reger, M. A., Henderson, S. T., Hale, C., et al., Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging, 2004; 25(3): 311–14.CrossRefGoogle ScholarPubMed
Rendeiro, C., Vauzour, D., Kean, R. J., et al., Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology, 2012; 223(3): 319330.CrossRefGoogle ScholarPubMed
Rendeiro, C., Vauzour, D., Rattray, M., et al., Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One, 2013; 8(5): e63535.CrossRefGoogle ScholarPubMed
Ritchie, S. J., Bates, T. C., Corley, J., et al., Alcohol consumption and lifetime change in cognitive ability: a gene x environment interaction study. Age (Dordr), 2014; 36(3): 9638.CrossRefGoogle Scholar
Rodriguez-Mateos, A., Rendeiro, C., Bergillos-Meca, T., et al., Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am J Clin Nutr, 2013; 98(5): 1179–91.CrossRefGoogle ScholarPubMed
Roussel, A. M., Andriollo-Sanchez, M., Ferry, M., et al., Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br J Nutr, 2007; 98(2): 326–31.CrossRefGoogle ScholarPubMed
Sabia, S., Elbaz, A., Britton, A., et al., Alcohol consumption and cognitive decline in early old age. Neurology, 2014; 82(4): 332–9.CrossRefGoogle ScholarPubMed
Sachdev, P. S., Valenzuela, M., Wang, X. L., et al., Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology, 2002; 58(10): 1539–41.CrossRefGoogle ScholarPubMed
Salas-Salvado, J., Bullo, M., Babio, N., et al., Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care, 2011; 34(1): 1419.CrossRefGoogle ScholarPubMed
Samieri, C., Maillard, P., Crivello, F., et al., Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology, 2012; 79(7): 642–50.CrossRefGoogle ScholarPubMed
Samieri, C., Lorrain, S., Buaud, B., et al., Relationship between diet and plasma long-chain n-3 PUFAs in older people: impact of apolipoprotein E genotype. J Lipid Res, 2013; 54(9): 2559–67.CrossRefGoogle ScholarPubMed
Scalbert, A., Manach, C., Morand, C., et al., Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr, 2005; 45(4): 287306.CrossRefGoogle ScholarPubMed
Scarmeas, N., Stern, Y., Mayeux, R., et al., Mediterranean diet and mild cognitive impairment. Arch Neurol, 2009; 66(2): 216–25.Google ScholarPubMed
Scarmeas, N., Stern, Y., Tang, M. X., et al., Mediterranean diet and risk for Alzheimer's disease. Ann Neurol, 2006; 59(6): 912–21.CrossRefGoogle ScholarPubMed
Scheltens, P., Twisk, J. W., Blesa, R., et al., Efficacy of Souvenaid in mild Alzheimer's disease: results from a randomized, controlled trial. J Alzheimers Dis, 2012; 31(1): 225–36.CrossRefGoogle ScholarPubMed
Schlogl, M., Holick, M. F., Vitamin D and neurocognitive function. Clin Interv Aging, 2014; 9: 559–68.Google ScholarPubMed
Schroeter, H., Heiss, C., Balzer, J., et al., (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A, 2006; 103(4): 1024–9.CrossRefGoogle ScholarPubMed
Schroeter, H., Heiss, C., Spencer, J. P., et al., Recommending flavanols and procyanidins for cardiovascular health: current knowledge and future needs. Mol Aspects Med, 2010; 31(6): 546–57.CrossRefGoogle ScholarPubMed
Seshadri, S., Beiser, A., Selhub, J., et al., Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med, 2002; 346(7): 476–83.CrossRefGoogle ScholarPubMed
Shah, R. C., Kamphuis, P. J., Leurgans, S., et al., The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer's disease. Alzheimers Res Ther, 2013; 5(6): 19.CrossRefGoogle ScholarPubMed
Shah, R. C. et al., Medical foods for Alzheimer's disease. Drugs Aging, 2011; 28(6): 421–8.CrossRefGoogle ScholarPubMed
Shatenstein, B., Barberger-Gateau, P., Mecocci, P., Prevention of age-related cognitive decline: which strategies, when, and for whom? J Alzheimers Dis, 2015; 48(1): 3553.CrossRefGoogle Scholar
Silva, P., Kergoat, M. J., Shatenstein, B., Challenges in managing the diet of older adults with early-stage Alzheimer dementia: a caregiver perspective. J Nutr Health Aging, 2013; 17(2): 142–7.CrossRefGoogle ScholarPubMed
Singh, B., Parsaik, A. K., Mielke, M. M., et al., Association of Mediterranean diet with mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. J Alzheimers Dis, 2014; 39(2): 271–82.CrossRefGoogle ScholarPubMed
Sinn, N., Milte, C. M., Street, S. J., et al., Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr, 2012; 107(11): 1682–93.CrossRefGoogle Scholar
Smith, A. D., Smith, S. M., de Jager, C. A., et al., Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One, 2010; 5(9): e12244.CrossRefGoogle Scholar
Smith, K. L., Greenwood, C. E., Weight loss and nutritional considerations in Alzheimer disease. J Nutr Elder, 2008; 27(3–4): 381403.CrossRefGoogle ScholarPubMed
Snitz, B. E., O'Meara, E. S., Carlson, M. C., et al., Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA, 2009; 302(24): 2663–70.CrossRefGoogle ScholarPubMed
Snyder, J. S., Soumier, A., Brewer, M., et al., Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 2011; 476(7361): 458–61.CrossRefGoogle ScholarPubMed
Sofi, F., Abbate, R., Gensini, G. F., et al., Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr, 2010; 92(5): 1189–96.CrossRefGoogle Scholar
Sorensen, J., Kondrup, J., Prokopowicz, J., et al., EuroOOPS: an international, multicentre study to implement nutritional risk screening and evaluate clinical outcome. Clin Nutr, 2008; 27(3): 340–9.CrossRefGoogle ScholarPubMed
Spencer, J. P., Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc Nutr Soc, 2008; 67(2): 238–52.CrossRefGoogle ScholarPubMed
Spencer, J. P., The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev, 2009; 38(4): 1152–61.CrossRefGoogle ScholarPubMed
Stampfer, M. J., Kang, J. H., Chen, J., et al., Effects of moderate alcohol consumption on cognitive function in women. N Engl J Med, 2005; 352(3): 245–53.CrossRefGoogle ScholarPubMed
Stanciu, I., Larsson, M., Nordin, S., et al., Olfactory impairment and subjective olfactory complaints independently predict conversion to dementia: a longitudinal, population-based study. J Int Neuropsychol Soc, 2014; 20(2): 209–17.CrossRefGoogle ScholarPubMed
Stangl, D., Thuret, S., Impact of diet on adult hippocampal neurogenesis. Genes Nutr, 2009; 4(4): 271–82.CrossRefGoogle ScholarPubMed
Steinman, M. Q., Crean, K. K., Trainor, B. C., Photoperiod interacts with food restriction in performance in the Barnes maze in female California mice. Eur J Neurosci, 2011; 33(2): 361–70.CrossRefGoogle ScholarPubMed
Stratton, R. J., King, C. L., Stroud, M. A., et al., “Malnutrition Universal Screening Tool” predicts mortality and length of hospital stay in acutely ill elderly. Br J Nutr, 2006; 95(2): 325–30.CrossRefGoogle ScholarPubMed
Sydenham, E., Dangour, A. D., Lim, W. S., Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst Rev, 2012; 6: CD005379.Google Scholar
Tan, Z. S., Harris, W. S., Beiser, A. S., et al., Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging. Neurology, 2012; 78(9): 658–64.CrossRefGoogle ScholarPubMed
Tangney, C. C., Kwasny, M. J., Li, H., et al., Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population. Am J Clin Nutr, 2011a; 93(3): 601–7.CrossRefGoogle Scholar
Tangney, C. C., Aggarwal, N. T., Li, H., et al., Vitamin B12, cognition, and brain MRI measures: a cross-sectional examination. Neurology, 2011b; 77(13): 1276–82.CrossRefGoogle Scholar
Thomas, P., Lalloue, F., Preux, P. M., et al., Dementia patients caregivers quality of life: the PIXEL study. Int J Geriatr Psychiatry, 2006; 21(1): 50–6.CrossRefGoogle ScholarPubMed
Titova, O. E., Sjogren, P., Brooks, S. J., et al., Dietary intake of eicosapentaenoic and docosahexaenoic acids is linked to gray matter volume and cognitive function in elderly. Age (Dordr), 2013; 35(4): 1495–505.CrossRefGoogle ScholarPubMed
Trichopoulou, A., Costacou, T., Bamia, C., et al., Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med, 2003; 348(26): 2599–608.CrossRefGoogle Scholar
Tsivgoulis, G., Judd, S., Letter, A. J., et al., Adherence to a Mediterranean diet and risk of incident cognitive impairment. Neurology, 2013; 80(18): 1684–92.CrossRefGoogle ScholarPubMed
Usoro, O. B., Mousa, S. A., Vitamin E forms in Alzheimer's disease: a review of controversial and clinical experiences. Crit Rev Food Sci Nutr, 2010; 50(5): 414–19.CrossRefGoogle ScholarPubMed
Vakhapova, V., Cohen, T., Richter, Y., et al., Phosphatidylserine containing omega-3 Fatty acids may improve memory abilities in nondemented elderly individuals with memory complaints: results from an open-label extension study. Dement Geriatr Cogn Disord, 2014; 38(1–2): 3945.CrossRefGoogle ScholarPubMed
Valls-Pedret, C., Sala-Vila, A., Serra-Mir, M., et al., Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med, 2015; 175(7): 1094–103.CrossRefGoogle ScholarPubMed
van Dam, R. M., Naidoo, N., Landberg, R., Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr Opin Lipidol, 2013; 24(1): 2533.CrossRefGoogle ScholarPubMed
van de Rest, O., Geleijnse, J. M., Kok, F. J., et al., Effect of fish-oil supplementation on mental well-being in older subjects: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr, 2008; 88(3): 706–13.CrossRefGoogle ScholarPubMed
van de Rest, O., Spiro, A., 3rd, Krall-Kaye, E., et al., Intakes of (n-3) fatty acids and fatty fish are not associated with cognitive performance and 6-year cognitive change in men participating in the Veterans Affairs Normative Aging Study. J Nutr, 2009; 139(12): 2329–36.CrossRefGoogle Scholar
van de Rest, O., van Hooijdonk, L. W., Doets, E., et al., B vitamins and n-3 fatty acids for brain development and function: review of human studies. Ann Nutr Metab, 2012; 60(4): 272–92.CrossRefGoogle ScholarPubMed
van Wijk, N., Broersen, L. M., de Wilde, M. C., et al., Targeting synaptic dysfunction in Alzheimer's disease by administering a specific nutrient combination. J Alzheimers Dis, 2014; 38(3): 459–79.Google ScholarPubMed
Vandewoude, M., et al., Healthy brain ageing and cognition: nutritional factors. European Geriatric Medicine, 2016; 7: 7785.CrossRefGoogle Scholar
Vanhanen, M., Kivipelto, M., Koivisto, K., et al., APOE-epsilon4 is associated with weight loss in women with AD: a population-based study. Neurology, 2001; 56(5): 655–9.CrossRefGoogle ScholarPubMed
Vauzour, D., Camprubi-Robles, M., Miquel-Kergoat, S., et al., Nutrition for the ageing brain: towards evidence for an optimal diet. Ageing Res Rev, 2016; 35: 222–40.Google ScholarPubMed
Vellas, B., Coley, N., Ousset, P. J., et al., Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer's disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol, 2012; 11(10): 851–9.CrossRefGoogle ScholarPubMed
Vercambre, M. N., Grodstein, F., Berr, C., et al., Mediterranean diet and cognitive decline in women with cardiovascular disease or risk factors. J Acad Nutr Diet, 2012; 112(6): 816–23.CrossRefGoogle ScholarPubMed
Virtaa, J. J., Jarvenpaa, T., Heikkila, K., et al., Midlife alcohol consumption and later risk of cognitive impairment: a twin follow-up study. J Alzheimers Dis, 2010; 22(3): 939–48.CrossRefGoogle ScholarPubMed
Virtanen, J. K., Siscovick, D. S., Longstreth, W. T., et al., Fish consumption and risk of subclinical brain abnormalities on MRI in older adults. Neurology, 2008; 71(6): 439–46.CrossRefGoogle ScholarPubMed
Vogiatzoglou, A., Refsum, H., Johnston, C., et al., Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology, 2008; 71(11): 826–32.CrossRefGoogle ScholarPubMed
Volkert, D., Chourdakis, M., Faxen-Irving, G., et al., ESPEN guidelines on nutrition in dementia. Clin Nutr, 2015; 34(6): 1052–73.CrossRefGoogle ScholarPubMed
Walker, J. G., Batterham, P. J., Mackinnon, A. J., et al., Oral folic acid and vitamin B-12 supplementation to prevent cognitive decline in community-dwelling older adults with depressive symptoms – the Beyond Ageing Project: a randomized controlled trial. Am J Clin Nutr, 2012; 95(1): 194203.CrossRefGoogle ScholarPubMed
Wang, X., Wang, W., Li, L., et al., Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta, 2014; 1842(8): 1240–7.Google ScholarPubMed
Wengreen, H., Munger, R. G., Cutler, A., et al., Prospective study of Dietary Approaches to Stop Hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging. Am J Clin Nutr, 2013; 98(5): 1263–71.CrossRefGoogle Scholar
Wetzels, R. B., Zuidema, S. U., de Jonghe, J. F., et al., Determinants of quality of life in nursing home residents with dementia. Dement Geriatr Cogn Disord, 2010; 29(3): 189–97.CrossRefGoogle ScholarPubMed
Wiesmann, M., Jansen, D., Zerbi, V., et al., Improved spatial learning strategy and memory in aged Alzheimer AbetaPPswe/PS1dE9 mice on a multi-nutrient diet. J Alzheimers Dis, 2013; 37(1): 233–45.CrossRefGoogle ScholarPubMed
Williams, R. J., Spencer, J. P., Rice-Evans, C., Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med., 2004; 36(7): 838–49.CrossRefGoogle ScholarPubMed
Williams, C. M., El Mohsen, M. A., Vauzour, D., et al., Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med, 2008; 45(3): 295305.CrossRefGoogle ScholarPubMed
Williams, R. J., Spencer, J. P., Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med, 2012; 52(1): 3545.CrossRefGoogle ScholarPubMed
Williamson, R., McNeilly, A., Sutherland, C., Insulin resistance in the brain: an old-age or new-age problem? Biochem Pharmacol, 2012; 84(6): 737–45.CrossRefGoogle ScholarPubMed
Witte, A. V., Kerti, L., Hermannstadter, H. M., et al., Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex, 2013; 24(11): 3059–68.Google ScholarPubMed
World Health Organization. Dementia: A Public Health Priority, 2012. Geneva, Switzerland: WHO Press.Google Scholar
Wu, A., Ying, Z., Gomez-Pinilla, F., Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience, 2008a; 155(3): 751–9.CrossRefGoogle ScholarPubMed
Wu, P., Shen, Q., Dong, S., et al., Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging, 2008b; 29(10): 1502–11.CrossRefGoogle ScholarPubMed
Wurtman, R. J., Cansev, M., Sakamoto, T., et al., Use of phosphatide precursors to promote synaptogenesis. Annu Rev Nutr, 2009; 29: 5987.CrossRefGoogle ScholarPubMed
Wurtman, R. J., Synapse formation and cognitive brain development: effect of docosahexaenoic acid and other dietary constituents. Metabolism, 2008; 57 (Suppl 2): S610.CrossRefGoogle ScholarPubMed
Yassa, M. A., Lacy, J. W., Stark, S. M., et al., Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 2011; 21(9): 968–79.CrossRefGoogle ScholarPubMed
Yilmaz, N., Vural, H., Yilmaz, M., et al., Calorie restriction modulates hippocampal NMDA receptors in diet-induced obese rats. J Recept Signal Transduct Res, 2011; 31(3): 214–19.CrossRefGoogle ScholarPubMed
Yurko-Mauro, K., McCarthy, D., Rom, D., et al., Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement, 2010; 6(6): 456–64.CrossRefGoogle ScholarPubMed
Zainuddin, M. S., Thuret, S., Nutrition, adult hippocampal neurogenesis and mental health. British Medical Bulletin, 2012; 103(1): 25.CrossRefGoogle ScholarPubMed
Zamora-Ros, R., Rabassa, M., Llorach, R., et al., Application of dietary phenolic biomarkers in epidemiology: past, present, and future. J Agric Food Chem, 2012; 60(27): 6648–57.CrossRefGoogle ScholarPubMed
Zamora-Ros, R., Touillaud, M., Rothwell, J. A., et al., Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits. Am J Clin Nutr, 2014; 100(1): 1126.CrossRefGoogle Scholar
Zanotta, D., Puricelli, S., Bonoldi, G., Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: a noncomparative, exploratory clinical study. Neuropsychiatr Dis Treat, 2014; 10: 225–30.Google ScholarPubMed
Zerbi, V., Jansen, D., Wiesmann, M., et al., Multinutrient diets improve cerebral perfusion and neuroprotection in a murine model of Alzheimer's disease. Neurobiol Aging, 2014; 35(3): 600–13.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×