Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T17:52:43.376Z Has data issue: false hasContentIssue false

II.C.1 - Algae

from II.C - Important Vegetable Supplements

Published online by Cambridge University Press:  28 March 2008

Kenneth F. Kiple
Affiliation:
Bowling Green State University, Ohio
Get access

Summary

Algae are eukaryotic photosynthetic micro- and macroorganisms found in marine and fresh waters and in soils. Some are colorless and even phagotrophic or saprophytic. They may be picoplankton, almost too small to be seen in the light microscope, or they could be up to 180 feet long, such as the kelp in the kelp forests in the Pacific Ocean.

Algae are simple, nucleated plants divided into seven taxa: (1) Chlorophyta (green algae), (2) Charophyta (stoneworts), (3) Euglenophyta (euglenas), (4) Chrysophyta (golden-brown, yellow-green algae and diatoms), (5) Phaeophyta (brown algae), (6) Pyrrophyta (dinoflagellates), and (7) Rhodophyta (red algae). A taxon of simple, nonnucleated plants (prokaryotes) called Cyanobacteria (blue-green bacteria) is also included in the following discussion as they have a long history as human food.

Algae are eaten by many freshwater and marine animals as well as by several terrestrial domesticated animals such as sheep, cattle, and two species of primates: Macaca fuscata in Japan (Izawa and Nishida 1963) and Homo sapiens. The human consumption of algae, or phycophagy, developed thousands of years ago, predominantly among coastal peoples and, less commonly, among some inland peoples. In terms of quantity and variety of species of algae eaten, phycophagy is, and has been, most prevalent among the coastal peoples of Southeast Asia, such as the ancient and modern Chinese, Japanese, Koreans, Filipinos, and Hawaiians.

History and Geography

The earliest archaeological evidence for the consumption of algae found thus far was discovered in ancient middens along the coast of Peru. Kelp was found in middens at Pampa, dated to circa 2500 B.C. (Moseley 1975); at Playa Hermosa (2500–2275 B.C.); at Concha (2275–1900 B.C.); at Gaviota (1900–1750 B.C.); and at Ancon (1400–1300 B.C.) (Patterson and Moseley 1968). T. C. Patterson and M. E. Moseley (1968) believe that these finds indicate that marine algae were employed by the ancient Peruvians to supplement their diets.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, S. 1986. A role for algae as human food in antiquity. Food and Foodways 1.CrossRefGoogle ScholarPubMed
Aaronson, S., Berner, T., and Dubinsky, Z.. 1980. Microalgae as a source of chemicals and natural products. In Algae biomass, ed. Shelef, G. and Soeder, C. J.. Amsterdam.Google Scholar
Aaronson, S., DhawalePatni, S. W. N. J., et al. 1977. The cell content and secretion of water-soluble vitamins by several freshwater algae. Archives of Microbiology 112.CrossRefGoogle ScholarPubMed
Abbott, I. A. 1978. The uses of seaweed as food in Hawaii. Economic Botany 32.CrossRefGoogle Scholar
Abe, S. 1974. Occurrence of homoserine betaine in the hydrolysate of an unknown base isolated from a green alga. Japanese Fisheries 40.Google Scholar
Abe, S., and Kaneda, T.. 1972. The effect of edible seaweeds on cholesterol metabolism in rats. In Proceedings of the Seventh International Seaweed Symposium, ed. Nisizawa, K.. Tokyo.Google Scholar
Abe, S., and Kaneda, T.. 1973. Studies on the effects of marine products on cholesterol metabolism in rats. VIII. The isolation of hypocholesterolemic substance from green laver. Bulletin of the Japanese Society of Scientific Fisheries 39.Google Scholar
Abe, S., and Kaneda, T.. 1975. Studies on the effects of marine products on cholesterol metabolism in rats. XI. Isolation of a new betaine, ulvaline, from a green laver Monosrtoma-nitidum and its depressing effect on plasma cholesterol levels. Bulletin of the Japanese Society of Scientific Fisheries 41.CrossRefGoogle Scholar
Abe, S., Uchiyama, M., and Sato, R.. 1972. Isolation and identification of native auxins in marine algae. Agricultural Biological Chemistry 36.CrossRefGoogle Scholar
Ackman, R. G. 1981. Algae as sources for edible lipids. In New sources of fats and oils, ed. Pryde, E. H., Princen, L. H., and Malcherjee, K. D.. Champaign, Ill.Google Scholar
Ager, T. A., and Ager, L. P.. 1980. Ethnobotany of the Eskimos of Nelson Island [Alaska]. Arctic Anthropology 17.Google Scholar
Aldave-Pajaras, A. 1969. Cushuro algas azul-verdes utilizados como alimento en la región altoandina Peruana. Boletín de la Sociedad Botánica de la Libertad 1.Google Scholar
Aldave-Pajaras, A. 1985. High Andean algal species as hydrobiological food resources. Archiv für Hydrobiologie und Beiheft: Ergebnisse der Limnologie 20.Google Scholar
Arasaki, S., and Arasaki, T.. 1983. Vegetables from the sea.Tokyo.Google Scholar
Baker, J. T., and Murphy, V., eds. 1976. Compounds from marine organisms. In Handbook of marine science: Marine products, Vol. 3, Section B, 86. Cleveland, Ohio.Google Scholar
Barrau, J. 1962. Les plantes alimentaires de l'océanie origine.Marseille.Google Scholar
Beare-Rogers, J. 1988. Nutritional attributes of fatty acids. Journal of the Oil Chemists' Society 65.Google Scholar
Becker, E. W., and Venkataraman, L. V.. 1984. Production and utilization of the blue-green alga Spirulina in India. Biomass 4.CrossRefGoogle Scholar
Birket-Smith, K. 1953. The Chugach Eskimo.Copenhagen.Google Scholar
Biswas, K. 1953. The algae as substitute food for human and animal consumption. Science and Culture 19.Google Scholar
Blunden, G., and Gordon, S. M.. 1986. Betaines and their sulphonic analogues in marine algae. Progress in Phycological Research 4.Google Scholar
Blunden, G., Gordon, S. M., and Keysell, G. R.. 1982. Lysine betaine and other quaternary ammonium compounds from British species of Laminariales. Journal of Natural Products 45.CrossRefGoogle Scholar
Boergesen, F. 1938. Catenella nipae used as food in Burma. Journal of Botany 76.Google Scholar
Booth, E. 1965. The manurial value of seaweed. Botanica Marina 8.CrossRefGoogle Scholar
Brooker, S. G., Combie, R. C., and Cooper, R. C.. 1989. Economic native plants of New Zealand. Economic Botany 43.CrossRefGoogle Scholar
Brooker, S. G., and Cooper, R. C.. 1961. New Zealand medicinal plants.Auckland.Google Scholar
Browman, D. L. 1980. El manejo de la tierra árida del altiplano del Perú y Bolivia. América Indígena 40.Google Scholar
Browman, D. L. 1981. Prehistoric nutrition and medicine in the Lake Titicaca basin. In Health in the Andes, ed. Bastien, J. W. and Donahue, J. M.. Washington, D.C.Google Scholar
Calabrese, E. J., and Horton, J. H. M.. 1985. The effects of vitamin E on ozone and nitrogen dioxide toxicity. World Review of Nutrition and Diet 46.CrossRefGoogle ScholarPubMed
Cannell, R. J. P., Kellam, S. J., Owsianka, A. M., and Walker, J. M.. 1987. Microalgae and cyanobacteria as a source of glucosidase inhibitors. Journal of General Microbiology 133.Google Scholar
Chapman, V. J. 1970. Seaweeds and their uses.London.Google Scholar
Chapman, V. J., and Chapman, D. J.. 1980. Seaweeds and their uses.London.CrossRefGoogle Scholar
Chase, F. M. 1941. Useful algae. Smithsonian Institution, annual report of the board of regents.Google Scholar
Chu, H.-J., and Tseng, C.-K.. 1988. Research and utilization of cyanophytes in China: A report. Archives of Hydrobiology, Supplement 80.Google Scholar
Clement, G. 1975. Spirulina. In Single cell protein II, ed. Tannenbaum, S. R. and Wang, D. I. C.. Cambridge, Mass.Google Scholar
Clement, G., Giddey, C., and Merzi, R.. 1967. Amino acid composition and nutritive value of the alga Spirulina maxima.Journal of the Science of Food and Agriculture 18.CrossRefGoogle Scholar
Cobo, B. 1956. Obras, ed. Mateos, P. Francisco. 2 vols. Madrid.Google Scholar
Cummins, K. W., and Wuycheck, J. C.. 1971. Caloric equivalents for investigations in ecological energetics.Internationale Vereinigung für theoretische und angewandte Limnologie. Monograph Series No. 18. Stuttgart.Google Scholar
Daigo, K. 1959. Studies on the constituents of Chondria armata III. Constitution of domoic acid. Journal of the Pharmaceutical Society of Japan 79.Google Scholar
Dangeard, P. 1940. On a blue alga edible for man: Arthrospira platensis (Nordst.) Gomont. Actes de la Société Linnéene de Bordeaux 91.Google Scholar
Dawes, E. A. 1991. Storage polymers in prokaryotes. Society of General Microbiology Symposium 47.Google Scholar
Delpeuch, F., Joseph, A., and Cavelier, C.. 1975. Consommation alimentaire et apport nutritionnel des algues bleues (Oscillatoria platensis) chez quelques populations du Kanem (Tchad). Annales de la Nutrition et de l'Alimentation 29.Google Scholar
Dillehay, T. D. 1989. Monte Verde.Washington, D.C.Google Scholar
Druehl, L. D. 1988. Cultivated edible kelp. In Algae and human affairs, ed. Lembi, C. A. and Waaland, J. R.. Cambridge.Google Scholar
Drury, H. M. 1985. Nutrients in native foods of southeastern Alaska. Journal of Ethnobiology 5.Google Scholar
Durand-Chastel, H. 1980. Production and use of Spirulina in Mexico. In Algae biomass, ed. Shelef, G. and Soeder, C. J.. Amsterdam.Google Scholar
Eidlihtz, M. 1969. Food and emergency food in the circumpolar area.Uppsala, Sweden.Google Scholar
El-Fouly, M., Abdalla, F. E., Baz, F. K. El, and Mohn, F. H.. 1985. Experience with algae production within the Egypto-German microalgae project. Archiv für Hydrobiologie Beiheft: Ergebnisse der Limnologie 20.Google Scholar
Elenkin, A. A. 1931. On some edible freshwater algae. Priroda 20.Google Scholar
Ericson, L.-E., and Carlson, B.. 1953. Studies on the occurrence of amino acids, niacin and pantothenic acid in marine algae. Arkiv for Kemi 6.Google Scholar
,FAO (Food and Agriculture Organization of the United Nations). 1970. Amino-acid content of foods and biological data on proteins. FAO Nutritional Studies No. 24. Rome.
Fattorusso, E., and Piattelli, M.. 1980. Amino acids from marine algae. In Marine natural products, ed. Scheuer, P. J.. New York.Google Scholar
Feldheim, W., Payer, H. D., Saovakntha, S., and Pongpaew, P.. 1973. The uric acid level in human plasma during a nutrition test with microalgae in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 4.Google ScholarPubMed
Fritz, L., Quilliam, A. M., Wright, J. L. C., et al. 1992. An outbreak of domoic acid poisoning attributed to the pennate diatom Pseudonitzschia australis. Journal of Phycology 28.CrossRefGoogle Scholar
Furst, P. T. 1978. Spirulina. Human Nature (March).Google Scholar
Gade, D. W. 1975. Plants, man and the land in the Vilcanota valley of Peru.The Hague, the Netherlands.CrossRefGoogle Scholar
Gaitan, E. 1990. Goitrogens in food and water. Annual Review of Nutrition 10.CrossRefGoogle ScholarPubMed
Galutira, E. C., and Velasquez, C. T.. 1963. Taxonomy, distribution and seasonal occurrence of edible marine algae in Ilocos Norte, Philippines. Philippine Journal of Science 92.Google Scholar
Goldie, W. H. 1904. Maori medical lore. Transactions of the New Zealand Institute 37.Google Scholar
Goodrich, J., Lawson, C., and Lawson, V. P.. 1980. Kasharya pomo plants.Los Angeles.Google Scholar
Goodwin, T. W. 1974. Carotenoids and biliproteins. In Algal physiology and biochemistry, ed. Stewart, W. D. P.. Berkeley, Calif.Google Scholar
Grimm, M. R. 1952. Iodine content of some marine algae. Pacific Science 6.Google Scholar
Guaman Poma de Ayala, F. 1965–6. La nueva cronica y buen gobierno, Vol. 3. Lima.Google Scholar
Gunther, E. 1945. Ethnobotany of western Washington.Seattle.Google Scholar
Güven, K. C., Guler, E., and Yucel, A.. 1976. Vitamin B-12 content of Gelidium capillaceum Kutz. Botanica Marina 19.Google Scholar
Hasimoto, Y. 1979. Marine toxins and other bioactive marine metabolites.Tokyo.Google Scholar
Higa, T. 1981. Phenolic substances. In Marine natural products, ed. Scheuer, P.. New York.Google Scholar
Hiroe, M. 1969. The plants in the Tale of Genji.Tokyo.Google Scholar
Hoygaard, A. 1937. Skrofter om Svalbard og Ishavet.Oslo.Google Scholar
Irving, F. R. 1957. Wild and emergency foods of Australian and Tasmanian aborigines. Oceania 28.Google Scholar
Izawa, K., and Nishida, T.. 1963. Monkeys living in the northern limits of their distribution. Primates 4.CrossRefGoogle Scholar
Jao, C. 1947. Prasiola Yunnanica sp. nov. Botanical Bulletin of the Chinese Academy 1.Google Scholar
Jassley, A. 1988. Spirulina: A model algae as human food. In Algae and human affairs, ed. Lembi, C. A. and Waaland, J. R.. Cambridge.Google Scholar
Jensen, A. 1969. Tocopherol content of seaweed and seaweed meal. I. Analytical methods and distribution of tocopherols in benthic algae. Journal of Scientific Food and Agriculture 20.Google Scholar
Jensen, A. 1972. The nutritive value of seaweed meal for domestic animals. In Proceedings of the Seventh International Seaweed Symposium, ed. Nisizawa, K.. New York.Google Scholar
Jiang, Z. D., and Gerwick, W. H.. 1991. Eicosanoids and the hydroxylated fatty acids from the marine alga Gracilariopsis lemaneiformis. Phytochemistry 30.CrossRefGoogle Scholar
Johnston, H. W. 1966. The biological and economic importance of algae. Part 2. Tuatara 14.Google Scholar
Johnston, H. W. 1970. The biological and economic importance of algae. Part 3. Edible algae of fresh and brackish water. Tuatara 18.Google Scholar
Kanazawa, A. 1963. Vitamins in algae. Bulletin of the Japanese Society for Scientific Fisheries 29.CrossRefGoogle Scholar
Kennedy, T. A., and Liebler, D. C.. 1992. Peroxyl radical scavenging by B-carotene in lipid bilayers. Journal of Biological Chemistry 267.Google Scholar
Khan, M. 1973. On edible Lemanea Bory de St. Vincent – a fresh water red alga from India. Hydrobiologia 43.CrossRefGoogle Scholar
Kishi, K., Inoue, G., Yoshida, A., et al. 1982. Digestibility and energy availability of sea vegetables and fungi in man. Nutrition Reports International 26.Google Scholar
Kong, M. K., and Chan, K.. 1979. Study on the bacterial flora isolated from marine algae. Botanica Marina 22.CrossRefGoogle Scholar
Krinsky, N. I. 1992. Mechanism of action of biological antioxidants. Proceedings of the Society for Experimental Biology and Medicine 200.Google ScholarPubMed
Lagerheim, M. G.. 1892. La “Yuyucha.” La Nuevo Notarisia 3.Google Scholar
Lee, K.-Y. 1965. Some studies on the marine algae of Hong Kong. II. Rhodophyta. New Asia College Academic Annual 7.Google Scholar
Léonard, J. 1966. The 1964–65 Belgian Trans-Saharan Expedition. Nature 209.CrossRefGoogle Scholar
Léonard, J., and Compère, P.. 1967. Spirulina platensis, a blue alga of great nutritive value due to its richness in protein. Bulletin du Jardin botanique naturelle de l'État à Bruxelles (Supplement) 37.Google Scholar
Lewin, R. A. 1974. Biochemical taxonomy. In Algal physiology and biochemistry, ed. Stewart, W. D.. Berkeley, Calif.Google Scholar
Lewmanomont, K. 1978. Some edible algae of Thailand. Paper presented at the Sixteenth National Conference on Agriculture and Biological Sciences. Bangkok.Google Scholar
Lubitz, J. A. 1961. The protein quality, digestibility and composition of Chlorella 171105.Research and Development Department, Chemical Engineering Section. General Dynamics Corporation Biomedical Laboratory Contract No. AF33(616)7373, Project No. 6373, Task No. 63124. Groton, Conn.Google Scholar
Madlener, J. C. 1977. The sea vegetable book.New York.Google Scholar
Massal, E., and Barrau., J. 1956. Food plants of the South Sea Islands.Noumea, New Caledonia.Google Scholar
Masuda, S. 1981. Cochayuyo, Macha camaron y higos chargueados. In Estudios etnográficos del Perú meridional, ed. Masuda, S.. Tokyo.Google Scholar
Masuda, S. 1985. Algae…. In Andean ecology and civilization, ed. Masuda, S., Shimada, I., and Morris, C.. Tokyo.Google Scholar
Matsuzawa, T. 1978. The formative site of Las Haldas, Peru: Architecture, chronology and economy. American Antiquity 43.CrossRefGoogle Scholar
McCandless, E. L. 1981. Polysaccharides of seaweeds. In The biology of seaweeds, ed. Lobban, C. S. and Wynne, M. J.. Berkeley, Calif.Google Scholar
Michanek, G. 1975. Seaweed resources of the ocean.FAO Fisheries Technical Paper No. 138. Rome.Google Scholar
Miyashita, A. 1974. The seaweed. The cultural history of material and human being.Tokyo.Google Scholar
Montagne, M. C. 1946–7. Un dernier mot sur le Nostoc edule de la Chine. Revue botanique 2.Google Scholar
Moore, R. E. 1976. Chemotaxis and the odor of seaweed. Lloydia 39.Google Scholar
Morgan, K. C., Wright, J. L. C., and Simpsom, F. J.. 1980. Review of chemical constituents of the red alga, Palmaria palmata (dulse). Economic Botany 34.CrossRefGoogle Scholar
Moseley, M. E. 1975. The maritime foundations of Andean civilization.Menlo Park, Calif.Google Scholar
Moseley, M. E., and Willey, G. R.. 1973. Aspero, Peru: A reexamination of the site and its implications. American Antiquity 38.CrossRefGoogle Scholar
Namikawa, S. 1906. Fresh water algae as an article of human food. Bulletin of the College of Agriculture. Tokyo Imperial University 7.Google Scholar
Nes, W. R. 1977. The biochemistry of plant sterols. Advances in Lipid Research 15.CrossRefGoogle Scholar
Newton, L. 1951. Seaweed utilisation.London.Google Scholar
Nisizawa, K., Noda, H., Kikuchi, R., and Watanabe, T.. 1987. The main seaweed foods in Japan. Hydrobiologia 151/2.Google Scholar
Noda, H., Amano, H., Arashima, K., and Nisizawa, K.. 1990. Antitumor activity of marine algae. Hydrobiologia 204/5.Google Scholar
Norton, H. H. 1981. Plant use in Kaigani Haida culture. Correction of an ethnohistorical oversight. Economic Botany 35.CrossRefGoogle Scholar
Oberg, K. 1973. The social economy of the Tlingit Indians.Seattle, Wash.Google Scholar
Ohni, H. 1968. Edible seaweeds in Chile. Japanese Society of Physiology Bulletin 16.Google Scholar
Ortega, M. W. 1972. Study of the edible algae of the Valley of Mexico. Botanica Marina 15.Google Scholar
Ostermann, H. 1938. Knud Rasmussen’s posthumous notes on the life and doings of east Greenlanders in olden times. Meddelelser Om Grønland.Google Scholar
Paoletti, C., Florenzano, G., Materassi, R., and Caldini, G.. 1973. Ricerche sulla composizione delle proteine di alcuno ceppi cultivati di microalghe verdi e verdi-azzurre. Scienze e Tecnologia degli alimenti 3.Google Scholar
Parsons, M. H. 1970. Preceramic subsistence on the Peruvian coast. American Antiquity 35.CrossRefGoogle Scholar
Parsons, T. R., Stephens, K., and Strickland, J. D. H.. 1961. On the chemical composition of eleven species of marine phytoplankton. Journal of the Fisheries Research Board of Canada 18.Google Scholar
Patterson, T. C., and Moseley, M. E.. 1968. Preceramic and early ceramic cultures of the central coast of Peru. Nawpa Pacha 6.CrossRefGoogle Scholar
Perl, T. M., Bedard, L., Kosatsky, T., et al. 1990. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. New England Journal of Medicine 322.CrossRefGoogle ScholarPubMed
Perl, T. M., Remis, R., Kosatsky, T., et al. 1987. Intoxication following mussel ingestion in Montreal. Canada Diseases Weekly Report 13.Google Scholar
Petroff, I. 1884. Alaska: Its population, industries, and resources.Washington, D.C.Google Scholar
Polo, J. A. 1977. Nombres vulgares y usos de las algas en el Perú, Serie de divulgación, Universidad Nacional Mayor de San Marcos, Museo de Historia Natural Javier Prado, Departamento de Botánico, No. 7. Lima.Google Scholar
Porsild, A. E. 1953. Edible plants of the Arctic. Arctic 6.CrossRefGoogle Scholar
Pozorski, S. G. 1979. Prehistoric diet and subsistence of the Moche Valley, Peru. World Archaeology 11.CrossRefGoogle ScholarPubMed
Ragan, M. A. 1981. Chemical constituents of seaweeds. In The biology of seaweeds, ed. Lobban, C. S. and Wynne, M. J.. Berkeley, Calif.Google Scholar
Raymond, J. S. 1981. The maritime foundation of Andean civilization: A reconsideration of the evidence. American Antiquity 46.CrossRefGoogle Scholar
Reagan, A. B. 1934. Plants used by the Hoh and Quilente Indians. Transactions of the Kansas Academy of Science 37.CrossRefGoogle Scholar
Robbs, P. G., Rosenberg, J. A., and Costa, F. A.. 1983. Contento vitamínico deScenedesmus quadricauda. II. Vitamin B-12. Revista Latinoamericana de Microbiología 25.Google Scholar
Ryther, J. H., Boer, J. A., and Lapointe, B. E.. 1978. Cultivation of seaweed for hydrocolloids, waste treatment and biomass for energy conversion. Proceedings of the Ninth International Seaweed Symposium, ed. Jensen, A. and Stein, R..Google Scholar
Salcedo-Olavarrieta, N., Ortega, M. M., Marin-Garcia, M. E., and Zavala-Moreno, C.. 1978. Estudio de las algas comestibles del Valle de México. III. Análisis comparativo de aminoacidos. Revista Latinoamericana de Microbiología 20.Google Scholar
Savageau, C. 1920. Utilisation des algues marines.Paris.CrossRefGoogle Scholar
Schönfeld-Leber, B. 1979. Marine algae as human food in Hawaii, with notes on other Polynesian islands. Ecology of Food and Nutrition 8.CrossRefGoogle Scholar
Scott, R. 1954. Observations on the iodo-amino acids of marine algae using iodine-131. Nature 173.CrossRefGoogle Scholar
Shaw, R. 1966. The polyunsaturated fatty acids of microorganisms. Advances in Lipid Research 4.CrossRefGoogle ScholarPubMed
Shiraishi, Y., Shirotori, T., and Takahata, E.. 1973. Determination of polycyclic aromatic hydrocarbon in foods. II. 3, 4-Benzopyrene in Japanese foods. Journal of the Food Hygiene Society of Japan 14.Google Scholar
Shirotori, T. 1972. Contents of 3, 4-benzopyrene in Japanese foods. Tokyo Kasei Daigaku Kenkyu Kiyo No. 12.Google Scholar
Simoons, F. J. 1991. Food in China.Boca Raton, Fla.Google Scholar
Skvortzov, V. B. 1919–22. The use of Nostoc as food in N. China. Royal Asiatic Society of Great Britain and Ireland 13: 67.Google Scholar
Smith, D. G., and Young, E. G.. 1955. The combined amino acids in several species of marine algae. Journal of Biochemistry 217.Google ScholarPubMed
Smith, H. M. 1933. An edible mountain-stream alga. Siam Society of Bangkok. Natural History Supplement 9.Google Scholar
Spalding, B. J. 1985. The hunt for new polymer properties. Chemical Weekly 136.Google Scholar
Subba Rao, G. N. 1965. Uses of seaweed directly as human food. Indo-Pacific Fisheries Council Regional Studies 2.Google Scholar
Subbulakshmi, G., Becker, W. E., and Venkataraman., L. V. 1976. Effect of processing on the nutrient content of the green alga Scenedesmus acutus. Nutrition Reports International 14.Google Scholar
Tiffany, L. H. 1958. Algae, the grass of many waters.Springfield, Ill.Google Scholar
Tilden, J. E. 1929. The marine and fresh water algae of China. Lingnan Science Journal 7.Google Scholar
Tipnis, H. P., and Pratt, R.. 1960. Protein and lipid content of Chlorella vulgaris in relation to light. Nature 188.CrossRefGoogle Scholar
Trubachev, N. I., Gitel'zon, I. I., Kalacheva, G. S., et al. 1976. Biochemical composition of several blue-green algae and Chlorella. Prikladnya Biokhimia Microbiologia 12.Google Scholar
Tseng, C.-K. 1933. Gloiopeltis and other economic seaweeds of Amoy, China. Lingnan Science Journal 12.Google Scholar
Tseng, C.-K. 1935. Economic seaweeds of Kwangtung Province, S. China. Lingnan Science Journal 14.Google Scholar
Tseng, C.-K. 1983. Common seaweeds of China.Beijing.Google Scholar
Tseng, C.-K. 1987. Some remarks on kelp cultivation industry of China. In Seaweed cultivation for renewable resources, ed. Bird, K. T. and Benson, P. H.. Amsterdam.Google Scholar
Tseng, C.-K. 1990. The theory and practice of phycoculture in China. In Perspectives in phycology, ed. Rajarao, V. N.. New Delhi.Google Scholar
Turner, N. J. 1974. Plant taxonomic systems and ethnobotany of three contemporary Indian groups of the Pacific Northwest (Haida, Bella Coola, and Lillooet). Syesis 7.Google Scholar
Turner, N. J. 1975. Food plants of British Columbia Indians. Part I – Coastal peoples, Handbook No. 34. Victoria.Google Scholar
Turner, N. J., and Bell, M. A. M.. 1973. The ethnobotany of the southern Kwakiutl Indians of British Columbia. Economic Botany 27.CrossRefGoogle Scholar
Tutour, B. le. 1990. Antioxidation activities of algal extracts, synergistic effect with vitamin E. Phytochemistry 29.CrossRefGoogle Scholar
Ueyanagi, J., Nawa, R., Nakamori, Y., et al. 1957. Studies on the active components of Digenea simplex Ag. and related compounds. XLVIII. Synthesis of alpha-kainic acid. Yakugaku Zasshi 77.Google Scholar
Velasquez, G. T. 1972. Studies and utilization of the Philippine marine algae. In Proceedings of the Seventh International Seaweed Symposium, ed. Nisizawa, K.. New York.Google Scholar
Venkataraman, L. V., Becker, W. E., and Shamala, T. R.. 1977. Studies on the cultivation and utilization of the alga Scenedesmus acutus as a single cell protein. Life Sciences 20.CrossRefGoogle Scholar
Waaland, J. R. 1981. Commercial utilization. In The biology of seaweeds, ed. Lobban, C. S. and Wynne, M. J.. Berkeley, Calif.Google Scholar
Watanabe, A. 1970. Studies on the application of Cyanophyta in Japan. Schweizerische Zeitschrift für Hydrologie 32.Google Scholar
Wester, P. J. 1925. The food plants of the Philippines, Bulletin No. 39. Manila.Google Scholar
Wood, B. J. B. 1974. Fatty acid and saponifiable lipids. In Algal physiology and biochemistry, ed. Stewart, W. D. P.. Berkeley, Calif.Google Scholar
Wood, E. J. F. 1965. Marine microbial ecology.London.Google Scholar
Xia, B., and Abbott, I. A.. 1987. Edible seaweeds of China and their place in the Chinese diet. Economic Botany 41.Google Scholar
Yacovleff, E., and Herrera, F. L.. 1934–5. El mundo vegetal de los antiguos peruanos. Revista Museo Nacional 3, 4.Google Scholar
Yacovleff, E., and Muelle, J. C.. 1934. Un fardo funerario de Paracas. Revista Museo Nacional 3.Google Scholar
Yamamoto, T., Yamaoka, T., Tuno, S., et al. 1979. Microconstituents in seaweeds. Proceedings of the Seaweed Symposium 9.Google Scholar
Yanovsky, E. 1936. Food plants of the North American Indians.United States Department of Agriculture Miscellaneous Publication No. 237. Washington, D.C.Google Scholar
Zaneveld, J. S. 1950. The economic marine algae of Malaysia and their applications. Proceedings of the Indo-Pacific Fisheries Council.Google Scholar
Zaneveld, J. S. 1951. The economic marine algae of Malaysia and their applications. II. The Phaeophyta. Proceedings of the Indo-Pacific Fisheries Council.Google Scholar
Zaneveld, J. S. 1955. Economic marine algae of tropical South and East Asia and their utilization.Indo-Pacific Special Publications, No. 3. Bangkok.Google Scholar
Zaneveld, J. S. 1959. The utilization of marine algae in tropical South and East Asia. Economic Botany 13.CrossRefGoogle Scholar
Zimmermann, U. 1977. Cell turgor pressure regulation and turgor-mediated transport processes. In Integration of activity in the higher plant, ed. Jennings, D. H.. Cambridge and New York.Google Scholar
Zimmermann, U. 1978. Physics of turgor and osmoregulation. Annual Review of Plant Physiology 29.CrossRefGoogle Scholar
Zimmermann, U., and Steudle, E.. 1977. Action of indoleacetic acid on membrane structure and transport. In Regulation of cell membrane activities in plants, ed. Marre, C. and Cifferi, O.. Amsterdam.Google Scholar
Zimmermann, U., Steudle, E., and Lelkes, P. I.. 1976. Turgor pressure regulation in Valonia utricularis: Effect of cell wall elasticity and auxin. Plant Physiology 58.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×