Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T09:53:41.771Z Has data issue: false hasContentIssue false

26 - Adoptive cellular immunotherapy

from Part III - Evaluation and treatment

Published online by Cambridge University Press:  01 July 2010

Helen E. Heslop
Affiliation:
Director, Adult Stem Cell Transplant Program The Methodist Hospital, Professor, Center for Cell and Gene Therapy Baylor College of Medicine, Houston, TX, USA
Cliona M. Rooney
Affiliation:
Professor, Departments of Pediatrics and Molecular Virology and Microbiology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

The possibility that the immune system can be harnessed to play a role in eradicating leukemia has long been an attractive concept. Numerous experiments in animal models have convincingly shown that T lymphocytes recognize and kill malignant cells. However, human immunotherapy with nonspecific stimulants, such as BCG (Calmette–Guérin bacillus), has not had a successful history. In the last few years, improved knowledge of the molecular basis of antigen presentation and T-cell recognition of antigen has made it clear that many tumors possess antigens that could be targets for activated T cells. Interest in cellular immunotherapy has also been stimulated by clinical studies showing the efficacy of unmanipulated donor T cells as therapy for relapse after allogeneic bone marrow transplantation. In this chapter we review clinical immunotherapy strategies now being applied in the treatment of leukemia.

Immune system recognition of tumor cells

Recent advances in basic immunology have provided important insights into the mechanisms by which the immune system recognizes tumor cells. Dissection of the processes of antigen presentation and T-cell recognition of antigen has yielded especially useful information in this regard. Advances in genomics have also simplified the identification of putative tumor antigens through the use of new informatics tools to deduce epitopes from candidate genes.

Antigen presentation

Antigen-presenting cells recognize either endogenous cellular proteins or exogenous proteins, such as tumor debris, process them into short peptide fragments, and then present these fragments on the cell surface in association with MHC molecules for subsequent presentation to T cells.

Type
Chapter
Information
Childhood Leukemias , pp. 648 - 660
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rosenberg, S. A.Progress in human tumour immunology and immunotherapy. Nature, 2001; 411: 380–4.CrossRefGoogle ScholarPubMed
Banchereau, J. & Steinman, R. M.Dendritic cells and the control of immunity. Nature, 1998; 392: 245–53.CrossRefGoogle ScholarPubMed
Levitskaya, J., Coram, M., Levitsky, V., et al.Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature, 1995; 375: 685–8.CrossRefGoogle ScholarPubMed
Androlewicz, M. & Cresswell, P.How selective is the transporter associated with antigen processing ?Immunity, 1996; 5: 1–5.CrossRefGoogle ScholarPubMed
Levitsky, V., Zhang, Q.-J., Levitskaya, J., & Masucci, M. G.The life-span of major histocompatibility complex-peptide complexes influences the efficiency of presentation and immunogenicity of two Class-I restricted cytotoxic T lymphocyte epitopes in the Epstein-Barr virus nuclear antigen 4. J Exp Med, 1996; 183: 915–26.CrossRefGoogle ScholarPubMed
Viola, A. & Lanzavecchia, A.T cell activation determined by T cell receptor number and tunable thresholds. Science, 1996; 273: 104–6.CrossRefGoogle Scholar
Dodley, M. E. & Rosenberg, S. A.Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer, 2003; 3: 666–75.CrossRefGoogle Scholar
Pardoll, D. M.Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol. 2002; 2: 227–38.CrossRefGoogle ScholarPubMed
Vilchez, R. A., Madden, C. R., Kozinetz, C. A., et al.Association between simian virus 40 and non-Hodgkin lymphoma. Lancet, 2002; 359: 817–23.CrossRefGoogle ScholarPubMed
Molldrem, J. J., Lee, P. P., Wang, C., et al.Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med, 2000; 6: 1018–23.CrossRefGoogle ScholarPubMed
Gao, L., Bellantuono, I., Elsasser, A., et al.Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood, 2000; 95: 2198–203.Google ScholarPubMed
Bellantuono, I., Gao, L., Parry, S., et al.Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood, 2002; 100: 3835–7.CrossRefGoogle ScholarPubMed
Zendman, A. J., Ruiter, D. J., & Muijen, G. N.. Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol, 2003; 194: 272–88.CrossRefGoogle ScholarPubMed
Falkenburg, J. H. F., Smit, W. M., & Willemze, R.Cytotoxic T-lymphocyte (CTL) responses against acute or chronic myeloid leukemia. Immun Rev, 1997; 157: 223–30.CrossRefGoogle ScholarPubMed
Vonderheide, R. H.Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene, 2002; 21: 674–9.CrossRefGoogle ScholarPubMed
Hambach, L. & Goulmy, E.Immunotherapy of cancer through targeting of minor histocompatibility antigens. Curr Opin Immunol, 2005; 17: 202–10.CrossRefGoogle ScholarPubMed
Haan, J. M. M., Sherman, N. E., Blokland, E., et al.Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science, 1995; 268: 1476–80.CrossRefGoogle Scholar
Wang, W., Meadows, L. R., Haan, J. M. M., et al.Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science, 1995; 269: 1588–90.CrossRefGoogle ScholarPubMed
Murata, M., Warren, E. H., & Riddell, S. R.A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. J Exp Med, 2003; 197: 1279–89.CrossRefGoogle ScholarPubMed
Behar, E., Chao, N. J., Hiraki, D. D., et al.Polymorphism of adhesion molecule CD31 and its role in acute graft-versus-host disease. N Engl J Med, 1996; 334: 286–91.CrossRefGoogle ScholarPubMed
Amrolia, P. J., Reid, S. D., Gao, L., et al.Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity. Blood, 2003; 101: 1007–14.CrossRefGoogle ScholarPubMed
Peace, D. J., Chen, W., Nelson, H., & Cheever, M. A.T cell recognition of transforming proteins encoded by mutated ras proto-oncogenes. J Immunol, 1991; 146: 2059–65.Google ScholarPubMed
Oettel, K. R., Wesly, O. H., Albertini, M. R., et al.Allogeneic T-cell clones able to selectively destroy Philadelphia chromosome-bearing (Ph1+) human leukemia lines can also recognize Ph1− cells from the same patient. Blood, 1994; 83: 3390–402.Google ScholarPubMed
Clark, R. E., Dodi, I. A., Hill, S. C., et al.Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood, 2001; 98: 2887–93.CrossRefGoogle ScholarPubMed
Gambacorti-Passerini, C., Grignani, F., Arienti, F., et al.Human CD4 lymphocytes specifically recognize a peptide representing the fusion region of the hybrid protein pml/RAR alpha present in acute promyelocytic leukemia cells. Blood, 1993; 81: 1369–75.Google ScholarPubMed
Dermime, S., Bertazzoli, C., Marchesi, E., et al.Lack of T-cell mediated recognition of the fusion region of the pml/RAR-a hybrid protein by lymphocytes of acute promyelocytic leukemia patients. Clin Cancer Res, 1996; 2: 593–600.Google Scholar
Marijt, W. A., Heemskerk, M. H., Kloosterboer, F. M., et al.Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci U S A, 2003; 100: 2742–7.CrossRefGoogle ScholarPubMed
Appelbaum, F. R.Haematopoietic cell transplantation as immunotherapy. Nature, 2001; 411: 385–9.CrossRefGoogle ScholarPubMed
Horowitz, M. M., Gale, R. P., Sondel, P. M., et al.Graft-versus-leukemia reactions after bone marrow transplantation. Blood, 1990; 75: 555–62.Google ScholarPubMed
Goldman, J. M., Gale, R. P., Horowitz, M. M., et al.Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann Intern Med, 1988; 108: 806–14.CrossRefGoogle ScholarPubMed
Kolb, H. J., Schmid, C., Barrett, A. J., & Schendel, D. J.Graft-versus-leukemia reactions in allogeneic chimeras. Blood, 2004; 103: 767–76.CrossRefGoogle ScholarPubMed
Porter, D. L. & Antin, J. H.The graft-versus-leukemia effects of allogeneic cell therapy. Annu Rev Med, 1999; 50: 369–86.CrossRefGoogle ScholarPubMed
Papadopoulos, E. B., Ladanyi, M., Emanuel, D., et al.Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med, 1994; 330: 1185–91.CrossRefGoogle ScholarPubMed
Heslop, H. E., Brenner, M. K., & Rooney, C. M.Donor T cells to treat EBV-associated lymphoma. N Engl J Med, 1994; 331: 679–80.Google ScholarPubMed
Kolb, H. J., Mittermuller, J., Clemm, Ch., et al.Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood, 1990; 76: 2462–5.Google ScholarPubMed
Kolb, H. J. & Holler, E.Adoptive immunotherapy with donor lymphocyte transfusions. Curr Opin Oncol, 1997; 9: 139–45.CrossRefGoogle ScholarPubMed
Alyea, E. P., Soiffer, R. J., Canning, C., et al.Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood, 1998; 91: 3671–80.Google ScholarPubMed
MacKinnon, S., Papadopoulos, E. B., Carabasi, M. H., et al.Adoptive immunotherapy evaluating escalating doses of donor leucocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood, 1995; 86: 1261–8.Google ScholarPubMed
Giralt, S., Hester, J., Huh, Y., et al.CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood, 1995; 86: 4337–43.Google ScholarPubMed
Slavin, S., Naparstek, E., Nagler, A., et al.Allogeneic cell therapy with donor peripheral blood cells and recombinant human Interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood, 1996; 87: 2195–204.Google ScholarPubMed
Fowler, D., Hou, J., Foley, J., et al.Phase I clinical trial of donor T-helper type-2 cells after immunoablative, reduced intensity allogeneic PBSC transplant. Cytotherapy, 2002; 4: 429–30.CrossRefGoogle ScholarPubMed
Leemhuis, T., Wells, S., Scheffold, C., Edinger, M., & Negrin, R. S.A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol Blood Marrow Transplant, 2005; 11: 181–7.CrossRefGoogle ScholarPubMed
Laport, G. G., Levine, B. L., Stadtmauer, E. A., et al.Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin's lymphoma following CD34- selected hematopoietic cell transplantation. Blood, 2003; 102: 2004–13.CrossRefGoogle ScholarPubMed
Andre-Schmutz, I., Le Deist, F., Hacein-Bey-Abina, S., et al.Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet, 2002; 360: 130–7.CrossRefGoogle ScholarPubMed
Amrolia, P. J., Muccioli-Casadei, G., Yvon, E., et al.Selective depletion of donor allo-reactive T-cells without loss of antiviral or anti-leukemic responses. Blood, 2003; 102: 2292–9.CrossRefGoogle Scholar
Solomon, S. R., Mielke, S., Savani, B. N., et al.Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood, 2005; 106: 1123–29.CrossRefGoogle ScholarPubMed
Rooney, C. M., Smith, C. A., Ng, C., et al.Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr virus-related lymphoproliferation. Lancet, 1995; 345: 9–13.CrossRefGoogle ScholarPubMed
Heslop, H. E., Ng, C. Y. C., Li, C., et al.Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med, 1996; 2: 551–5.CrossRefGoogle ScholarPubMed
Rooney, C. M., Smith, C. A., Ng, C. Y. C., et al.Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood, 1998; 92: 1549–55.Google ScholarPubMed
Gustafsson, A., Levitsky, V., Zou, J. Z., et al.Epstein–Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood, 2000; 95: 807–14.Google ScholarPubMed
Gottschalk, S., Ng, C. Y. C., Smith, C. A., et al.An Epstein–Barr virus deletion mutant that causes fatal lymphoproliferative disease unresponsive to virus-specific T cell therapy. Blood, 2001; 97: 835–43.CrossRefGoogle Scholar
Comoli, P., Labirio, M., Basso, S., et al.Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood, 2002; 99: 2592–8.CrossRefGoogle ScholarPubMed
Khanna, R., Bell, S., Sherritt, M., et al.Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci U S A, 1999; 96: 10 391–6.CrossRefGoogle ScholarPubMed
Haque, T., Wilkie, G. M., Taylor, C., et al.Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet, 2002; 360: 436–42.CrossRefGoogle ScholarPubMed
Sun, Q., Burton, R., Reddy, V., & Lucas, K. G.Safety of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for patients with refractory EBV-related lymphoma. Br J Haematol, 2002; 118: 799–808.CrossRefGoogle ScholarPubMed
Kuehnle, I., Huls, M. H., Liu, Z., et al.CD20 monoclonal antibody (rituximab) for therapy of Epstein-Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood, 2000; 95: 1502–5.Google ScholarPubMed
Herbst, H., Dallenback, F., Hummel, M., et al.Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc Natl Acad Aci U S A, 1991; 88: 4766–70.CrossRefGoogle ScholarPubMed
Pileri, S. A., Ascani, S., Leoncini, L., et al.Hodgkin's lymphoma: the pathologist's viewpoint. J Clin Pathol, 2002; 55: 162–;76.CrossRefGoogle ScholarPubMed
Gottschalk, S., Heslop, H. E., & Rooney, C. M.Treatment of Epstein-Barr virus-associated malignancies with specific T cells. Adv Cancer Res, 2002; 84: 175–201.CrossRefGoogle ScholarPubMed
Bollard, C. M., Aguilar, L., Straathof, K. C., et al.Cytotoxic T lymphocyte therapy for Epstein–Barr virus+ Hodgkin's disease. J Exp Med, 2004; 200: 1623–33.CrossRefGoogle ScholarPubMed
Gottschalk, S., Edwards, O. L., Sili, U., et al.Generating CTL against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood, 2003; 101: 1905–12.CrossRefGoogle ScholarPubMed
Gahn, B., Siller-Lopez, F., Pirooz, A. D., et al.Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to the LMP2A-antigen: a potential treatment strategy for Epstein-Barr virus-positive Hodgkin's lymphoma. Int J Cancer, 2001; 93: 706–13.CrossRefGoogle ScholarPubMed
Mutis, T., Ghoreschi, K., Schrama, E., et al.Efficient induction of minor histocompatibility antigen HA-1-specific cytotoxic T-cells using dendritic cells retrovirally transduced with HA-1-coding cDNA. Biol Blood Marrow Transplant, 2002; 8: 412–19.CrossRefGoogle ScholarPubMed
Montagna, D., Maccario, R., Locatelli, F., et al.Ex vivo priming for long-term maintenance of antileukemia human cytotoxic T cells suggests a general procedure for adoptive immunotherapy. Blood, 2001; 98: 3359–66.CrossRefGoogle ScholarPubMed
Falkenburg, J. H., Wafelman, A. R., Joosten, P., et al.Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood, 1999; 94: 1201–8.Google ScholarPubMed
Warren, E. H., Tykodi, S. S., Murata, M., et al.T-cell therapy targeting minor histocompatibility Ags for the treatment of leukemia and renal-cell carcinoma. Cytotherapy, 2002; 4: 441.CrossRefGoogle ScholarPubMed
Banchereau, J. & Palucka, A. K.Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol, 2005; 5: 296–306.CrossRefGoogle ScholarPubMed
Timmerman, J. M., Czerwinski, D. K., Davis, T. A., et al.Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood, 2002; 99: 1517–26.CrossRefGoogle ScholarPubMed
Parham, P. & McQueen, K. L.Alloreactive killer cells: hindrance and help for haematopoietic transplants. Nat Rev Immunol, 2003; 3: 108–22.CrossRefGoogle ScholarPubMed
Ruggeri, L., Capanni, M., Urbani, E., et al.Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 2002; 295: 2097–100.CrossRefGoogle ScholarPubMed
Giebel, S., Locatelli, F. W., Lamparelli, T., et al.Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood, 2003; 102: 814–19.CrossRefGoogle ScholarPubMed
Maus, M. V., Thomas, A. K., Leonard, D. G., et al.Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol, 2002; 20: 143–8.CrossRefGoogle ScholarPubMed
Latouche, J. B. & Sadelain, M.Induction of human cytotoxic T lymphocytes by artificial antigen presenting cells. Nat Biotechnol, 2000; 18: 405–9.CrossRefGoogle ScholarPubMed
Oelke, M., Maus, M. V., Didiano, D., et al.Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med, 2003; 9: 619–25.CrossRefGoogle ScholarPubMed
Dudley, M. E., Wunderlich, J. R., Robbins, P. F., et al.Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science, 2002; 298: 850–4.CrossRefGoogle ScholarPubMed
Chen, W., Chatta, K., Rubin, W. D., et al.T cells specific for a polymorphic segment of CD45 induce graft-versus-host disease with predominant pulmonary vasculitis. J Immunol, 1998; 161: 909–18.Google ScholarPubMed
Bonini, C., Ferrari, G., Verzeletti, S., et al.HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft versus leukemia. Science, 1997; 276: 1719–24.CrossRefGoogle ScholarPubMed
Tiberghien, P., Ferrand, C., Lioure, B., et al.Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood, 2001; 97: 63–72.CrossRefGoogle ScholarPubMed
Ciceri, F., Bonini, C., Gallo-Stampino, C., & Bordignon, C.Modulation of GvHD by suicide-gene transduced donot T lymphocytes: clinical applications in mismatched transplantation. Cytotherapy, 2005; 7: 144–9.CrossRefGoogle Scholar
Riddell, S. R., Elliot, M., Lewinsohn, D. A., et al.T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med, 1996; 2: 216–23.CrossRefGoogle ScholarPubMed
Sauce, D., Bodinier, M., Garin, M., et al.Retrovirus-mediated gene transfer in primary T lymphocytes impairs their anti-Epstein-Barr virus potential through both culture-dependent and selection process-dependent mechanisms. Blood, 2002; 99: 1165–73.CrossRefGoogle ScholarPubMed
Tiberghien, P.Use of suicide gene-expressing donor T-cells to control alloreactivity after haematopoietic stem cell transplantation. J Intern Med, 2001; 249: 369–77.CrossRefGoogle ScholarPubMed
Thomis, D. C., Marktel, S., Bonini, C., et al.A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood, 2001; 97: 1249–57.CrossRefGoogle Scholar
Rosenberg, S. A., Aebersold, P., Cornetta, K., et al.Gene transfer into humans – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med, 1990; 323: 570–8.CrossRefGoogle ScholarPubMed
Brodie, S. J., Patterson, B. K., Lewinsohn, D. A., et al.HIV-specific cytotoxic T lymphocytes traffic to lymph nodes and localize at sites of HIV replication and cell death. J Clin Invest, 2000; 105: 1407–17.CrossRefGoogle ScholarPubMed
Rosenberg, S. A., Lotze, M. T., Yang, J. C., et al.Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg, 1989; 210: 474–84.CrossRefGoogle ScholarPubMed
Liu, K. & Rosenberg, S. A.Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol, 2001; 167: 6356–65.CrossRefGoogle ScholarPubMed
Eaton, D., Gilham, D. E., O'Neill, A. & Hawkins, R. E.Retroviral transduction of human peripheral blood lymphocytes with Bcl- X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther, 2002; 9: 527–35.CrossRefGoogle ScholarPubMed
Gorelik, L. & Flavell, R. A.Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med, 2001; 7: 1118–22.CrossRefGoogle Scholar
Bollard, C. M., Rossig, C., Calonge, M. J., et al.Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood, 2002; 99: 3179–87.CrossRefGoogle ScholarPubMed
Jensen, M., Cooper, L., Wu, A., Forman, S., & Raubitschek, A.Engineered CD20-specific primary human cytotoxic T lymphocytes for targeting B-cell malignancy. Cytotherapy, 2003; 5: 131–8.CrossRefGoogle ScholarPubMed
Cooper, L. J., Topp, M. S., Serrano, L. M., et al.T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood, 2003; 101: 1637–44.CrossRefGoogle ScholarPubMed
Roessig, C., Scherer, S. P., Baer, A., et al.Targeting CD19 with genetically modified EBV-specific human T lymphocytes. Ann Hematol, 2002; 81(Suppl. 2): S42–3.Google ScholarPubMed
Rossig, C., Bollard, C. M., Nuchtern, J. G., Rooney, C. M., & Brenner, M. K.Epstein-Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood, 2002; 99: 2009–16.CrossRefGoogle Scholar
Kershaw, M. H., Westwood, J. A., & Hwu, P.Dual-specific T cells combine proliferation and antitumor activity. Nat Biotechnol, 2002; 20: 1221–7.CrossRefGoogle ScholarPubMed
Heemskerk, M. H., Hoogeboom, M., Hagedoorn, R., et al.Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptot gene transfer. J Exp Med, 2004; 199: 885–94.CrossRefGoogle Scholar
Maher, J., Brentjens, R. J., Gunset, G., Riviere, I., & Sadelain, M.Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol, 2002; 20: 70–5.CrossRefGoogle ScholarPubMed
Imai, C., Mihara, K., Andreansky, M.et al.Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia, 2004; 18: 676–84.CrossRefGoogle ScholarPubMed
Ambinder, R. F., Lemas, M. V., Moore, S., et al.Epstein-Barr virus and lymphoma. Cancer Treat Res, 1999; 99: 27–45.CrossRefGoogle ScholarPubMed
Molldrem, J. J., Lee, P. P., Wang, C., Champlin, R. E., & Davis, M. M.A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia. Cancer Res, 1999; 59: 2675–81.Google ScholarPubMed
Mutis, T. & Goulmy, E.Hematopoietic system-specific antigens as targets for cellular immunotherapy of hematological malignancies. Semin Hematol, 2002; 39: 23–31.CrossRefGoogle ScholarPubMed
Falkenburg, J. H., Wafelman, A. R., Joosten, P., et al.Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood, 1999; 94: 1201–8.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Adoptive cellular immunotherapy
    • By Helen E. Heslop, Director, Adult Stem Cell Transplant Program The Methodist Hospital, Professor, Center for Cell and Gene Therapy Baylor College of Medicine, Houston, TX, USA, Cliona M. Rooney, Professor, Departments of Pediatrics and Molecular Virology and Microbiology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.027
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Adoptive cellular immunotherapy
    • By Helen E. Heslop, Director, Adult Stem Cell Transplant Program The Methodist Hospital, Professor, Center for Cell and Gene Therapy Baylor College of Medicine, Houston, TX, USA, Cliona M. Rooney, Professor, Departments of Pediatrics and Molecular Virology and Microbiology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.027
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Adoptive cellular immunotherapy
    • By Helen E. Heslop, Director, Adult Stem Cell Transplant Program The Methodist Hospital, Professor, Center for Cell and Gene Therapy Baylor College of Medicine, Houston, TX, USA, Cliona M. Rooney, Professor, Departments of Pediatrics and Molecular Virology and Microbiology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.027
Available formats
×