Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T00:10:24.767Z Has data issue: false hasContentIssue false

12 - Inflammation and cognition in major depressive disorder

from Part II - Underlying biological substrates associated with cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 160 - 178
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, N. C. (1997). Linking mind and brain in the study of mental illnesses: A project for a scientific psychopathology. Science, 275(5306): 15861593.Google Scholar
Anisman, H., Kokkinidis, L., & Merali, Z. (2002). Further evidence for the depressive effects of cytokines: Anhedonia and neurochemical changes. Brain, Behavior, and Immunity, 16(5): 544556.Google Scholar
Austin, M. P., Mitchell, P., Wilhelm, K., Parker, G., Hickie, I., Brodaty, H., … Hadzi-Pavlovic, D. (1999). Cognitive function in depression: A distinct pattern of frontal impairment in melancholia? Psychological Medicine, 29(1): 7385.Google Scholar
Austin, M. P., Ross, M., Murray, C., O’Carroll, R. E., Ebmeier, K. P., & Goodwin, G. M. (1992). Cognitive function in major depression. Journal of Affective Disorders, 25(1): 2129.Google Scholar
Bailey, D. J., Kim, J. J., Sun, W., Thompson, R. F., & Helmstetter, F. J. (1999). Acquisition of fear conditioning in rats requires the synthesis of mRNA in the amygdala. Behavioral Neuroscience, 113(2): 276282.CrossRefGoogle ScholarPubMed
Baron, R., Nemirovsky, A., Harpaz, I., Cohen, H., Owens, T., & Monsonego, A. (2008). IFN-gamma enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB Journal, 22(8): 28432852.Google Scholar
Baune, B. (2009). Conceptual challenges of a tentative model of stress-induced depression. PLoS One, 4(1): e4266.Google Scholar
Baune, B. T., Czira, M. E., Smith, A. L., Mitchell, D., & Sinnamon, G. (2012a). Neuropsychological performance in a sample of 13–25 year olds with a history of non-psychotic major depressive disorder. Journal of Affective Disorders, 141(2–3): 441448.Google Scholar
Baune, B. T., Dannlowski, U., Domschke, K., Janssen, D. G., Jordan, M. A., Ohrmann, P., … Suslow, T. (2010a). The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biological Psychiatry, 67(6): 543549.Google Scholar
Baune, B. T., Konrad, C., Grotegerd, D., Suslow, T., Birosova, E., Ohrmann, P., … Dannlowski, U. (2012b). Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain. Journal of Neuroinflammation, 9: 125.Google Scholar
Baune, B. T., Konrad, C., Grotegerd, D., Suslow, T., Ohrmann, P., Bauer, J., … Dannlowski, U. (2012c). Tumor necrosis factor gene variation predicts hippocampus volume in healthy individuals. Biological Psychiatry, 72(8): 655662.CrossRefGoogle ScholarPubMed
Baune, B. T., Li, X., & Beblo, T. (2013). Short- and long-term relationships between neurocognitive performance and general function in bipolar disorder. Journal of Clinical and Experimental Psychology, 35(7): 759774.Google Scholar
Baune, B. T., Miller, R., McAfoose, J., Johnson, M., Quirk, F., & Mitchell, D. (2010b). The role of cognitive impairment in general functioning in major depression. Psychiatry Research, 176(2–3): 183189.CrossRefGoogle ScholarPubMed
Baune, B. T., Ponath, G., Golledge, J., Varga, G., Arolt, V., Rothermundt, M., & Berger, K. (2008a). Association between IL-8 cytokine and cognitive performance in an elderly general population: The MEMO-Study. Neurobiology of Aging, 29(6): 937944.Google Scholar
Baune, B. T., Ponath, G., Rothermundt, M., Riess, O., Funke, H., & Berger, K. (2008b). Association between genetic variants of IL-1beta, IL-6 and TNF-alpha cytokines and cognitive performance in the elderly general population of the MEMO-study. Psychoneuroendocrinology, 33(1): 6876.Google Scholar
Baune, B. T., Wiede, F., Braun, A., Golledge, J., Arolt, V., & Koerner, H. (2008c). Cognitive dysfunction in mice deficient for TNF- and its receptors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B(7): 10561064.Google Scholar
Beblo, T., Sinnamon, G., & Baune, B. T. (2011). Specifying the neuropsychology of affective disorders: Clinical, demographic and neurobiological factors. Neuropsychology Review, 21(4): 337359.Google Scholar
Beck, R. D. Jr., King, M. A., Ha, G. K., Cushman, J. D., Huang, Z., & Petitto, J. M. (2005a). IL-2 deficiency results in altered septal and hippocampal cytoarchitecture: Relation to development and neurotrophins. Journal of Neuroimmunology, 160(1–2): 146153.Google Scholar
Beck, R. D. Jr., King, M. A., Huang, Z., & Petitto, J. M. (2002). Alterations in septohippocampal cholinergic neurons resulting from interleukin-2 gene knockout. Brain Research, 955(1–2): 1623.Google Scholar
Beck, R. D. Jr., Wasserfall, C., Ha, G. K., Cushman, J. D., Huang, Z., & Petitto, J. M. (2005b). Changes in hippocampal IL-15, related cytokines, and neurogenesis in IL-2 deficient mice. Brain Research, 1041(2): 223230.Google Scholar
Bitsch, A., Kuhlmann, T., Da Costa, C., Bunkowski, S., Polak, T., & Bruck, W. (2000). Tumour necrosis factor alpha mRNA expression in early multiple sclerosis lesions: Correlation with demyelinating activity and oligodendrocyte pathology. Glia, 29(4): 366375.Google Scholar
Blaney, P. H. (1986). Affect and memory: A review. Psychological Bulletin, 99(2): 229246.Google Scholar
Blatteis, C. M. (1990). Neuromodulative actions of cytokines. Yale Journal of Biology and Medicine, 63(2): 133146.Google ScholarPubMed
Brebner, K., Hayley, S., Zacharko, R., Merali, Z., & Anisman, H. (2000). Synergistic effects of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha: Central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacology, 22(6): 566580.Google Scholar
Canli, T., Cooney, R. E., Goldin, P., Shah, M., Sivers, H., Thomason, M. E., … Gotlib, I. H. (2005). Amygdala reactivity to emotional faces predicts improvement in major depression. Neuroreport, 16(12): 12671270.CrossRefGoogle ScholarPubMed
Capuron, L. & Dantzer, R. (2003). Cytokines and depression: The need for a new paradigm. Brain, Behavior, and Immunity, 17(Suppl. 1): S119S124.CrossRefGoogle ScholarPubMed
Chen, C. H., Suckling, J., Ooi, C., Fu, C. H., Williams, S. C., Walsh, N. D., … Bullmore, E. (2008). Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology, 33(8): 19091918.Google Scholar
Cheng, X., Yang, L., He, P., Li, R., & Shen, Y. (2010). Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients. Journal of Alzheimer’s Disease, 19(2): 621630.Google Scholar
Churchill, L., Taishi, P., Wang, M., Brandt, J., Cearley, C., Rehman, A., & Krueger, J. M. (2006). Brain distribution of cytokine mRNA induced by systemic administration of interleukin-1beta or tumor necrosis factor alpha. Brain Research, 1120(1): 6473.CrossRefGoogle ScholarPubMed
Connor, T. J., Song, C., Leonard, B. E., Merali, Z., & Anisman, H. (1998). An assessment of the effects of central interleukin-1beta, -2, -6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience, 84(3): 923933.Google Scholar
Cronholm, B. & Ottosson, J. O. (1961). Memory functions in endogenous depression before and after electroconvulsive therapy. Archives of General Psychiatry, 5(2): 193199.Google Scholar
Danion, J. M., Willard-Schroeder, D., Zimmermann, M. A., Grange, D., Schlienger, J. L., & Singer, L. (1991). Explicit memory and repetition priming in depression: Preliminary findings. Archives of General Psychiatry, 48(8): 707711.Google Scholar
Dannlowski, U., Ohrmann, P., Konrad, C., Domschke, K., Bauer, J., Kugel, H., … Suslow, T. (2009). Reduced amygdala-prefrontal coupling in major depression: association with MAOA genotype and illness severity. International Journal of Neuropsychopharmacology, 12(1): 1122.Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9: 4656.Google Scholar
Davis, M. & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1): 1334.Google Scholar
Derubeis, R. J., Siegle, G. J., & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9: 788796.CrossRefGoogle ScholarPubMed
Dik, M. G., Jonker, C., Hack, C. E., Smit, J. H., Comijs, H. C., & Eikelenboom, P. (2005). Serum inflammatory proteins and cognitive decline in older persons. Neurology, 64(8): 13711377.Google Scholar
Dougherty, D. & Rauch, S. (eds.) (2001 ). Psychiatric Neuroimaging Research: Contemporary Strategies. Washington, DC: American Psychiatric Press.Google Scholar
Dunn, A. J. (2006). Effects of cytokines and infections on brain neurochemistry. Clinical Neuroscience Research, 6(1–2): 5268.Google Scholar
Dupont, R. M., Jernigan, T. L., Heindel, W., Butters, N., Shafer, K., Wilson, T., … Gillin, J. C. (1995). Magnetic resonance imaging and mood disorders: Localization of white matter and other subcortical abnormalities. Archives of General Psychiatry, 52(9): 747755.Google Scholar
Ericsson, A., Kovacs, K. J., & Sawchenko, P. E. (1994). A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. Journal of Neuroscience, 14(2): 897913.CrossRefGoogle ScholarPubMed
Etkin, A., Gyurak, A., & O’Hara, R. (2013). A neurobiological approach to the cognitive deficits of psychiatric disorders. Dialogues in Clinical Neuroscience, 15(4): 419429.Google Scholar
Eyre, H. & Baune, B. T. (2012). Neuroplastic changes in depression: A role for the immune system. Psychoneuroendocrinology, 37(9): 13971416.CrossRefGoogle ScholarPubMed
Eyre, H. A., Stuart, M. & Baune, B. T. (2014). A phase-specific neuroimmune model of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 54: 265274.Google Scholar
Fischer, R., Maier, O., Siegemund, M., Wajant, H., Scheurich, P., & Pfizenmaier, K. (2011). A TNF receptor 2 selective agonist rescues human neurons from oxidative stress-induced cell death. PLoS One, 6: e27621.CrossRefGoogle ScholarPubMed
Fossati, P., Amar, G., Raoux, N., Ergis, A. M., & Allilaire, J. F. (1999). Executive functioning and verbal memory in young patients with unipolar depression and schizophrenia. Psychiatry Research, 89(3): 171187.CrossRefGoogle ScholarPubMed
Fossati, P., Guillaume, le B., Ergis, A. M., & Allilaire, J. F. (2003). Qualitative analysis of verbal fluency in depression. Psychiatry Research, 117(1): 1724.Google Scholar
Gallagher, P. J., Castro, V., Fava, M., Weilburg, J. B., Murphy, S. N., Gainer, V. S., … Perlis, R. H. (2012). Antidepressant response in patients with major depression exposed to NSAIDs: A pharmacovigilance study. American Journal of Psychiatry, 169(10): 10651072.Google Scholar
Ghashghaei, H. T. & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115(4): 12611279.Google Scholar
Godard, J., Baruch, P., Grondin, S., & Lafleur, M. F. (2012). Psychosocial and neurocognitive functioning in unipolar and bipolar depression: A 12-month prospective study. Psychiatry Research, 196(1): 145153.Google Scholar
Gold, S. M. & Irwin, M. R. (2006). Depression and immunity: Inflammation and depressive symptoms in multiple sclerosis. Neurologic Clinics, 24(3): 507519.Google Scholar
Golinkoff, M. & Sweeney, J. A. (1989). Cognitive impairments in depression. Journal of Affective Disorders, 17(2): 105112.Google Scholar
Grathwohl, S. A., Kalin, R. E., Bolmont, T., Prokop, S., Winkelmann, G., Kaeser, S. A., … Jucker, M. (2009). Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nature Neuroscience, 12: 13611363.Google Scholar
Gruzelier, J., Seymour, K., Wilson, L., Jolley, A., & Hirsch, S. (1988). Impairments on neuropsychologic tests of temporohippocampal and frontohippocampal functions and word fluency in remitting schizophrenia and affective disorders. Archives of General Psychiatry, 45(7): 623629.Google Scholar
Haroon, E., Raison, C. L., & Miller, A. H. (2012). Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology, 37(1): 137162.Google Scholar
Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66(5): 407414.Google Scholar
He, P., Zhong, Z., Lindholm, K., Berning, L., Lee, W., Lemere, C., … Shen, Y. (2007a). Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. Journal of Cell Biology, 178(5): 829841.Google Scholar
He, T., Zong, S., Wu, X., Wei, Y., & Xiang, J. (2007b). CD4+ T cell acquisition of the bystander pMHC I colocalizing in the same immunological synapse comprising pMHC II and costimulatory CD40, CD54, CD80, OX40L, and 41BBL. Biochemical and Biophysical Research Communications, 362(4): 822828.Google Scholar
Hein, A. M. & O’Banion, M. K. (2012). Neuroinflammation and cognitive dysfunction in chronic disease and aging. Journal of Neuroimmune Pharmacology, 7(1): 36.Google Scholar
Herzallah, M. M., Moustafa, A. A., Natsheh, J. Y., Abdellatif, S. M., Taha, M. B., Tayem, Y. I., … Gluck, M. A. (2013). Learning from negative feedback in patients with major depressive disorder is attenuated by SSRI antidepressants. Frontiers in Integrative Neuroscience, 7: 67.Google Scholar
Hickie, I. & Lloyd, A. (1995). Are cytokines associated with neuropsychiatric syndromes in humans? International Journal of Immunopharmacology, 17(8): 677683.Google Scholar
Hickman, S. E., Allison, E. K., & El Khoury, J. (2008). Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. Journal of Neuroscience, 28(33): 83548360.Google Scholar
Hurlock, E. C. T. (2001). Interferons: Potential roles in affect. Medical Hypotheses, 56(5): 558566.Google Scholar
Ilsley, J. E., Moffoot, A. P., & O’Carroll, R. E. (1995). An analysis of memory dysfunction in major depression. Journal of Affective Disorders, 35(1–2): 19.Google Scholar
Irwin, M. R. & Miller, A. H. (2007). Depressive disorders and immunity: 20 years of progress and discovery. Brain Behavior, and Immunity, 21(4): 374383.Google Scholar
Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145(1): 3948.Google Scholar
Jankowsky, J. L. & Patterson, P. H. (1999). Cytokine and growth factor involvement in long-term potentiation. Molecular and Cellular Neuroscience, 14(4–5): 273286.CrossRefGoogle ScholarPubMed
John, G. R., Lee, S. C., & Brosnan, C. F. (2003). Cytokines: Powerful regulators of glial cell activation. Neuroscientist, 9(1): 1022.Google Scholar
Jung, J. E., Kim, G. S., & Chan, P. H. (2011). Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke, 42(12): 35743579.CrossRefGoogle ScholarPubMed
Kaur, G. & Salm, A. K. (2008). Blunted amygdalar anti-inflammatory cytokine effector response to postnatal stress in prenatally stressed rats. Brain Research, 1196: 112.Google Scholar
Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2001). Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. American Journal of Psychiatry, 158(4): 582586.CrossRefGoogle ScholarPubMed
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6): 593602.Google Scholar
Killgore, W. D. & Yurgelun-Todd, D. A. (2004). Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. NeuroImage, 21(4): 12151223.Google Scholar
Kiosses, D. N. & Alexopoulos, G. S. (2005). IADL functions, cognitive deficits, and severity of depression: A preliminary study. American Journal of Geriatric Psychiatry, 13(3): 244249.Google Scholar
Koyama, A., O’Brien, J., Weuve, J., Blacker, D., Metti, A. L., & Yaffe, K. (2013). The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 68(4): 433440.Google Scholar
Kronfol, Z. & Remick, D. G. (2000). Cytokines and the brain: Implications for clinical psychiatry. American Journal of Psychiatry, 157(5): 683694.Google Scholar
Lee, H. J., Choi, J. S., Brown, T. H., & Kim, J. J. (2001). Amygdalar NMDA receptors are critical for the expression of multiple conditioned fear responses. Journal of Neuroscience, 21(11): 41164124.Google Scholar
Leonard, B. & Maes, M. (2012). Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience and Biobehavioral Reviews, 36(2): 764785.CrossRefGoogle ScholarPubMed
Lin, C. H., Yeh, S. H., Lin, C. H., Lu, K. T., Leu, T. H., Chang, W. C., & Gean, P. W. (2001). A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron, 31(5): 841851.CrossRefGoogle ScholarPubMed
Liu, Y. H., Zeng, F., Wang, Y. R., Zhou, H. D., Giunta, B., Tan, J., & Wang, Y. J. (2013). Immunity and Alzheimer’s disease: Immunological perspectives on the development of novel therapies. Drug Discovery Today, 18(23–24): 12121220.Google Scholar
London, A., Cohen, M., & Schwartz, M. (2013). Microglia and monocyte-derived macrophages: Functionally distinct populations that act in concert in CNS plasticity and repair. Frontiers in Cellular Neuroscience, 7: 34.Google Scholar
Maes, M., Mihaylova, I., Kubera, M., & Ringel, K. (2012a). Activation of cell-mediated immunity in depression: Association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 36(1): 169175.CrossRefGoogle ScholarPubMed
Maes, M., Ringel, K., Kubera, M., Berk, M., & Rybakowski, J. (2012b). Increased autoimmune activity against 5-HT: A key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. Journal of Affective Disorders, 136(3): 386392.Google Scholar
Mahar, I., Bambico, F. R., Mechawar, N., & Nobrega, J. N. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience and Biobehavioral Reviews, 38: 173192.Google Scholar
Martinez-Aran, A., Scott, J., Colom, F., Torrent, C., Tabares-Seisdedos, R., Daban, C., … Vieta, E. (2009). Treatment nonadherence and neurocognitive impairment in bipolar disorder. Journal of Clinical Psychiatry, 70(7): 10171023.Google Scholar
Mayberg, H. S., Brannan, S. K., Mahurin, R. K., Jerabek, P. A., Brickman, J. S., Tekell, J. L., … Fox, P. T. (1997). Cingulate function in depression: A potential predictor of treatment response. Neuroreport, 8(4): 10571061.Google Scholar
McAfoose, J. & Baune, B. T. (2009). Evidence for a cytokine model of cognitive function. Neuroscience and Biobehavioral Reviews, 33(3): 355366.Google Scholar
McCabe, C. & Mishor, Z. (2011). Antidepressant medications reduce subcortical-cortical resting-state functional connectivity in healthy volunteers. NeuroImage, 57(4): 13171323.Google Scholar
McIlroy, S. P., Vahidassr, M. D., Savage, D. A., Lloyd, F., Patterson, C. C., Lawson, J. T., & Passmore, A. P. (2000). Association of serum AACT levels and AACT signal polymorphism with late-onset Alzheimer’s disease in Northern Ireland. International Journal of Geriatric Psychiatry, 15(3): 260266.Google Scholar
Mcmillian, M., Kong, L. Y., Sawin, S. M., Wilson, B., Das, K., Hudson, P., … Bing, G. (1995). Selective killing of cholinergic neurons by microglial activation in basal forebrain mixed neuronal/glial cultures. Biochemical and Biophysical Research Communications, 215(2): 572577.Google Scholar
Mildner, A., Schlevogt, B., Kierdorf, K., Bottcher, C., Erny, D., Kummer, M. P., … Prinz, M. (2011). Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. Journal of Neuroscience, 31(31): 1115911171.Google Scholar
Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9): 732741.Google Scholar
Morris, G. P., Clark, I. A., Zinn, R., & Vissel, B. (2013). Microglia: A new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiology of Learning and Memory, 105: 4053.Google Scholar
Moylan, S., Berk, M., Dean, O. M., Samuni, Y., Williams, L. J., O’Neil, A., … Maes, M. (2014). Oxidative & nitrosative stress in depression: Why so much stress? Neuroscience and Biobehavioral Reviews, 45: 4662.Google Scholar
Moylan, S., Maes, M., Wray, N. R., & Berk, M. (2013). The neuroprogressive nature of major depressive disorder: Pathways to disease evolution and resistance, and therapeutic implications. Molecular Psychiatry, 18: 595606.Google Scholar
Müller, N., Myint, A. M., & Schwarz, M. J. (2011). Inflammatory biomarkers and depression. Neurotoxicity Research, 19(2): 308318.Google Scholar
Müller, N., Schwarz, M. J., Dehning, S., Douhe, A., Cerovecki, A., Goldstein-Muller, B., … Riedel, M. (2006). The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: Results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Molecular Psychiatry, 11(7): 680684.Google Scholar
Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11(11): 489497.Google Scholar
Nadjar, A., Bluthe, R. M., May, M. J., Dantzer, R., & Parnet, P. (2005). Inactivation of the cerebral NFkappaB pathway inhibits interleukin-1beta-induced sickness behavior and c-Fos expression in various brain nuclei. Neuropsychopharmacology, 30(8): 14921499.Google Scholar
Nilsson, L. N., Arendash, G. W., Leighty, R. E., Costa, D. A., Low, M. A., Garcia, M. F., … Potter, H. (2004). Cognitive impairment in PDAPP mice depends on ApoE and ACT-catalyzed amyloid formation. Neurobiology of Aging, 25(9): 11531167.Google Scholar
Pare, D., Quirk, G. J., & Ledoux, J. E. (2004). New vistas on amygdala networks in conditioned fear. Journal of Neurophysiology, 92(1): 19.Google Scholar
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., … Weinberger, D. R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8(6): 828834.Google Scholar
Phelps, E. A. & Ledoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48(2): 175187.Google Scholar
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003a). Neurobiology of emotion perception I: Implications for major psychiatric disorders. Biological Psychiatry, 54(5): 504514.Google Scholar
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003b). Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biological Psychiatry, 54(5): 515528.Google Scholar
Pickering, M. & O’Connor, J. J. (2007). Pro-inflammatory cytokines and their effects in the dentate gyrus. Progress in Brain Research, 163: 339354.Google Scholar
Pizzagalli, D., Pascual-Marqui, R. D., Nitschke, J. B., Oakes, T. R., Larson, C. L., Abercrombie, H. C., … Davidson, R. J. (2001). Anterior cingulate activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis. American Journal of Psychiatry, 158(3): 405415.Google Scholar
Porter, R. J., Gallagher, P., Thompson, J. M., & Young, A. H. (2003). Neurocognitive impairment in drug-free patients with major depressive disorder. British Journal of Psychiatry, 182: 214220.Google Scholar
Radwanska, K., Nikolaev, E., Knapska, E., & Kaczmarek, L. (2002). Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. Neuroreport, 13(17): 22412246.Google Scholar
Raison, C. L., Capuron, L., & Miller, A. H. (2006). Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends in Immunology, 27(1): 2431.Google Scholar
Raison, C. L., Rutherford, R. E., Woolwine, B. J., Shuo, C., Schettler, P., Drake, D. F., … Miller, A. H. (2013). A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. Archives of General Psychiatry, 70(1): 3141.Google Scholar
Ramos, A. & Mormede, P. (1998). Stress and emotionality: A multidimensional and genetic approach. Neuroscience and Biobehavioral Reviews, 22(1): 3357.Google Scholar
Ransohoff, R. M. & Benveniste, E. N. (eds.) (2006). Cytokines and the CNS. New York: Taylor & Francis.Google Scholar
Ravnkilde, B., Videbech, P., Clemmensen, K., Egander, A., Rasmussen, N. A., & Rosenberg, R. (2002). Cognitive deficits in major depression. Scandinavian Journal of Psychology, 43(3): 239251.Google Scholar
Reichenberg, A., Yirmiya, R., Schuld, A., Kraus, T., Haack, M., Morag, A., & Pollmacher, T. (2001). Cytokine-associated emotional and cognitive disturbances in humans. Archives of General Psychiatry, 58(5): 445452.Google Scholar
Rose, E. J. & Ebmeier, K. P. (2006). Pattern of impaired working memory during major depression. Journal of Affective Disorders, 90(2–3): 149161.Google Scholar
Rothwell, N. J. & Loddick, S. (eds.) (2002). Immune and Inflammatory Responses in the Nervous System. New York: Oxford University Press.Google Scholar
Saha, R. N., Liu, X., & Pahan, K. (2006). Up-regulation of BDNF in astrocytes by TNF-alpha: A case for the neuroprotective role of cytokine. Journal of Neuroimmune Pharmacology, 1(3): 212222.Google Scholar
Sakumoto, R., Kasuya, E., Komatsu, T., & Akita, T. (2003). Central and peripheral concentrations of tumor necrosis factor-alpha in Chinese Meishan pigs stimulated with lipopolysaccharide. Journal of Animal Science, 81(5): 12741280.Google Scholar
Santello, M. & Volterra, A. (2012). TNF-alpha in synaptic function: Switching gears. Trends in Neuroscience, 35(10): 638647.Google Scholar
Schwartz, M., Sivron, T., Eitan, S., Hirschberg, D. L., Lotan, M., & Elman-Faber, A. (1994). Cytokines and cytokine-related substances regulating glial cell response to injury of the central nervous system. Progress in Brain Research, 103: 331341.Google Scholar
Schwartz, M., Solomon, A., Lavie, V., Ben-Bassat, S., Belkin, M., & Cohen, A. (1991). Tumor necrosis factor facilitates regeneration of injured central nervous system axons. Brain Research, 545(1–2): 334338.Google Scholar
Sei, Y., Vitkovic, L., & Yokoyama, M. M. (1995). Cytokines in the central nervous system: Regulatory roles in neuronal function, cell death and repair. Neuroimmunomodulation, 2(3): 121133.Google Scholar
Sheline, Y. I., Gado, M. H., & Kraemer, H. C. (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry, 160(8): 15161518.Google Scholar
Siegle, G. J., Carter, C. S., & Thase, M. E. (2006). Use of fMRI to predict recovery from unipolar depression with cognitive behavior therapy. American Journal of Psychiatry, 163(4): 735738.Google Scholar
Sierra, A., Abiega, O., Shahraz, A., & Neumann, H. (2013). Janus-faced microglia: Beneficial and detrimental consequences of microglial phagocytosis. Frontiers in Cellular Neuroscience, 7: 6.Google Scholar
Slavich, G. M. & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychological Bulletin, 140(3): 774815.Google Scholar
Stefanacci, L. & Amaral, D. G. (2000). Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study. Journal of Comparative Neurology, 421(1): 5279.Google Scholar
Streit, W. J., Braak, H., Xue, Q. S., & Bechmann, I. (2009). Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathologica, 118(4): 475485.Google Scholar
Streit, W. J. & Xue, Q. S. (2012). Alzheimer’s disease, neuroprotection, and CNS immunosenescence. Frontiers in Pharmacology, 3: 138.Google Scholar
Swardfager, W., Lanctot, K., Rothenburg, L., Wong, A., Cappell, J., & Herrmann, N. (2010). A meta-analysis of cytokines in Alzheimer’s disease. Biological Psychiatry, 68(10): 930941.Google Scholar
Tobinick, E. (2007). Perispinal etanercept for treatment of Alzheimer’s disease. Current Alzheimer Research, 4: 550552.Google Scholar
Tweedie, D., Sambamurti, K., & Greig, N. H. (2007). TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders: New drug candidates and targets. Current Alzheimer Research, 4: 378385.Google Scholar
Veiel, H. O. (1997). A preliminary profile of neuropsychological deficits associated with major depression. Journal of Clinical and Experimental Psychology, 19(4): 587603.Google Scholar
Videbech, P. & Ravnkilde, B. (2004). Hippocampal volume and depression: A meta-analysis of MRI studies. American Journal of Psychiatry, 161(11): 19571966.Google Scholar
Vitkovic, L., Bockaert, J., & Jacque, C. (2000a). “Inflammatory” cytokines: Neuromodulators in normal brain? Journal of Neurochemistry, 74(2): 457471.Google Scholar
Vitkovic, L., Konsman, J. P., Bockaert, J., Dantzer, R., Homburger, V., & Jacque, C. (2000b). Cytokine signals propagate through the brain. Molecular Psychiatry, 5(6): 604615.Google Scholar
Viviani, B., Gardoni, F., & Marinovich, M. (2007). Cytokines and neuronal ion channels in health and disease. International Review of Neurobiology, 82: 247263.Google Scholar
Warner-Schmidt, J. L., Vanover, K. E., Chen, E. Y., Marshall, J. J., & Greengard, P. (2011). Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 108(22): 92629267.Google Scholar
Wei, H., Zou, H., Sheikh, A. M., Malik, M., Dobkin, C., Brown, W. T., & Li, X. (2011). IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. Journal of Neuroinflammation, 8: 52.Google Scholar
Weiskrantz, L. (1956). Behavioral changes associated with ablation of the amygdaloid complex in monkeys. Journal of Comparative and Physiological Psychology, 49(4): 381391.Google Scholar
Westheide, J., Quednow, B. B., Kuhn, K. U., Hoppe, C., Cooper-Mahkorn, D., Hawellek, B., … Wagner, M. (2008). Executive performance of depressed suicide attempters: The role of suicidal ideation. European Archives of Psychiatry and Clinical Neuroscience, 258(7): 414421.Google Scholar
Wilson, C. J., Finch, C. E., & Cohen, H. J. (2002). Cytokines and cognition: The case for a head-to-toe inflammatory paradigm. Journal of the American Geriatrics Society, 50(12): 20412056.Google Scholar
Yirmiya, R. & Goshen, I. (2011). Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain, Behavior, and Immunity, 25(2): 181213.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×