Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T23:30:56.349Z Has data issue: false hasContentIssue false

2 - Fundamentals of nonlinear frequency upconversion

Published online by Cambridge University Press:  07 December 2009

W. P. Risk
Affiliation:
IBM Almaden Research Center, New York
T. R. Gosnell
Affiliation:
Los Alamos National Laboratory
A. V. Nurmikko
Affiliation:
Brown University, Rhode Island
Get access

Summary

INTRODUCTION

Blue-green light can be generated by using nonlinear crystals to “upconvert” the infrared wavelengths produced by high-power semiconductor diode lasers. In secondharmonic generation (SHG), a single infrared laser with frequency ω1 is passed through a nonlinear crystal and blue-green light emerges with frequency 2ω1. In sum-frequency generation (SFG), two infrared lasers with frequencies ω1 and ω2 are combined in the crystal; the generated blue-green beam then has frequency ω1 + ω2. These “second-order” nonlinear effects are relatively weak, yet it is still possible to use them to generate blue-green radiation at power levels suitable for the applications described in Chapter 1. In fact, of the three basic approaches to blue-green light generation discussed in this book, nonlinear frequency upconversion has so far been the most extensively developed and the most prolific in spawning commercial blue-green laser products.

The inherent weakness of these nonlinear effects has forced researchers and laser engineers to explore a variety of techniques for enhancing the efficiency of these interactions. In Chapters 3–6, we will discuss these different approaches, which include such things as intracavity frequency-doubling, resonant enhancement, and guided-wave interactions. However, all of these different embodiments exploit the same basic nonlinear interactions, and this chapter is devoted to explaining the essential nature of those processes. In it, we will give a qualitative explanation of the physical process underlying SHG and SFG, we will present some of the basic equations necessary for understanding and designing blue-green lasers based on these effects, we will discuss techniques for providing “phasematching”, which we will see is a crucial requirement for efficient generation of blue-green light, and we will examine some of the nonlinear materials that can be used for frequency conversion of near-infrared light.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×