Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T14:22:09.931Z Has data issue: false hasContentIssue false

10 - Sociality in Non-Primate Mammals

from Part II - Vertebrates

Published online by Cambridge University Press:  13 April 2017

Dustin R. Rubenstein
Affiliation:
Columbia University, New York
Patrick Abbot
Affiliation:
Vanderbilt University, Tennessee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2001) The neurobiology of social cognition. Current Opinion in Neurobiology, 11, 231239.Google Scholar
Alexander, R. D. (1974) The evolution of social behavior. Annual Review of Ecology and Systematics, 5, 325383.Google Scholar
Archie, E. A. & Theis, K. R. (2011) Animal behaviour meets microbial ecology. Animal Behaviour, 82, 425436.Google Scholar
Archie, E. A., Moss, C. J., & Alberts, S. C. (2006) The ties that bind: Genetic relatedness predicts the fission and fusion of social groups in wild African elephants. Proceedings of the Royal Society of London B, 273, 513522.Google Scholar
Armitage, K. B. (1991) Social and population dynamics of yellow-bellied marmots: Results from long-term research. Annual Review of Ecology and Systematics, 22, 379407.Google Scholar
Armitage, K. B. & Schwartz, O. A. (2000) Social enhancement of fitness in yellow-bellied marmots. Proceedings of the National Academy of Sciences, 97, 1214912152.Google Scholar
Armitage, K. B., Vuren, D. H. V., Ozgul, A., & Oli, M. K. (2011) Proximate causes of natal dispersal in female yellow-bellied marmots, Marmota flaviventris. Ecology, 92, 218227.Google Scholar
Arnold, W. (1990) The evolution of marmot sociality: II. Costs and benefits of joint hibernation. Behavioral Ecology and Sociobiology, 27, 239246.Google Scholar
Barclay, R. M. R. & Harder, L. D. (2003) Bat Ecology. Chicago: University of Chicago Press.Google Scholar
Beckhoff, M., Daniels, T. J., & Gittleman, J. L. (1984) Life history patterns and the comparative social ecology of carnivores. Annual Review of Ecology and Systematics, 15, 191232.Google Scholar
Bennett, N. C., Faulkes, C. G., & Molteno, A. J. (2000) Reproduction in subterranean rodents. In: Lacey, E. A. Patton, J. L. Cameron, G. N. (eds.) Life Underground: The Biology Of Subterranean Rodents. Chicago, IL: University of Chicago Press, pp. 145178.Google Scholar
Benson-Amram, S., Heinen, V. K., Dryer, S. L., & Holekamp, K. E. (2011) Numerical assessment and individual call discrimination by wild spotted hyaenas, Crocuta crocuta. Animal Behaviour, 82, 743752.Google Scholar
Blumstein, D. T. (2007) The evolution of alarm communication in rodents: Structure, function, and the puzzle of apparently altruistic calling. In: Wolff, J. O. Sherman, , & P. W. (eds.) Rodent Societies: An Ecological and Evolutionary Perspective. Chicago: University of Chicago Press, pp. 317327.Google Scholar
Blumstein, D. T. (2013). Yellow-bellied marmots: Insights from an emergent view of sociality. Philosophical Transactions of the Royal Society B, 368, 20120349.Google Scholar
Blumstein, D. T. & Armitage, K. B. (1998) Life history consequences of social complexity: A comparative study of ground-dwelling sciurids. Behavioral Ecology, 9, 819.Google Scholar
Blumstein, D. T. & Armitage, K. B. (1999) Cooperative breeding in marmots. Oikos, 84, 369382.Google Scholar
Blumstein, D. T., Im, S., Nicodemus, A., & Zugmeyer, C. (2004) Yellow-bellied marmots (Marmota flaviventris) hibernate socially. Journal of Mammalogy, 85, 2529.Google Scholar
Blumstein, D. T., Ebensperger, L. A., Hayes, L. D., et al. (2010) Toward an integrative understanding of social behavior: New models and opportunities. Frontiers in Behavioral Neuroscience, 4, 19.Google Scholar
Bordes, F., Blumstein, D. T., & Morand, S. (2007) Rodent sociality and parasite diversity. Biology Letters, 3, 692694.Google Scholar
Bradbury, J. W. & Vehrencamp, S. L. (2011) Principles of Animal Communication. Sunderland, MA: Sinauer Associates, Inc.Google Scholar
Branchi, I., Santucci, D., & Alleva, E. (2001) Ultrasonic vocalisation emitted by infant rodents: A tool for assessment of neurobehavioural development. Behavioural Brain Research, 125, 4956.Google Scholar
Brett, R. A. (1991) The ecology of naked mole-rat colonies: Burrowing, food, and limiting factors. In: Sherman, P. W., Jarvis, J. U. M., & Alexander, R. D. (eds.) The Biology of the Naked Mole-rat, Princeton: Princeton University Press, pp. 137184.Google Scholar
Burland, T. M. & Worthington, W., J. (2001) Seeing in the dark: Molecular approaches to the study of bat populations. Biological Reviews of the Cambridge Philosophical Society, 76, 389409.Google Scholar
Cameron, E. Z. (2004) Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: Evidence for a mechanism. Proceedings of the Royal Society of London,Series B: Biological Sciences, 271, 17231728.Google Scholar
Cameron, E. Z., Setsaas, T. H., & Linklater, W. L. (2009) Social bonds between unrelated females increase reproductive success in feral horses. Proceedings of the National Academy of Sciences, 106, 1385013853.Google Scholar
Carter, C. S. (2003) Developmental consequences of oxytocin. Physiology and Behavior, 79, 383397.Google Scholar
Carter, G. G. & Wilkinson, G. S. (2013) Food sharing in vampire bats: Reciprocal help predicts donations more than relatedness or harassment. Proceedings of the Royal Society of London B, 280, 20122573.Google Scholar
Carter, G. G. & Wilkinson, G. S. (2016) Common vampire bat contact calls attract past food-sharing partners. Animal Behaviour, 116, 4551.Google Scholar
Chapman, J. A. & Flux, J. E. (1990) Introduction and overview of the lagomorphs. In: Chapman, J. A. & Flux, J. E. C. (eds.) Rabbits, Hares and Pikas, Status Survey and Conservation Action Plan. Oxford: The World Conservation Union, pp. 16.Google Scholar
Clutton-Brock, T. H. (2009). Cooperation between non-kin in animal societies. Nature, 462, 5157.Google Scholar
Clutton-Brock, T. H. (ed.) (1988) Reproductive Success: Studies of Individual Variation In Contrasting Breeding Systems. Chicago: University of Chicago Press.Google Scholar
Clutton-Brock, T. H. (2002) Breeding together: Kin selection and mutualism in cooperative vertebrates. Science, 296, 6972.Google Scholar
Clutton-Brock, T. H. & Guinness, F. E. (1982) Red Deer: Behavior and Ecology of Two Sexes. Chicago: University of Chicago Press.Google Scholar
Clutton-Brock, T. H. & Iason, G. R. (1986) Sex ratio variation in mammals. Quarterly Review of Biology, 61, 339374.Google Scholar
Clutton-Brock, T. H. & Lukas, D. (2012) The evolution of social philopatry and dispersal in female mammals. Molecular Ecology, 21, 472492.Google Scholar
Clutton-Brock, T. H. & Sheldon, B. C. (2010). Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends in Ecology & Evolution, 25, 562573.Google Scholar
Clutton-Brock, T. H., Albon, S. D., & Guinness, F. E. (1987) Interactions between population density and maternal characteristics affecting fecundity and juvenile survival in red deer. The Journal of Animal Ecology, 56, 857871.Google Scholar
Clutton-Brock, T. H., O’Riain, M. J., Brotherton, P. N. M., et al. (1999) Selfish sentinels in cooperative mammals. Science, 284, 16401644.Google Scholar
Clutton-Brock, T. H., Russell, A. F., Sharpe, L. L., et al. (2001) Effects of helpers on juvenile development and survival in meerkats. Science, 293, 24462449.Google Scholar
Clutton-Brock, T. H., Hodge, S. J., & Flower, T. P. (2008) Group size and the suppression of subordinate reproduction in Kalahari meerkats. Animal Behaviour, 76, 689700.Google Scholar
Connor, R. C. (2000) Group living in whales and dolphins. In: Mann, J., Connor, R. C., Tyack, P. L., & Whitehead, H. (eds.) Cetacean Societies: Field Studies of Dolphins and Whales. Chicago: University of Chicago Press, pp. 199218.Google Scholar
Côté, S. D. & Festa-Bianchet, M. (2001) Reproductive success in female mountain goats: The influence of age and social rank. Animal Behaviour, 62, 173181.Google Scholar
Creel, S. (1997) Cooperative hunting and group size: Assumptions and currencies. Animal Behaviour, 54, 13191324.Google Scholar
Creel, S. (2001) Social dominance and stress hormones. Trends in Ecology and Evolution, 16, 491497.Google Scholar
Creel, S. & Creel, N. M. (1991) Energetics, reproductive suppression and obligate communal breeding in carnivores. Behavioral Ecology and Sociobiology, 28, 263270.Google Scholar
Creel, S. & Creel, N. M. (1995) Communal hunting and pack size in African wild dogs, Lycaon pictus. Animal Behaviour, 50, 13251339.Google Scholar
Creel, S. R. & Waser, P. M. (1994) Inclusive fitness and reproductive strategies in dwarf mongooses. Behavioral Ecology, 5, 339348.Google Scholar
Crespi, B. J. & Yanega, D. (1995) The definition of eusociality. Behavioral Ecology, 6, 109115.Google Scholar
Cresswell, W. J., Harris, S., Cheeseman, C. L., & Mallinson, P. J. (1992) To breed or not to breed: An analysis of the social and density-dependent constraints on the fecundity of female badgers (Meles meles) Philosophical Transactions of the Royal Society B, 338, 393407.Google Scholar
Dalerum, F. (2007) Phylogenetic reconstruction of carnivore social organizations. Journal of Zoology, 273, 9097.Google Scholar
Dobson, F. S. (1982) Competition for mates and predominant juvenile male dispersal in mammals. Animal Behaviour, 30, 11831192.Google Scholar
Drea, C. M., Vigniere, S. N., Kim, H. S., Weldele, M. L., & Glickman, S. E. (2002) Responses to olfactory stimuli in spotted hyenas (Crocuta crocuta): II. Discrimination of conspecific scent. Journal of Comparative Psychology, 116, 342349.Google Scholar
Dunbar, R. I. & Shultz, S. (2007) Evolution in the social brain. Science, 317, 13441347.Google Scholar
Ebensperger, L. A. (2001) A review of the evolutionary causes of rodent group living. Acta Theriologica, 46, 115144.Google Scholar
Ebensperger, L. A. & Blumstein, D. T. (2006) Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behavioral Ecology, 17, 410418.Google Scholar
Ebensperger, L. A. & Cofré, H. (2001) On the evolution of group living in the New World cursorial hystricognath rodents. Behavioral Ecology, 12, 227236.]Google Scholar
Ebensperger, L. A. & Hayes, L. D. (2008) On the dynamics of rodent social groups. Behavioural Processes, 79, 8592.Google Scholar
Ebensperger, L. A., Rivera, D. S., & Hayes, L. D. (2012) Direct fitness of group living mammals varies with breeding strategy, climate and fitness estimates. Journal of Animal Ecology, 81, 10131023.Google Scholar
Ebensperger, L. A., Villegas, Á., Abades, S., & Hayes, L. D. (2014) Mean ecological conditions modulate the effects of group living and communal rearing on offspring production and survival. Behavioral Ecology, 25, 862870.Google Scholar
Eick, G. N., Jacobs, D. S., & Matthee, C. A. (2005). A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Molecular Biology and Evolution, 22, 18691886..Google Scholar
Eisenberg, J. F. (1966) The social organization of mammals. Handbuch der Zoologie, 10, 1-92.Google Scholar
Emlen, S. T. (1994) Benefits, constraints and the evolution of the family. Trends in Ecology and Evolution, 9, 282285.Google Scholar
Emlen, S. T. & Oring, L. W. (1977) Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215223.Google Scholar
Engh, A. L., Esch, K., Smale, L., & Holekamp, K. E. (2000) Mechanisms of maternal rank “inheritance” in the spotted hyaena, Crocuta crocuta. Animal Behaviour, 60, 323332.Google Scholar
Faulkes, C. G., Abbott, D. H., O’Brien, H. P., et al. (1997) Micro- and macrogeographical genetic structure of colonies of naked mole-rats Heterocephalus glaber. Molecular Ecology, 6, 615628.Google Scholar
FitzGibbon, C. D. (1989) A cost to individuals with reduced vigilance in groups of Thomson’s gazelles hunted by cheetahs. Animal Behaviour, 37, 508510.Google Scholar
Fleming, A. S., O’Day, D. H., & Kraemer, G. W. (1999) Neurobiology of mother–infant interactions: Experience and central nervous system plasticity across development and generations. Neuroscience and Biobehavioral Reviews, 23, 673685.Google Scholar
Foster, W. A. & Treherne, J. E. (1981) Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature, 293, 466467.Google Scholar
Frank, L. G. (1986) Social organization of the spotted hyaena (Crocuta crocuta). II. Dominance and reproduction. Animal Behaviour, 35, 15101527.Google Scholar
Gittleman, J. L. (1986) Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67, 2336.Google Scholar
Gilchrist, J. S., Otali, E., & Mwanguhya, F. (2004) Why breed communally? Factors affecting fecundity in a communal breeding mammal: The banded mongoose (Mungos mungo). Behavioral Ecology and Sociobiology, 57, 119131.Google Scholar
Gompper, M. E. (1996) Sociality and asociality in white-nosed coatis (Nasua narica): Foraging costs and benefits. Behavioral Ecology, 7, 254263.Google Scholar
Gorman, M. L. & Trowbridge, B. J. (1989) The role of odor in the social lives of carnivores. In: Gittleman, J. L. Carnivore Behavior, Ecology, and Evolution. New York: Springer, pp. 5788Google Scholar
Grainger, M., Aarde, R., & Whyte, I. (2005) Landscape heterogeneity and the use of space by elephants in the Kruger National Park, South Africa. African Journal of Ecology, 43, 369375.Google Scholar
Greenwood, P. J. (1980) Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour, 28, 11401162.Google Scholar
Griffin, A. S., Pemberton, J. M., Brotherton, P. N., et al. (2003) A genetic analysis of breeding success in the cooperative meerkat (Suricata suricatta). Behavioral Ecology, 14, 472480.Google Scholar
Hamilton, W. D. (1964) The genetical evolution of social behavior, I and II. Journal of Theoretical Biology, 7, 152.Google Scholar
Harvey, P. H. & Zammuto, R. M. (1985) Patterns of mortality and age at first reproduction in natural populations of mammals. Nature, 315, 319320.Google Scholar
Haxby, J. V., Ungerleider, L. G., Horwitz, B., et al. (1996) Face encoding and recognition in the human brain. Proceedings of the National Academy of Sciences, 93, 922927.Google Scholar
Hayes, L. D. (2000) To nest communally or not to nest communally: A review of rodent communal nesting and nursing. Animal Behaviour, 59, 677688.Google Scholar
Hayes, L. D. & Ebensperger, L. A. (2011) Caviomorph rodent social systems: An introduction. Journal of Mammalogy, 92, 12.Google Scholar
Hayes, L. D. & Solomon, N. G. (2004) Costs and benefits of communal rearing to female prairie voles (Microtus ochrogaster). Behavioral Ecology and Sociobiology, 56, 585593.Google Scholar
Hayes, L. D. & Solomon, N. G. (2006) Mechanisms of maternal investment by communal prairie voles, Microtus ochrogaster. Animal Behaviour, 72, 10691080.Google Scholar
Hayes, L. D., Ebensperger, L. A., Kelt, D. A., Meserve, P. L., Pillay, N., Viblanc, V. A., & Schradin, C. (in press). Long-term field studies in rodents. Journal of Mammalogy.Google Scholar
Herrera, E. A., Salas, V., Congdon, E. R., Corriale, M. J., & Tang-Martínez, Z. (2011) Capybara social structure and dispersal patterns: Variations on a theme. Journal of Mammalogy, 92, 1220.Google Scholar
Hoeck, H. N., Klein, H., & Hoeck, P. (1982) Flexible social organization in Hyrax. Zeitschrift für Tierpsychologie, 59, 265298.Google Scholar
Hofmann, H. A., Beery, A. K., Blumstein, D. T., et al. (2014) An evolutionary framework for studying mechanisms of social behavior. Trends in Ecology and Evolution, 29, 581589.Google Scholar
Holekamp, K. E. & Sherman, P. W. (1989) Why male ground squirrels disperse: A multilevel analysis explains why only males leave home. American Scientist, 77, 232239.Google Scholar
Holekamp, K. E., Smale, L., & Szykman, N. (1996) Rank and reproduction in the female spotted hyaena. Journal of Reproduction and Fertility, 108, 229237.Google Scholar
Holekamp, K. E., Sakai, S. T., & Lundrigan, B. L. (2007) Social intelligence in the spotted hyena (Crocuta crocuta). Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362, 523538.Google Scholar
Holekamp, K. E., Smith, J. E., Strelioff, C. C., Van Horn, R. C., & Watts, H. E. (2012) Society, demography and genetic structure in the spotted hyena. Molecular Ecology, 21, 613632.Google Scholar
Honeycutt, R. L., Frabotta, L. J., & Rowe, D. L. (2007) Rodent evolution, phylogenetics, and biogeography. In: Wolff, J. O. & Sherman, P. W. (eds.) Rodent Societies: An Ecological and Evolutionary Perspective. Chicago: University of Chicago Press, pp. 823.Google Scholar
Hoogland, J. L. (1995) The Black-Tailed Prairie Dog: Social Life of a Burrowing Mammal. University of Chicago Press.Google Scholar
Hoogland, J. L. (2013) Prairie dogs disperse when all close kin have disappeared. Science, 339, 12051207.Google Scholar
Huang, B., Wey, T.W., & Blumstein, D. T. (2011) Correlates and consequences of dominance in a social rodent. Ethology, 117, 573585.Google Scholar
Jarman, P. J. (1974) The social organisation of antelope in relation to their ecology. Behaviour, 48, 215267.Google Scholar
Jarman, P. J. (1991) Social behavior and organization in the Macropodoidea. Advances in the Study of Behavior, 20, 150.Google Scholar
Jarvis, J. U. M., O’Riain, M. J., Bennett, N. C., & Sherman, P. W. (1994) Mammalian eusociality: A family affair. Trends in Ecology and Evolution, 9, 4751.Google Scholar
Jetz, W. & Rubenstein, D. R. (2011) Environmental uncertainty and the global biogeography of cooperative breeding in birds. Current Biology, 21, 7278.Google Scholar
Kerth, G. (2008) Causes and consequences of sociality in bats. Bioscience, 58, 737746.Google Scholar
Kerth, G., Safi, K., & König, B. (2002) Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behavioral Ecology and Sociobiology, 52, 203210.Google Scholar
Kerth, G. & Van Schaik, J. (2012) Causes and consequences of living in closed societies: Lessons from a long?term socio?genetic study on Bechstein’s bats. Molecular Ecology, 21, 633646.Google Scholar
Koenig, W. D., Pitelka, F. A., Carmen, W. J., Mumme, R. L., & Stanback, M. T. (1992) The evolution of delayed dispersal in cooperative breeders. Quarterly Review of Biology, 67, 111150.Google Scholar
König, B. (1994) Fitness effects of communal rearing in house mice: The role of relatedness versus familiarity. Animal Behaviour, 48, 14491457.Google Scholar
Krause, J. & Ruxton, G. D. (2002) Living in Groups. Oxford: Oxford University Press.Google Scholar
Kruuk, H. (1972) The Spotted Hyena: A Study Of Predation And Social Behavior. Chicago: University of Chicago Press.Google Scholar
Kunz, T. H. (1982) Roosting ecology of bats. In: Kunz, T. H. (ed.) Ecology of Bats. United States: Springer, pp. 155.Google Scholar
Lacey, E. A. (2016) Dispersal in caviomorph rodents. In: Hayes, L. D. (ed.) Sociobiology of Caviomorph Rodents: An Integrative View. New Jersey: Wiley & Associates, pp. 119146.Google Scholar
Lacey, E. A. (2000) Spatial and social systems of subterranean rodents. . In: Lacey, E.A. Patton, J. L. Cameron, G.N. (eds.) Life Underground: The Biology Of Subterranean Rodents. Chicago, IL: University of Chicago Press, pp. 257296.Google Scholar
Lacey, E. A. (2004) Sociality reduces individual direct fitness in a communally breeding rodent, the colonial tuco-tuco (Ctenomys sociabilis). Behavioral Ecology and Sociobiology, 56, 449457.Google Scholar
Lacey, E. A. & Sherman, P. W. (1997) Cooperative breeding in naked mole-rats: Implications for vertebrate and invertebrate sociality. In: Solomon, N. G. & French, J. A. (eds.) Cooperative Breeding in Mammals. New York: Cambridge University Press, pp. 267301.Google Scholar
Lacey, E. A. & Sherman, P. W. (2007) The ecology of sociality in rodents. In: Wolff, J. O. & Sherman, P. W. (eds.) Rodent Societies: An Ecological and Evolutionary Perspective, Chicago: University of Chicago Press, pp. 243254.Google Scholar
Lacey, E. A. & Wieczorek, J. R. (2004) Kinship in colonial tuco-tucos: Evidence from group composition and population structure. Behavioral Ecology, 15, 988996.Google Scholar
Lucas, J. R., Waser, P. M., & Creel, S. R. (1994) Death and disappearance: Estimating mortality risks associated with philopatry and dispersal. Behavioral Ecology, 5, 135141.Google Scholar
Lucia, K. E., Keane, B., Hayes, L. D., et al. (2008) Philopatry in prairie voles: An evaluation of the habitat saturation hypothesis. Behavioral Ecology, 19, 774783.Google Scholar
Lukas, D. & Clutton-Brock, T. H. (2012) Cooperative breeding and monogamy in mammalian societies. Proceedings of the Royal Society of London B, 279, 21512156.Google Scholar
Lukas, D. & Clutton-Brock, T. H. (2013) The evolution of social monogamy in mammals. Science, 341, 526530.Google Scholar
Macdonald, D. W. (1983) The ecology of carnivore social behaviour. Nature, 301, 379384.Google Scholar
McCraken, G. F. & Wilkinson, G. S. (2000) Bat mating systems. Reproductive Biology of Bats, 12, 35.Google Scholar
McGuire, B., Getz, L. L., Hofmann, J. E., Pizzuto, T., & Frase, B. (1993) Natal dispersal and philopatry in prairie voles (Microtus ochrogaster) in relation to population density, season, and natal social environment. Behavioral Ecology and Sociobiology, 32, 293302.Google Scholar
McGuire, B., Getz, L. L., & Oli, M. K. (2002) Fitness consequences of sociality in prairie voles, Microtus ochrogaster: Influence of group size and composition. Animal Behaviour, 64, 645654.Google Scholar
McShea, W. J. & Madison, D. M. (1984) Communal nesting between reproductively active females in a spring population of Microtus pennsylvanicus. Canadian Journal of Zoology, 62, 344346.Google Scholar
Mech, L. D., Smith, D. W., & MacNulty, D. (2015) Wolves on the Hunt: The Behavior of Wolves Hunting Wild Prey. Chicago: University of Chicago Press.Google Scholar
Moehlman, P. D. (1986) Ecology and cooperation in canids. In: Rubenstein, D. I. & Wrangham, R. W. (eds.) Ecological Aspects of Social Evolution: Birds and Mammals. Princeton: Princeton University Press, pp. 6486.Google Scholar
Moeller, L. M. (2012) Sociogenetic structure, kin associations and bonding in delphinids. Molecular Ecology, 21, 745764.Google Scholar
Moss, C. J., Croze, H., & Lee, P. C. (2011) The Amboseli elephants: A Long-term perspective on a long-lived mammal. Chicago: University of Chicago Press.Google Scholar
Murie, J.O. & Michener, G.R. (eds.). (1984 ) Biology of Ground-dwelling Squirrels: Annual Cycles, Behavioral Ecology and Sociality. Lincoln: University of Nebraska Press.Google Scholar
Neuweiler, G. (1989) Foraging ecology and audition in echolocating bats. Trends in Ecology and Evolution, 4, 160166.Google Scholar
Nunes, S., Ha, C. T., & Garrett, P. J., et al. (1998) Body fat and time of year interact to mediate dispersal behaviour in ground squirrels. Animal Behaviour, 55, 605-614.Google Scholar
Nunes, S., Duniec, T. R., Schweppe, S. A., & Holekamp, K. E. (1999) Energetic and endocrine mediation of natal dispersal behavior in Belding’s ground squirrels. Hormones and Behavior, 35, 113124.Google Scholar
Olson, L. E., Blumstein, D. T., Pollinger, J. R., & Wayne, R. K. (2012) No evidence of inbreeding avoidance despite demonstrated survival costs in a polygynous rodent. Molecular Ecology, 21, 562571.Google Scholar
Packer, C., Scheele, D., & Pusey, A. E. (1990) Why lions form groups: Food is not enough. The American Naturalist, 136, 119.Google Scholar
Packer, C., Lewis, S., & Pusey, A. (1992) A comparative analysis of non-offspring nursing. Animal Behaviour, 43, 265281.Google Scholar
Packer, C., Pusey, A. E. & Eberly, L. E. (2001) Egalitarianism in female African lions. Science, 293, 690693.Google Scholar
Peters, G. & Wozencraft, W. C. (1989) Acoustic communication by fissiped carnivores. In: Gittleman, J. L. (ed.) Carnivore Behavior, Ecology, and Evolution. New York: Springer, pp. 1456.Google Scholar
Pitnick, S., Jones, K. E., & Wilkinson, G. S. (2006) Mating system and brain size in bats. Proceedings of the Royal Society of London B: Biological Sciences, 273, 719724.Google Scholar
Portfors, C. V. (2007) Types and functions of ultrasonic vocalizations in laboratory rats and mice. Journal of the American Association for Laboratory Animal Science, 46, 2834.Google Scholar
Promislow, D. E. & Harvey, P. H. (1990) Living fast and dying young: A comparative analysis of life-history variation among mammals. Journal of Zoology, 220, 417437.Google Scholar
Randall, J. A., Rogovin, K., Parker, P. G., & Eimes, J. A. (2005) Flexible social structure of a desert rodent, Rhombomys opimus: Philopatry, kinship, and ecological constraints. Behavioral Ecology, 16, 961973.Google Scholar
Rowe, D. L. & Honeycutt, R. L. (2002) Phylogenetic relationships, ecological correlates, and molecular evolution within the Cavioidea (Mammalia, Rodentia). Molecular Biology and Evolution, 19, 263277.Google Scholar
Rubenstein, D. R., Botera, C. A., & Lacey, E. A.. (2016) Discrete but variable structure of animal societies leads to the false perception of a social continuum. Royal Society Open Science, 3, 160147.Google Scholar
Safi, K. & Kerth, G. (2007) Comparative analyses suggest that information transfer promoted sociality in male bats in the temperate zone. The American Naturalist, 170, 465472.Google Scholar
Schradin, C. (2013) Intraspecific variation in social organization by genetic variation, developmental plasticity, social flexibility or entirely extrinsic factors. Philosophical Transactions of the Royal Society B, 368, 20120346.Google Scholar
Schradin, C., Lindholm, A. K., Johannesen, J. E. S., et al. (2012) Social flexibility and social evolution in mammals: A case study of the African striped mouse (Rhabdomys pumilio). Molecular Ecology, 21, 541553.Google Scholar
Sechrest, W., Brooks, T. M., da Fonseca, G. A., et al. (2002) Hotspots and the conservation of evolutionary history. Proceedings of the National Academy of Sciences USA, 99, 20672071.Google Scholar
Sherman, P. W. (1977) Nepotism and the evolution of alarm calls. Science, 197, 12461253.Google Scholar
Sherman, P. W., Lacey, E. A., Reeve, H. K., & Keller, L. (1995) Forum: The eusociality continuum. Behavioral Ecology, 6, 102108.Google Scholar
Silk, J. B. (2007) The adaptive value of sociality in mammalian groups. Philosophical Transactions of the Royal Society B, 362, 539559.Google Scholar
Smith, J. E. (2014) Hamilton’s legacy: Kinship, cooperation and social tolerance in mammalian groups. Animal Behaviour, 92, 291304.Google Scholar
Smith, J. E. & Batzli, G. O. (2006) Dispersal and mortality of prairie voles (Microtus ochrogaster) in fragmented landscapes: A field experiment. Oikos, 112, 209217.Google Scholar
Smith, J. E., Lehmann, K. D. S., Montgomery, T. M., Strauss, E. D. and Holekamp, K. E.. (in press). Insights from long?term field studies of mammalian carnivores. Journal of Mammalogy.Google Scholar
Smith, J. E., Memenis, S. K., & Holekamp, K. E. (2007) Rank-related partner choice in the fission-fusion society of spotted hyenas (Crocuta crocuta). Behavioral Ecology and Sociobiology, 61, 753765.Google Scholar
Smith, J. E., Kolowski, J. M., Graham, K. E., Dawes, S. E., & Holekamp, K. E. (2008) Social and ecological determinants of fission-fusion dynamics in the spotted hyaena. Animal Behaviour, 76, 619636.Google Scholar
Smith, J. E., Van Horn, R. C., Powning, K. S., et al. (2010) Evolutionary forces favoring intragroup coalitions among spotted hyenas and other animals. Behavioral Ecology, 21, 284303.Google Scholar
Smith, J. E., Powning, K., Dawes, S., et al. (2011) Greetings promote cooperation and reinforce social bonds among spotted hyaenas. Animal Behaviour, 81, 401415.Google Scholar
Smith, J. E., Swanson, E. M., Reed, D., & Holekamp, K. E. (2012a) Evolution of cooperation among mammalian carnivores and its relevance to hominin evolution. Current Anthropology, 53, S436-S452.Google Scholar
Smith, J. E., Chung, L. K., & Blumstein, D. T. (2013) Ontogeny and symmetry of social partner choice among free-living yellow-bellied marmots. Animal Behaviour, 85, 715725.Google Scholar
Solomon, N. G. & Crist, T. O. (2008) Estimates of reproductive success for group living prairie voles, Microtus ochrogaster, in high-density populations. Animal Behaviour, 76, 881892.Google Scholar
Solomon, N. G. & Hayes, L. D. (2009) The biological basis of alloparental behaviour in mammals. In: Bentley, G., & Mace, R. (eds.) Substitute Parents: Biological and Social Perspectives on Alloparenting in Human Societies. New York: Berghahn Books, pp. 1349.Google Scholar
Streatfeild, C. A., Mabry, K. E., Keane, B., Crist, T. O., & Solomon, N. G. (2011) Intraspecific variability in the social and genetic mating systems of prairie voles, Microtus ochrogaster. Animal Behaviour, 82, 13871398.Google Scholar
Sundaresan, S. R., Fischhoff, I. R., Dushoff, J., & Rubenstein, D. I. (2007) Network metrics reveal differences in social organization between two fission–fusion species, Grevy’s zebra and onager. Oecologia, 151, 140149.Google Scholar
Taborsky, M., Hofmann, H. A., Beery, A. K., et al. (2015) Taxon matters: Promoting integrative studies of social behavior. Trends in Neurosciences, 38, 189191.Google Scholar
Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O’Brien, S. J., & Murphy, W. J. (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307, 580584.Google Scholar
Thirgood, S., Mosser, A., Tham, S., et al. (2004) Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Animal Conservation, 7, 113120.Google Scholar
Trivers, R. L. & Willard, D. E. (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science, 179, 9092.Google Scholar
Vehrencamp, S. L. (1983) Optimal degree of skew in cooperative societies. American Zoologist, 23, 327335.Google Scholar
Wilkinson, G. S. (1984) Reciprocal food sharing in the vampire bat. Nature, 308(5955), 181184.Google Scholar
Wilkinson, G. S. & Baker, A. E. M. (1988) Communal nesting among genetically similar house mice. Ethology, 77, 103114Google Scholar
Wilson, D. E. & Reeder, D. M. (eds.) (2005) Mammal Species of the World: A Taxonomic and Geographic Reference, John Hopkins University Press, Baltimore, MA.Google Scholar
Wittemyer, G., Douglas-Hamilton, I., & Getz, W. M. (2005) The socioecology of elephants: Analysis of the processes creating multitiered social structures. Animal Behaviour, 69, 13571371.Google Scholar
Wolf, J. B. W., Mawdsley, D., Trillmich, F., & James, R. (2007) Social structure in a colonial mammal: Unravelling hidden structural layers and their foundations by network analysis. Animal Behaviour, 74, 12931302.Google Scholar
Wolff, J. O. & Sherman, P. W. (2007) Rodents societies as model systems. In: Wolff, J. O. & Sherman, P. W. (eds.) Rodent Societies: An Ecological and Evolutionary Perspective, Chicago: University of Chicago Press, pp. 37.Google Scholar
Young, A. J., Carlson, A. A., Monfort, S. L., Russell, A. F., Bennett, N. C., & Clutton-Brock, T. (2006). Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proceedings of the National Academy of Sciences, 103(32), 1200512010.Google Scholar
Young, L. J. & Wang, Z. (2004) The neurobiology of pair bonding. Nature Neuroscience, 7, 10481054.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×