Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T03:00:06.085Z Has data issue: false hasContentIssue false

4 - Vistas from tensor network theory: a horizon from reductionalistic neurophilosophy to the geometry of multi-unit recordings

from Neurons and neural networks: general principles

Published online by Cambridge University Press:  05 February 2012

András J. Pellionisz
Affiliation:
New York University Medical School
Get access

Summary

The brain and the computer: a misleading metaphor in place of brain theory

Contrary to the philosophy of natural sciences, the brain has always been understood in terms of the most complex scientific technology of manmade organisms, for the simple reason of human vanity. Before and after the computer era, the brain was paraded in the clothing of hydraulic systems (in Descartes' times), and in the modern era as radio command centers, telephone switchboards, learn-matrices or feedback control amplifiers. Presently, it is fashionable to borrow terms of holograms, catastrophes or even spin glasses. Comparing brains to computers, however, has been by far the most important and most grossly misleading metaphor of all. Its importance has been twofold. First, the early post-war era was the first and last time in history that such analogy paved the way both to a model of the single neuron, the flip–flop binary element, cf. McCulloch & Pitts, 1943, and to a grand mathematical theory of the function of the entire brain (i.e., information processing and control by networks implementing Boolean algebra, cf. Shannon, 1948; Wiener, 1948). Second, the classical computer, the so-called von Neumann machine, provided neuroscience with not only a metaphor, but at the same time with a powerful working tool. This made computer simulation and modeling flourish in the brain sciences as well (cf. Pellionisz, 1979).

The basic misunderstanding inherent in the metaphor, nevertheless, left brain theory in an eclipse, although the creator of the computers was the first to point out (von Neumann, 1958) that these living- and non-living epitomes of complex organisms appear to operate on diametrically opposite structuro–functional principles.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×