Skip to main content Accessibility help
×
Home
Convex Bodies: The Brunn–Minkowski Theory
  • Cited by 76
  • 2nd edition
  • Rolf Schneider, Albert-Ludwigs-Universität Freiburg, Germany
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

At the heart of this monograph is the Brunn–Minkowski theory, which can be used to great effect in studying such ideas as volume and surface area and their generalizations. In particular, the notions of mixed volume and mixed area measure arise naturally and the fundamental inequalities that are satisfied by mixed volumes are considered here in detail. The author presents a comprehensive introduction to convex bodies, including full proofs for some deeper theorems. The book provides hints and pointers to connections with other fields and an exhaustive reference list. This second edition has been considerably expanded to reflect the rapid developments of the past two decades. It includes new chapters on valuations on convex bodies, on extensions like the Lp Brunn–Minkowski theory, and on affine constructions and inequalities. There are also many supplements and updates to the original chapters, and a substantial expansion of chapter notes and references.

Reviews

Review of the first edition:‘Neither one of [the old classics] may be considered a substitute for the excellent detailed monograph written by Rolf Schneider. I recommend this book to everyone who appreciates the beauty of convexity theory or who uses the strength of geometric inequalities, and to any expert who needs a reliable reference book for his/her research.'

V. Milman Source: Bulletin of the American Mathematical Society

Review of the first edition:‘Professor Schneider's book is the first comprehensive account of the Brunn-Minkowski theory and will immediately become the standard reference for the Aleksandrov-Fenchel inequalities and the current knowledge concerning the cases of equality and estimates of their stability. The book is aimed at a broad audience from graduate students to working professionals. The presentation is very clear and I enjoyed reading it.'

Source: Bulletin of the London Mathematical Society

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.