Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-27T16:40:49.223Z Has data issue: false hasContentIssue false

15 - Energy and labor

Published online by Cambridge University Press:  05 June 2012

David J. Connor
Affiliation:
University of Melbourne
Robert S. Loomis
Affiliation:
University of California, Davis
Kenneth G. Cassman
Affiliation:
University of Nebraska, Lincoln
Get access

Summary

All human activity requires energy. The inescapable minimum is dietary energy to maintain the population. In earlier times, if each hunter-gatherer could collect around 33 MJ every day for a family unit (man, woman, and two children), then survival was possible. In practice, additional organic materials, mostly non-dietary, were needed for shelter, clothing, and combustion (cooking and warmth).

Agriculture provided a way to secure that supply, and more, with less environmental hazard and less competition from other organisms. The development and maintenance of industrialized cultures is based upon the substitution of energy for labor in mandatory activities of food provision. By success in raising and stabilizing yields, agriculture has supported an increasing population and released an increasing proportion from labor in food production. Greater participation in cultural, leisure, recreational, and scientific activities improves well-being for all and advances human civilization.

The purpose of this chapter is to explain the extent, pattern, and significance of energy use in agriculture so that we might understand how agriculture at various stages of development can respond to changes in the supply and cost of energy and labor.

Sources and utilization of energy

Earth systems capture energy that originates on Earth and beyond. Earth energy comprises a small geothermal heat flux and the essentially “limitless” nuclear energy of matter. Energy captured from outside is dominantly the flux of radiant energy originating in nuclear fusion reactions in the Sun (Section 6.1), and supported by kinetic energy in ocean currents and tides caused by gravitational forces of planetary motion.

Type
Chapter
Information
Crop Ecology
Productivity and Management in Agricultural Systems
, pp. 411 - 436
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×