Skip to main content Accessibility help
×
  • Cited by 20
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      August 2009
      February 2006
      ISBN:
      9780511543173
      9780521855358
      Dimensions:
      (228 x 152 mm)
      Weight & Pages:
      0.394kg, 184 Pages
      Dimensions:
      Weight & Pages:
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    This tract has two purposes: to show what is known about the n-dimensional unit cubes and to demonstrate how Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory, can be applied to the study of them. The unit cubes, from any point of view, are among the most important and fascinating objects in an n-dimensional Euclidean space. However, our knowledge about them is still quite limited and many basic problems remain unsolved. In this Tract eight topics about the unit cubes are introduced: cross sections, projections, inscribed simplices, triangulations, 0/1 polytopes, Minkowski's conjecture, Furtwangler's conjecture, and Keller's conjecture. In particular the author demonstrates how deep analysis like log concave measure and the Brascamp-Lieb inequality can deal with the cross section problem, how Hyperbolic Geometry helps with the triangulation problem, how group rings can deal with Minkowski's conjecture and Furtwangler's conjecture, and how Graph Theory handles Keller's conjecture.

    Reviews

    "Because this book is a love letter to the unity of mathematics, readers can hardly but come to share Zong's undisguised enthusiasm...Highly recommended." -- Choice

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.